
RESOLVING INCOMPATIBILITY DURING THE EVOLUTION OF
WEB SERVICES WITH MESSAGE CONVERSION

Vadym Borovskiy, Alexander Zeier
Hasso-Plattner-Institut, Potsdam, Germany

Jan Karstens, Heinz Ulrich Roggenkemper
Business Process Renovation, SAP AG, Walldorf, Germany

Keywords: Incompatibility resolution, message conversion, change management, web service evolution.

Abstract: One of the challenges that Web service providers face is service evolution management. In general, the
challenge is to ensure the substitutability of service versions, i.e. correct functioning of all ongoing client
applications relying on the old version of a service after the version has been substituted with a new one.
Unfortunately, no currently available design approach can guarantee a perfectly extensible architecture that
preserves full backward compatibility during its evolution. Hence, incompatibilities are very likely to occur
if an old version of a service is replaced with a new one. This paper addresses the incompatibility problem
and describes a solution to the problem. This solution is based upon the already known design pattern of mes-
sage translation and the ASP.NET 2.0 Web service platform. Using the platform’s API the standard ASP.NET
pipeline has been augmented with an additional step of applying XSL transformations to the XML payload of
the messages. The solution is then verified against the Electronic Commerce Service from Amazon.com web
services suite. Thus, the contribution of the work is a new .NET implementation of the translator pattern.

1 INTRODUCTION

Nowadays software systems are expected to share
their data and functionality. Achieving this level of
interoperability has required creating custom compo-
nents to bridge incompatible systems. The main rea-
son of the failure to create truly interoperable systems
has been having lots of competitive proprietary pro-
tocols based on individual goals instead of a single
widely accepted standard (Hall Gailey, 2004). The
emergence of Web services (WS) promises to intro-
duce such a standard. Based on platform neutral pro-
tocols, WS achieve interoperability at lower cost.

When considering the time factor, WS, however,
don’t differ from other technologies and show vul-
nerability with regards to change management (CM).
The lack of CM techniques results in the inconsistent
evolution of a Web service, which in turn leads to in-
compatibility between different versions of the same
service. In the short run resolving only the latter prob-
lem is sufficient, but in the long run a service provider
must find a solution to the former problem and im-
prove the substitutability of versions of a service.

In this paper the incompatibility problem is ad-
dressed and a possible solution to the problem is pre-
sented. Section 2 delves into the nature of the incom-
patibility problem with regards to WS and builds the
foundation for solving the problem. Section 3 advo-
cates message conversion as a solution to the problem
and contributes to already known work with a new
way of implementing the translator pattern using the
.NET environment. The section also presents a proto-
type that demonstrates the solution in work with a real
world Web service. Section 4 discusses the related
work. Section 5 concludes the article and outlines the
future direction of the research.

2 INCOMPATIBILITY PROBLEM

2.1 Problem Description

To consume a Web service a client application per-
forms a number of necessary steps. Firstly, the client
must locate the service. Secondly, the client must ob-

152
Borovskiy V., Zeier A., Karstens J. and Ulrich Roggenkemper H. (2008).
RESOLVING INCOMPATIBILITY DURING THE EVOLUTION OF WEB SERVICES WITH MESSAGE CONVERSION.
In Proceedings of the Third International Conference on Software and Data Technologies - SE/GSDCA/MUSE, pages 152-158
DOI: 10.5220/0001880101520158
Copyright c© SciTePress

Figure 1: A client consumes a service.

Figure 2: Incompatible interface.

tain a WS description, that is a communication con-
tract that specifies the available functionality of the
service and how to invoke the functionality. Thirdly,
the client must build a proxy from the WS description
and integrate the one into their system. The proxy
creates an illusion of seamless integration between
the client’s system and the remote service. Thus the
client’s application consumes the interface the service
provides (see Figure 1).

Over time a Web service may change, which will
cause its description to change as well. In this situa-
tion new clients developed from scratch will not ex-
perience any incompatibility. However, older clients
designed for the previous version of the service might
face an incompatible interface and fail to interact with
the new version of the service (see Figure 2).

2.2 Roots of Incompatibility

Messaging is the core of communication mechanism
of WS. It is based on open standards (XML, SOAP
and HTTP) and decouples Web services from their
clients (Dahan, 2006). To access a service clients
need only the address of the service and the XML
schemas of request and response messages. This in-
formation forms the description of a service and is
included in a .wsdl file that is published on the Web.
The description is used to generate a proxy via which
the clients will interact with the service.

The fact that a .wsdl file includes the description
of messages to be exchanged with the service, means
that a client must comply with communication rules
of a service. Such a requirement in turn creates a
dependency between the implementation of the client
and the description of the service. Because of this de-
pendency the client becomes sensitive to the changes
to the WS description. If a change to the description
occurs, the client may not be able to interact with the
service any longer. The reason for this possible failure
is that the client will produce messages according to
the older version of the communication contract. The
signature of operation calls deserialized from these
messages will not match the signature of service’s op-
erations. Thus, the roots of the incompatibility prob-
lem are on the message level of WS.

2.3 Classification of Changes

Changes of a WS description result in changes of the
messages that a service expects and sends. The un-
derstanding of the changes and the way they affect
communication will definitely help to find a solution
to the incompatibility problem. The first step in the
analysis of possible changes is to outline all relevant
parts of a WS description. The second step is to un-
derstand how each of the parts can change.

2.3.1 Content of Web Service Description

WSDL is an XML-based language that is used to de-
fine a Web service and the mechanisms to access it.
WSDL defines a service in two parts: abstract and
concrete. The abstract part describes the interface to
the service without any details about how to access the
service and includes three elements: portType, mes-
sage and types. The concrete part builds upon the
abstract part to add protocol-specific details and de-
scribe how to access the Web service. The concrete
part includes two elements service and binding.

<definitions>
<types>
<xs:schema>
<xs:element name="Request">
.......
</xs:element>
<xs:element name="Response">
.......
</xs:element>
</xs:schema>

</types>
<message name="RequestMsg">
<part name="body" element="Request"/>

</message>
<message name="ResponseMsg">
<part name="body" element="Response"/>

</message>
<portType name="EcsPortType">
<operation name="ItemSearch">
<input message="tns:RequestMsg"/>
<output message="tns:ResponseMsg"/>

</operation>
</portType>
<binding name="EcsBinding"

type="tns:EcsPortType">
<soap:binding style="document"

transport="http://..../soap/http"/>
<operation name="ItemSearch">
.......

</operation>
</binding>
<service name="Ecs">
<port name="EcsPort"

binding="tns:EcsBinding">
<soap:address location="http://..../>

</port>

RESOLVING INCOMPATIBILITY DURING THE EVOLUTION OF WEB SERVICES WITH MESSAGE
CONVERSION

153

</service>
</definitions>

The listing above shows all first-level elements1 that
are related to the ItemSearch operation of the Ama-
zon Electronic Commerce Service 4.02. From the list-
ing one can see that to invoke the ItemSearch opera-
tion RequestMsg message must be sent to the service
(see portType element). The message protocol must
be SOAP and the transport must be HTTP (see bind-
ing element). The message must contain at least one
part that consists of an element of Request type. Re-
quest is a self-defined type and described inside types
element. If ItemSearch operation completes success-
fully the result will be sent back to the client inside
ResponseMsg message. The payload of the message
is defined by Response element.

2.3.2 Changes of Web Service Description

Both parts of a .wsdl file can change over time. This
subsection presents the analysis of possible changes
of WS description and their effect on communication
between a service and its client.

The change of the service element implies the
change of endpoints to which messages are sent. The
change affects neither the contents nor the format of
messages. Storing endpoints in a configuration file
will help to safeguard clients from this kind of change.

A change of the binding element implies changing
either message protocol (SOAP, HTTP-POST, HTTP-
GET, etc.) or parameter encoding if SOAP over
HTTP is chosen. Such a change alters the structure
of the messages, but their content stays the same.

The portType element defines the signature of
each operation of the Web service. This part of the
description is most likely to change over time. The
change might happen to either the name of an opera-
tion or the message attribute of the input/output ele-
ments of an operation. Changing the attribute means
that another message will be used to communicate
with the service. In addition existing operations may
be removed and new ones added.

A change of the message element means either
changing the type or element that is referenced by any
of the message parts or adding/removing a message
part. In practice most messages consist of one part,
therefore the second type of change is rare.

The last element to consider is types. The element
includes the definitions of data types used in mes-

1For the ease of reading and comprehending all names-
pace attributes and URLs have been omitted.

2ItemSearch operation searches the Amazon.com prod-
uct catalog for items that meet a user-specified criterion
(e.g. have certain title, manufacturer, etc.).

sages. This element represents the payload of mes-
sages. The types element is very likely to change:
new type definitions can be added and existing ones
can be removed or altered. A change of the types el-
ement most probably implies the semantic change of
message payload.

Generally speaking, a change of the abstract part
implies a change of service’s functionality, whereas a
change of the concrete part alters the way this func-
tionality is invoked. If changing the interface or im-
plementation of a service breaks ongoing client ap-
plications the new version of the service should be
created (Lublinsky, 2007). The most notable version-
ing approaches for WS are described in (Lublinsky,
2007). According to Lublinsky versioning may take
place at three levels: message level, method level and
service level. On the message level versioning is ap-
plied by placing message elements in a unique names-
pace that is related to the specific version of a service.
This is done by appending a version identifier or a
date stamp to the namespace attribute of message el-
ements. On the method and service levels versioning
is applied by assigning different endpoints to the ver-
sions of a method and a service respectively.

3 MESSAGE CONVERSION

3.1 The Approach

Web services use XML to represent messages flow-
ing between a service and its clients. A client con-
structs a message encapsulating a function call and
sends the message to the service. The service pro-
cesses the message and constructs an output message
if required and sends the message to back to the client.
An important detail is that after request and response
messages have been sent, they become independent
of the client and the service. As shown in the subsec-
tion 2.2 the reason of incompatibility is the discrep-
ancy between the service’s and the client’s commu-
nication protocols resulted in incompatible messages.
To reconcile this incompatibility message conversion
can be used. The main idea of the solution is to trans-
form XML messages using XSL transformation be-
fore they reach their destination. Figure 3 shows how
the solution fits into the existing interaction process.
Note that there is no necessity to use converters on
the service and the client sides for each communica-
tion direction at the same time.

The solution is based on the translator pattern
that in turn derives from the pipes-and-filters pattern
(Hohpe and Woolf, 2004). In their work Hohpe and
Woolf introduced the translator as a part of messag-

ICSOFT 2008 - International Conference on Software and Data Technologies

154

Figure 3: Message conversion.

ing system, that acts as an external entity intervening
in communication process between different compo-
nents. Hence, the translator stands out of WS in-
frastructure. With the advent of new technologies
the message translator can be implemented more ef-
ficiently by means of closer integration into the com-
munication process between a service and its client.
In its essence the current approach takes an advantage
of new technology, ASP.NET 2.0, and suggests a new
way of including message conversion into WS infras-
tructure.

To successfully use the approach one requirement
must be met. The semantic relationships between
the payload of messages addressed to different ser-
vice versions must be discoverable. Therefore, the
approach assumes that the business logic of the older
version is not removed but substituted, meaning that
the old functionality stays essentially the same, but
is offered in a new way. An important consequence
of the assumption is that by using message conver-
sion any incompatibility resulting from a change of
the concrete part of a WS description (i.e. the bind-
ing and the service elements) can be resolved if the
abstract part of the description stays the same.

To use the approach in practice two tasks must be
done. The first one is to create a converter and plug in
the one into the existing application. The second task
is to develop message transformation scripts in XSLT.
A solution to the first challenge largely depends on the
concrete situation and first of all the implementation
technology used to develop the client and the service.
The main factors here are the accessibility and exten-
sibility of message processing of the WS implemen-
tation for a given technology. The second challenge
is about understanding and discovering semantic re-
lationships between the messages of different formats

and creating XSLT scripts out of the relationships.

3.2 Implementing Converter with .NET

To demonstrate the approach described in this article
Microsoft .NET platform was chosen. The main rea-
son for the choice was the very flexible customization
API that .NET provides. The API allows for build-
ing custom extensions on top of the existing ASP.NET
development stack (Esposito, 2006). The extensions
are plugged in to the ASP.NET pipeline, which is re-
sponsible for handling Web service requests and re-
sponses. At a certain stage of the processing3 the cus-
tom extension is invoked to perform a user-defined
operation on the message (in this case conversion).

Using a .NET development kit an application was
built. Powered by Amazon.com ECS 3.04, the appli-
cation implements keyword search against the book
catalog of Amazon.com. To simulate the evolution
of the service all requests composed by the applica-
tion were redirected to the newer version of the ser-
vice, by changing service endpoint. ECS 4.0 is not
backwards compatible with ECS 3.0, meaning that
the fourth version cannot process requests addressed
to the third version and the clients of ECS 3.0 can-
not handle responses coming from ECS 4.0. Hence,
simply changing the endpoint URL would not work.

On the other hand the functionality of ECS 3.0 is
present in ECS 4.0, but provided in a different way.
Therefore, to reconcile the incompatibility between
the old client and the new version of the service mes-
sage conversion was used. There were two steps in
implementing the conversion. The first one was to de-
velop the converter itself and the second was to plug
in the converter to .NET infrastructure.

Creating a converter is a simple task when us-
ing .NET. The platform provides a powerful API for
working with XML and XSLT. Using the API the con-
verter loads source XML and XSL transformation to
memory and then produces result XML by applying
the XSL transformation to the source XML.

To plug in the converter to ASP.NET pipeline
SOAP extension technology was used. A SOAP ex-
tension embodying the converter was built as a sepa-
rate DLL and is completely independent of the client
application. To deploy and invoke the SOAP ex-
tension to perform the conversion the DLL must be
copied to the client’s installation directory and regis-

3.NET can invoke an extension at the four following pro-
cessing stages: before deserialization, after deserialization,
before serialization and after serialization.

4Electronic Commerce Service 3.0 was formerly known
as the Amazon Web Service. For details on E-Commerce
Service see http://aws.amazon.com.

RESOLVING INCOMPATIBILITY DURING THE EVOLUTION OF WEB SERVICES WITH MESSAGE
CONVERSION

155

tered with the help of a configuration file. No change
of the client application code is needed!

The solution required two converters: one for re-
quest and the other for response conversion. Both
converters were essentially the same. The only differ-
ence between them is the stage of message processing
at which they are invoked. The request converter is
invoked at after serialize stage and the response con-
verter at before deserialize stage. Since the service-
side processing chain is not accessible, the two con-
verters were plugged in to the client side.

The biggest advantage of the SOAP extension
technology of .NET is that the client stays unchanged,
which is very important for complex applications be-
cause of high costs of retesting and redebugging.
With SOAP extensions .NET infrastructure’s behav-
ior is changed, but not the application’s behavior.

3.3 Generation of Transformation
Scripts

Message conversion approach described above re-
quires a developer to create XSLT scripts that define
how incompatible messages must be brought to cor-
respondence with a new communication contract. To
create XSLT scripts correspondences between source
and target message schemas must be found. This op-
eration is knows as schema mapping. Mapping can
be specified by a domain expert or by an automated
schema matching algorithm. Manual matching even
supported by a graphical user interface is a tedious,
time-consuming and error-prone process (Rahm and
Bernstein, 2001). On the other hand automated al-
gorithms do not perform well in all situations and
may produce incorrect mappings. Although there are
many algorithms, none of them produces fully reli-
able results (Legler and Naumann, 2007). A combi-
nation of the both approaches, i.e. manual matching
supported by automated algorithms, represents a rea-
sonable trade-off (Bernstein et al., 2006).

Once mappings have been found, they must be in-
terpreted as data transformation in terms of XSLT lan-
guage. During this step developers can be supported
by a wide range of software products that create XSLT
script for a given mapping, e.g. Altova Map-Force,
BEA WebLogic Workshop, IBM WebSphere, Stylus
Studio, and Microsoft BizTalk Mapper.

3.4 Achieved Results

This subsection presents the results achieved with the
help of the developed prototype. As described in the
Section 3.2 the main responsibility of the application

was to convert messages from ECS 3.0 to ECS 4.0
format and vice versa.

The listing below shows a request message5 in-
voking the KeywordSearchRequest operation of ECS
3.0. In response to this message the service would
send all books with specified keyword in their title.

<Body>
<KeywordSearchRequest>
<KeywordSearchRequest href="#id1" />

</KeywordSearchRequest>
<KeywordRequest id="id1"

type="KeywordRequest">
<keyword type="string">C#</keyword>
<mode type="string">books</mode>
<type type="string">lite</type>

</KeywordRequest>
</Body>

The newer service version expects different mes-
sages to invoke the same functionality. ECS 4.0 re-
quest messages differ in both structure and content.
Here is an example of a valid ECS 4.0 request mes-
sage that gets back the same information.

<Body>
<ItemSearch>
<Request>
<Keywords>C#</Keywords>
<SearchIndex>Books</SearchIndex>
<ResponseGroup>Medium</ResponseGroup>
<ResponseGroup>Images</ResponseGroup>

</Request>
</ItemSearch>

</Body>

From the listings one can see that ECS 4.0 uses
document-literal style of formatting SOAP messages,
whereas ECS 3.0 uses document-encoding style. Due
to this fact the messages have different structure. In
ECS 3.0 the parameters are factored out from the op-
eration element. Only a reference to another element
containing the values of parameters is included in the
operation element. On the other hand ECS 4.0 mes-
sage has all parameter values embedded in the opera-
tion element. So the first step of message conversion
is to bring ECS 3.0 message to document-literal style.
The second step is to map operation name and input
parameters. If direct mapping exists (e.g. mode cor-
responds to SearchIndex) then the value of parameter
is simply copied into the new message under another
name. If no direct mapping exists the transformation
script has to compensate the difference by inserting
appropriate parameters into the new message. The
following XSLT script does required conversion.

<stylesheet>
<key name="requestId" use="@id"

5For the ease of reading namespace attributes in this and
the following XML fragments have been omitted.

ICSOFT 2008 - International Conference on Software and Data Technologies

156

match="KeywordRequest"/>
<template match="//Body">
<Envelope>
<Body>
<ItemSearch>
<apply-templates
select="key(’requestId’,
substring-after(@href, ’#’))"/>

</ItemSearch>
</Body>

</Envelope>
</template>
<template match="tns:KeywordRequest">
<Request>
<Keywords>
<value-of select="keyword"/>

</Keywords>
<SearchIndex>
<value-of select="mode"/>

</SearchIndex>
<ResponseGroup>Medium</ResponseGroup>
<ResponseGroup>Images</ResponseGroup>

</Request>
</template>
</stylesheet>

The response messages of ECS 3.0 and ECS 4.0
have the same structure. Therefore, only parameter
name mapping must be performed. This is done in
the same way as described above for the request mes-
sages: the value of parameter is copied into the new
message under another name.

4 RELATED WORK

In (Erlikh, 2000) Erlikh estimated that 90% of soft-
ware costs are evolution costs. The importance of the
evolution requires a systematic approach of manag-
ing an evolving software system. This is the task of
configuration management discipline (Zeller, 1997).

The most frequently used approach in the area of
software evolution is versioning. Versioning is used
to distinguish different versions of components and
libraries that are simultaneously running at the same
machine (Sommerville, 2007). The way how a ver-
sion is identified and which characteristics are in-
cluded into the computation of version identifier are
defined by a particular versioning model (Conradi and
Westfechtel, 1998).

A number of versioning methods has been prac-
tically implemented. None of them, however, has
solved the challenge of consistent software evolution
(Stuckenholz, 2005). Moreover versioning is not the
mechanism of incompatibility resolution and does not
facilitate software substitutability. It is rather a way to
make software changes detectable in client applica-
tions. To figure out if two versions of the same com-

ponent are substitutable an approach offered in (Lobo
et al., 2005) could be used.

In contrast to versioning this article offers an ap-
proach to incompatibility resolution when the older
versions of a service are depreciated before existing
clients migrate to the newer versions of the service.

The works of Ponnekanti and Fox (Ponnekanti and
Fox, 2004), Hohpe and Woolf (Hohpe and Woolf,
2004) and Kaminski, Litoiu and Mueller (Kamin-
ski et al., 2006) address the incompatibility problem.
(Kaminski et al., 2006) suggests to pass calls of older
clients through a chain of adapters that compensates
the difference between the versions of a service in
terms of other operations available in the newer ver-
sion. This solution is more powerful than message
conversion, but is limited to the service side and might
result in a serious performance hit in case of long
chain. (Ponnekanti and Fox, 2004) suggests a sim-
ilar technique that reconciles incompatibility inside
a client-side proxy. Instead of a standard proxy a
”smart” proxy that bridges the gap between the older
client and the newer version must be used. The ap-
proach is limited to the client side and requires chang-
ing the older application. (Hohpe and Woolf, 2004)
presents message conversion as a pattern of enterprise
integration. The work is fairly abstract without any
implementation guidance.

From the business protocol standpoint the evo-
lution of a Web service is described in (Ryu et al.,
2007). The article suggests an approach to man-
age the protocol instances running according to the
old protocol version. Firstly, a protocol manager se-
lects the active instances that can migrate to the new
protocol. This is done by analyzing the protocol it-
self (static analysis) and each individual instance of
the protocol (dynamic analysis). All migrateable in-
stances can be safely switched to the newer protocol
version. Secondly, for non-migrateable instances an
adapter must be developed. In case developing the
adapter is not feasible an individual temporary proto-
col must be introduced to the instance to meet new re-
quirements without cancelling the ongoing instance.

Hence, none of the compared approaches is able to
guarantee seamless evolution of software and a Web
service in particular. Some of the approaches can help
to detect and mitigate incompatibility.

5 CONCLUSIONS

Due to platform-neutral nature based on open stan-
dards WS have gained high number of supporters.
However, along with benefits WS pose some chal-
lenges. One of them is the challenge of change man-

RESOLVING INCOMPATIBILITY DURING THE EVOLUTION OF WEB SERVICES WITH MESSAGE
CONVERSION

157

agement. The lack of techniques in this area results
in incompatibility between different versions of the
same service. Resolving this incompatibility is suf-
ficient in the short run. In the long run a service
provider must develop methods of ensuring the sub-
stitutability of different service versions.

This article focused on the short run problem of
resolving incompatibility between different versions
of the same service. To find a solution the roots of
the problem were investigated. Different types of
changes that can result in backward incompatibility
during the evolution of a Web service were discussed.
If incompatible changes happen, message conversion
can be applied. This solution is based on the translator
pattern described in (Hohpe and Woolf, 2004). The
current work contributes to already known knowledge
with a new practical implementation of the translator
pattern on the .NET platform. The major challenges
and limitations of the approach were outlined. With
the help of a .NET prototype the results of the re-
search were checked against the last two versions of
E-Commerce Service from the Amazon Web services
suite. The future work of the research shall concen-
trate on developing design techniques to guarantee the
substitutability of different versions of a Web service.

REFERENCES

Bernstein, P. A., Melnik, S., and Churchill, J. E. (2006). In-
cremental schema matching. In Proceedings of the
32nd International Conference on Very Large Data
Bases, pages 1167–1170.

Conradi, R. and Westfechtel, B. (1998). Version models for
software configuration management. ACM Computing
Surveys, 30(2):232–282.

Dahan, U. (2006). Autonomous services and enterprise en-
tity aggregation. The Architecture Journal, (8):10–15.

Erlikh, L. (2000). Leveraging legacy system dollars for e-
business. IT Professional, 2(3):17–23.

Esposito, D. (2006). Programming Microsoft ASP.NET 2.0
Applications: Advanced Topics. Microsoft Press.

Hall Gailey, J. (2004). Understanding Web Services Speci-
fications and the WSE. Microsoft Press.

Hohpe, G. and Woolf, B. (2004). Enterprise Integration
Patterns: Designing, Building, and Deploying Mes-
saging Solutions. Addison-Wesley.

Kaminski, P., Litoiu, M., and Mller, H. (2006). A design
technique for evolving web services. In Proceedings
of the 2006 Conference of the Center for Advanced
Studies on Collaborative Research.

Legler, F. and Naumann, F. (2007). A classification of
schema mappings and analysis of mapping tools. In
12. GI-Fachtagung fr Datenbanksysteme in Business,
Technologie und Web, pages 449–464.

Lobo, A. E., Guerra, P., Filho, F. C., and Rubira, C. (2005).
A systematic approach for the evolution of reusable
software components. In ECOOP’2005 Workshop
on Architecture-Centric Evolution (Glasgow, UK, 25-
29th July 2005).

Lublinsky, B. (2007). Versioning in soa. The Architecture
Journal, pages 36 – 41.

Ponnekanti, S. R. and Fox, A. (2004). Interoperabil-
ity among independently evolving web services. In
Proceedings of the 5th ACM/IFIP/USENIX Interna-
tional Conference on Middleware (Toronto, Ontario,
Canada, Oct. 18-22, 2004), volume 78, pages 331 –
351.

Rahm, E. and Bernstein, P. A. (2001). A survey of ap-
proaches to automatic schema matching. The Inter-
national Journal on Very Large Data Bases, 10:334–
350.

Ryu, S. H., Saint-Paul, R., Benatallah, B., and Casati, F.
(2007). A framework for managing the evolution of
business protocols in web services. In Proceedings of
the 4th Asia-Pacific Conference on Comceptual Mod-
elling, volume 67, pages 49 – 59.

Sommerville, I. (2007). Software Engineering. Addison-
Wesley, 8 edition.

Stuckenholz, A. (2005). Component evolution and version-
ing state of the art. ACM SIGSOFT Software Engi-
neering Notes, 30(1).

Zeller, A. (1997). Configuration Management with Ver-
sion Sets - a Unified Software Versioning Model and
its Applications. PhD thesis, Technische Universitaet
Braunschweig.

ICSOFT 2008 - International Conference on Software and Data Technologies

158

