
FUNCTION POINT SIZE ESTIMATION FOR OBJECT
ORIENTED SOFTWARE BASED ON USE CASE MODEL

A. Chamundeswari and Chitra Babu
SSN College of Engineering, Rajiv Gandhi Salai, SSN Nagar – 603110, India

Keywords: Object-Oriented Software, Use Case Model, Function Point, Object Model.

Abstract: Precise size estimation earlier in the software development life cycle has always been a challenge for the
software industry. In the context of object oriented software, Use Case Model (UCM) is widely used to
capture the functionality addressed in the software. Existing size estimation techniques such as use case
points and use case size points do not adhere to any standard. Consequently, lots of variations are possible,
leading to inaccurate size estimation. On the other hand, Function Point Analysis (FPA) has been
standardized. However, the current estimation approaches based on FPA employ object modeling that
happens later in the software development life cycle rather than the UCM. In order to gain the advantages of
FPA as well as UCM, this paper proposes a new approach for size estimation of object oriented software.
This approach is based on the UCM by adapting it to FPA. Mapping rules are proposed for proper
identification and classification of various components from UCM to FPA. Estimation results obtained
using the proposed approach are compared with those using finer granular level object model which adapts
FPA at design phase. The close agreement between these two results indicates that the proposed approach is
suitable for accurate software size estimation earlier in the software development life cycle.

1 INTRODUCTION

Software size estimation is a challenging activity in
software development life cycle (Kusumoto et al.,
2004). One of the widely used size estimation
techniques is FPA. It was initially proposed
(Albrecht, 1979) to estimate the software size based
on the functionality from requirements specification,
independent of the technology used to build the
software. It contains five components namely
External Interface File (EIF), Internal Logical File
(ILF), External Input (EI), External Output (EO) and
External Inquiry (EQ). All these five components
are estimated based on the functionality. Fourteen
Technical Complexity Factors (TCF) are evaluated
based on the non-functional requirements. FPA has
been approved by International Function Point User
Group (IFPUG) and it became a standard. It is
widely accepted in software industry as a superior
metric compared to the naïve Lines of Code
counting for size estimation.

As object oriented methodology was embraced
by several software organizations, there was a need
to suitably adapt the FPA approach. Many
researchers have proposed the adaptation of FPA

approach for object oriented software size estimation
using object model (Antoniol et al., 1999, Ayman et
al., 2006 , Zivkovic et al., 2005). These approaches
estimate size of software by mapping the various
key notions of object model to the FPA components.
However, UCM has certain distinct advantages in
capturing the system requirements earlier in
software development life cycle (Kusumoto et al.,
2004). Some researchers have contributed to size
estimation based on UCM in terms of use case
points or use case size points (Edward, 2005,
Kusumoto et al., 2004, Marico et al, 2006). Use case
points size estimation technique is an extension of
FPA and Mark II FPA (Marico et al., 2006).
However, these approaches are not standardized as
opposed to FPA which is governed by IFPUG.

Furthermore, the UCM captures different
granularities such as brief, fully-specified and
refinements in the requirement analysis phase
(Cockburn, 2001) in detail. This paved the way to
the formulation of the hypothesis that the more
detailed the UCM, the more accurate will be the
anticipated system’s predicted size (Ayman et al.,
2006).

139
Chamundeswari A. and Babu C. (2008).
FUNCTION POINT SIZE ESTIMATION FOR OBJECT ORIENTED SOFTWARE BASED ON USE CASE MODEL.
In Proceedings of the Third International Conference on Software and Data Technologies - SE/GSDCA/MUSE, pages 139-145
DOI: 10.5220/0001879701390145
Copyright c© SciTePress

The main motivation for this research stems from
the hypothesis that UCM is more appropriate in
capturing the system requirements earlier in the
software development life cycle and consequently
provides accurate size estimation. Even though use
case points and use case size points are based on the
UCM, they do not adhere to any standard. On the
other hand, FPA is standardized. In order to combine
the advantages of UCM as well as FPA, this paper
proposes a new size estimation technique based on
the UCM.

The objective of this research work is to provide
accurate size estimation using FPA technique. This
has been achieved as follows:

1. Mapping the UCM components to FPA
components during the analysis phase.

2. Estimating size of object oriented
software in terms of function points by
applying this FPA mapping.

3. Comparing the estimated size with the
existing object model size estimation
technique.

The proposed approach is substantiated with
finer granularity level object model during design
phase.

The remainder of the paper is organized as
follows. Section 2 surveys work related to size
estimation of object oriented software. In Section 3,
a size estimation model which applies FPA on UCM
is presented. Section 4 discusses the results. Section
5 concludes and suggests future work.

2 RELATED WORK

The research work on quantitative size estimation
for object oriented software has been the focus of
many researchers. Size estimation has been dealt
during the various phases of the software
development life cycle such as analysis (Fetcke et
al., 1997, Antoniol et al., 2003, Fernandez et al.,
2004, Harput et al., 2005, Zivkovic et al., 2005),
design (Ram et al., 2000, Uemura et al., 2001,
Antoniol et al., 2003, Zivkovic et al., 2005) and
development (Whitmire, 1992, Schooneveldt, 1995,
Minkiewicz, 1997). FPA technique cannot be
directly used for estimating size of object oriented
software (Fetcke et al., 1997, Antoniol et al., 1999,
Ram et al., 2000, Harput et al., 2005, Zivkovic et al.,
2005). Hence mapping rules were framed, to adapt
FPA for estimating the size of object oriented
software.

Use case point method for estimating size of
projects developed with object oriented

methodology was first proposed by (Karner, 1993).
However, it has been tested only on a few small
projects. Therefore, more research is needed to
establish the general usefulness of the method. FPA
technique was applied on OOSE Jacobson method
(Fetcke et al., 1997). This was the first attempt to
apply FPA on object oriented software to estimate
the size.

A measure on UCM and object model was
proposed by (Zivkovic et al., 2005). In their study,
the approach of ISBSG statistical tool kit was
adapted for calculating the size estimation based on
use case diagram.

Use case point size estimation was proposed
considering the various parameters for UCM such as
actors, use cases, technical factors and eight
experience factors by (Edward, 2005). An analysis
of the performance with empirical data based on use
case point, it was shown that there was a deviation in
effort from planned to actual by -41.43%.

Use case size points estimation from UCM was
also proposed by (Marico et al., 2006). Finer
granularity such as classification of actors,
preconditions, main scenarios, alternative scenarios,
exceptions, post conditions, TCF and environment
adjustment factor were considered for estimation.
Manual measurement was done using original FPA.
Error rate of the estimate showed no significant
difference between FPA and use case size point.

However, size estimation techniques such as use
case point and use case size point based on UCM
follow different procedures and hence produce
varied results. In addition, these techniques also
have the following shortcomings:

1. Focus on the internal structure alone.
2. Lack of boundary identification.
3. Lack of identifying interaction with other

external use case.
4. Not considering overlapping use cases

that capture the same functionality.
In order to address these shortcomings, this paper

proposes a new estimation technique based on UCM
by applying FPA standard.

3 PROPOSED SIZE ESTIMATION
MODEL

Figure 1 gives a pictorial overview of the proposed
size estimation model. Software comprises of many
applications and it is essential to identify the
boundaries of different applications. Boundary of an

ICSOFT 2008 - International Conference on Software and Data Technologies

140

application is classified into two categories: internal
and external.

Figure 1: An overview of size estimation model.

An internal boundary contains actors which
directly invoke a set of use cases in an application.
An external boundary contains use cases of different
applications, which can be referenced by use cases
from an internal boundary. Logical files in FPA are
of two categories: ILF and EIF. ILF are identified
based on the artifacts that affect the internal
boundaries of the system, while EIF are identified
based on the artifacts that affect the external
boundary of the system. Thus the artifacts related to
an internal boundary of UCM are mapped to ILF
components, while the artifacts related to an external
boundary is mapped to EIF components of FPA.

Transactions in the FPA technique are classified
as EI, EO and EQ. The classifications EO and EQ
are not easily applicable in UCM, because scenarios
are the main transactions in use case and are defined
as Transaction Function (TF). TF of UCM is
mapped to EI components of FPA.

The detailed size estimation procedure consists
of four steps. The first step is identification of the
boundaries (internal and external). The second step
is identification of files and transactions within these
boundaries. The third step is to assign weights for
files based on their classification. The fourth step is
to count the size of the software application. The
following subsection discusses these steps in detail.

3.1 Mapping UCM to FPA

3.1.1 Boundary Identification

The main objective of FPA is to determine the size
based on functional requirements of the software
application. Identification of boundary is essential to
determine the artifacts under estimation. The
boundary indicates the border between different

applications. The various parameters in UCM are
boundaries, abstract use case, concrete use case,
active actors, passive actors, devices and scenarios.
The following mapping rules are proposed for
proper identification of internal and external
boundaries in UCM.

1. Active actors who are directly
communicating with the use cases within
the system boundary are internal.

2. Passive actors who are directly
communicating with the use cases for data
storage purpose within the system boundary
are internal.

3. Devices which are directly interacting with
the use case within the system boundary are
internal.

4. All other external references are external.

3.1.2 Identification & Classification of
Logical Files

Use cases are the main candidates in the UCM based
on which the estimation is carried out. A set of use
cases form the candidates for logical files. An actor
that directly invokes one or more use cases are
grouped as an ILF. The following mapping rules are
proposed for proper identification of ILF in UCM.

5. Select use cases that have direct
connection to an actor or device as stated
in rules 1, 2 or 3.

6. Group the use cases with their respective
actor or device separately.

7. Reject all other use cases that have
relationship uses or extends.

Classification of ILF depends on two parameters
namely Record Element Type (RET) and Data
Element Type (DET). RET represents a user
recognizable group of logically related data. DET
represents a simple unique user recognizable, non-
recursive data in RET. Each use case invoked by an
actor is counted as an RET. Data that flows from
actor to use case or from use case to actor is counted
as a DET. When RET and DET parameters are
classified and measured, ILF complexity table
defined as in IFPUG is used for classifying
complexity as low, average and high.

In the case of EIF, internal use case within the
internal boundary refers to external use case
maintained by other applications. An actor through
internal use case can invoke indirectly one or more
external use cases from another application. An
actor with external use cases is grouped as an EIF.
The following mapping rules are proposed for
proper identification of EIF in UCM.

FUNCTION POINT SIZE ESTIMATION FOR OBJECT ORIENTED SOFTWARE BASED ON USE CASE MODEL

141

Figure 2: Typical Use Case diagram.

8. Select internal use cases that refer
external use cases.

9. Identify the related actor or device of
internal use cases that invoke the external
use cases.

10. Group the actor or device with the
corresponding external use cases.

11. Reject all other external use cases.
Classification of EIF also depends on the two

parameters namely RET and DET. Each external use
case that is invoked though an actor is counted as an
RET. Data that flows from actor to external use case
or from external use case to actor is counted as a
DET. When RET and DET parameters are classified
and measured, EIF complexity table defined as in
IFPUG is used for classifying complexity as low,
average and high.

3.1.3 Identification & Classification of
Transactions

The following mapping rules are proposed for
proper identification of TF in UCM.

12. Select concrete use case and identify the
scenarios for each.

13. Identify the various transaction messages
for each scenario.

14. Identify the unique transaction messages
for different scenarios in each use case.

15. Reject all overlapping transaction messages
for different scenarios in each use case.

Classification of transactions depends on two
parameters, namely, File type referenced (FTR) and
DET. FTR represents a transaction in ILF or EIF.

DET represents a simple unique user recognizable
and non-recursive data in FTR. Each use case
scenario is counted as an FTR and each transaction
message is counted as a DET. When the DET and
FTR parameters are classified and measured, EI
complexity table defined as in IFPUG is used for
classifying complexity as low, average and high.

3.2 Size Estimation

The size estimation of a software application can be
determined by applying all the above 15 proposed
rules. The proposed estimation, UCMfp, is calculated
as shown below.
UCMfp = Unadj FPusecase-estimation * TCF
where
Unadj FPusecase-estimation = EIFsize-complexity+ILFsize-complexity

+TFsize-complexity

EIFsize-complexity = f (RET, DET)
ILFsize-complexity = f (RET, DET)
TFsize-complexity = f (FTR, DET)
 14
TCF = 0.65 + 0.01 * Σ ti
 i = 0

UCMfp is determined from four components
namely EIFsize-complexity, ILFsize-complexity, TFsize-complexity
and TCF. By determining the complexities of the
corresponding parameters RET and DET the size
complexity of EIFsize-complexity and ILFsize-complexity is
calculated. Parameters FTR and DET determine the
complexity of the TFsize-complexity. TCF is determined
from ti for fourteen characteristics, as defined in
(Albrecht, 1979). A case study for which the
proposed size estimation technique is applied is
described in the next section.

New

Help

 Enquiry

Renew

Tatkal

Duplicate

Validate

Login

Update Status

View
Status

extends

extends

extends

include

extends

extends

include include

extends

Admin
 Applicant

ICSOFT 2008 - International Conference on Software and Data Technologies

142

4 RESULTS AND DISCUSSION

As a case study for validating the proposed
estimation model, passport automation system
developed in the Software Engineering Laboratory
in our Institute has been considered. Fifteen
mapping rules as specified in section 3.1.1, 3.1.2,
3.1.3 and the formula in section 3.2 are applied for
validation. Figure 2 shows the UCM of this
application. This case study consists of all activities
in software development life cycle such as analysis,
design, implementation and testing. The total
number of use cases is 10 with 2 active actors and 3
passive actors. Number of data provided or received
from the use cases are 85. Number of scenarios
addressed by all these use cases is 18 with message
flow of 100.

By applying rules 1, 2, 3 and 4 the boundaries of
the application is identified. By applying rules 5, 6
and 7 the internal files are identified and classified to
determine RET and DET. Table 1 shows the ILFsize-

complexity for the passport automation system. By
applying rules 12, 13, 14 and 15 the scenarios and
unique transaction messages are identified.

Considering the use case diagram shown in
Figure 2, ‘new’ use case addresses two scenarios:
‘completed form’ and ‘uncompleted form’. An
identified transaction message for two scenarios is
represented as a list of sequential steps in Figure 3.
This is also represented using sequence diagrams as
shown in Figure 4(a) and 4(b).

Table 1: ILF Size Complexity.

Actor RET DET COMP
Applicant 6 45 15
Administrator 3 15 7
Passport_details 2 15 7
Passport_renew 1 5 7
Passport_status 1 5 7
 Total 43

Figure 3: Transaction messages of new use case.

Figure 4a: View of ‘complete form’ scenario.

Through the sequence diagrams it is clear that
the ‘completed form’ scenario has 10 transaction
messages and ‘uncompleted form’ scenario has 8
transaction messages. However 6 messages are
overlapping out of the total 18 messages. Rejecting
the overlapping messages, DET is calculated as 12
and RET is calculated as 2. Table 2 shows the TFsize-

complexity for the passport automation system. TCF is
calculated as 1.07.

Unadjusted FP = ILF + TF
 = 43+41 = 84
 Adjusted FP = Unadjusted FP * TCF

 = 84 * 1.07 = 89.88 FP
The proposed size estimation technique, UCMfp

is also applied on different projects developed in our
software engineering laboratory. For the same set of
projects, fine granular level object model size
estimation technique, object_modelfp which adapts
FPA during design phase proposed by (Antoniol et
al., 1999) is also applied.

Table 2: TF Size Complexity.

Use case FTR DET COMP
New 2 12 4
Renew 2 9 4
Duplicate 2 9 4
Talkaal 2 9 4
StatusEnquiry 2 5 4
Help 3 3 4
Validate 1 4 3
ViewStatus 1 5 4
UpdateStatus 1 6 4
Login 3 6 6
 Total 41

The comparison of projects using UCMfp and
object_modelfp is tabulated in Table 3. It is observed

1. An applicant request new form
2. Obtain the form
3. New passport application form
4. Display new passport application form
5. Fill and submit the application form
6. Is form filled? Yes go to step 9
7. Some fields not entered
8. Display message and go to step 4
9. Form filled
10. Request for payment
11. Make payment
12. Assign applicant id

FUNCTION POINT SIZE ESTIMATION FOR OBJECT ORIENTED SOFTWARE BASED ON USE CASE MODEL

143

from Table 3 that passport automation system
project UCMfp predicts more number of FPs when
compared to object_modelfp. In the case of other
projects, object_modelfp is predicting higher number
of FPs than UCMfp. The accuracy evaluation of the
estimation models are assessed using Magnitude of
Relative Error (MRE), which is defined as

MRE= | UCMfp – object_modelfp| / UCMfp

Figure 4b: View of ‘uncompleted form’ scenario.

Table 3: Comparison of FP Size Estimation.

Project Name UCMfp object_modelfp MRE

Passport automation
System 89.88 83.46 0.071

e-book management
system 83.46 87.74 0.069

On-line photo sharing and
indexing 92.02 93.09 0.011

Foreign exchange system 108.07 115.56 0.069

Although there are some differences in the
results obtained from the existing model to the
proposed one, it is clear that FPA can be applied on
UCMfp. Also, the MRE between two techniques is
found to be very low. This result shows that FPA
predicts size accurately during early analysis phase
when UCM components are mapped to FPA
components for size prediction.

The advantages of the proposed estimation
technique can be summarized as follows:

1. Size estimation using FPA can be applied at
an early stage of software development life
cycle using UCM.

2. Coarse granular size prediction can be
achieved using UCMfp and more fine
granular size estimation can be done using
object modelfp.

5 CONCLUSIONS AND FUTURE
WORK

A new size estimation technique is proposed for
estimating the size of object oriented software by
applying FPA at the early analysis phase based on
UCM. This approach involves mapping UCM
components to FPA components. Clear and precise
rules are proposed for identification and
classification of various FPA components for size
estimation. The results obtained from different
projects by applying this technique is compared with
the existing object model size estimation which
applies the principles of FPA. The MRE achieved
through these results are minimal and it signifies that
FPA can be applied at an early stage based on UCM.
Future work is to empirically validate this size
estimation model by applying it to real projects from
software industry.

REFERENCES

Albrecht, A., “Measuring application development
productivity”, IBM Application Development
Symposium, 1979, pp. 83-92.

Al-Hajri, M.A., Ghani, A.A.A., Sulaiman, M.N., Selamat
M.H., Modification of standard function point
complexity weights system, Journal of Systems and
Software volume 2, 2004, pp. 195–206.

Antoniol, G., Lokan, C., Caldiera, G., Fiutem, R., “A
function point-like measure for object oriented
software”, Journal of Empirical Software Engineering,
volume 4 Sep 1999, pp. 263-287.

Antoniol, G., Calzolari, F., Cristoforetti, L., Fiutem, R.,
Caldiera, G., “Adapting function points to object
oriented information systems”, Lecture notes in
computer science, Advanced Information System
Engineering, volume 13, 1998, pp. 59-76.

Antoniol, G., Fietum, R., Lokan, C., “Object oriented
function points: An empirical validation”, Journal of
Empirical Software Engineering, volume 8, no 3, Sep
2003, pp. 225-254.

Ayman, I., Mohammed, O., David, C., “Software cost
estimation using use case models: a critical
evaluation”, Proceedings of Second conference on
Information and Communication Technologies,
volume 2, April 2006, pp. 2766-2771.

Cockburn, A., “Writing effective use cases”, Boston,
London: Addison-Wesley, 2001.

Edward, R.C., “Estimating software based on use case
points”, Conference on Object Oriented Programming
Systems Languages and Applications, 2005, pp. 257-
265.

Fernandez, N.C., Abrahao, S., Pastor, O., “Towards a
functional size measure for object oriented systems
from requirements specifications”, Proceedings of the

ICSOFT 2008 - International Conference on Software and Data Technologies

144

Fourth International Conference on Quality Software,
volume 00, 2004, pp. 94-101.

Fetcke, T., Abran, A., Nguyen, T.H., “Mapping the OO-
Jacobson approach into function point analysis”,
Proceedings of IFPUG, 1997 Spring Conference,
1997, pp. 134-142.

Harput, V., Kaindl, H., Kramer, S., “Extending function
point analysis of object oriented requirements
specifications”, Eleventh IEEE International Software
Metrics Symposium, volume 0, 2005, pp. 39-49.

Karner, G., “Resource Estimation for Objectory
Projects”, Objectory Systems, 1993.

Kusumoto, S., Matukawa, F., Inoue, K., Hanabusa, S.,
Maegawa, Y., “Estimating effort by use case points:
method, tool and case study”, Proceedings of the Sixth
International Symposium on Software Metrics, Sep
2004, pp. 292 – 299.

Marico, R.B., Silvia, R.V., “Software effort estimation
based on use cases”, Proceedings of the thirty Annual
International Computer Software and Applications
Conference, Sep 2006, pp. 221 - 228

Minkiewicz, A.F., “Measuring object oriented Software
with predictive object points”, Proceedings of the
Conference on Applications in Software
Measurements, Oct 1997.

Ram, D.J., Raju, S.V.G.K., “Object oriented design
function points”, Proceedings of the First Asia Pacific
Conference on Quality Software, Hong Kong, 2000,
pp. 121-126.

Schooneveldt, M., “Measuring the size of object oriented
systems”, Proceedings of the Second Australian
Conference on Software Metrics, Metrics Association,
Nov 1995, pp. 168-177.

Uemura, T., Kusumoto, S., Inoue, K., “Function point
analysis using design specification based on the
Unified Modeling Language”, Journal of Software
Maintenance Evolution-Research Practice, volume 13,
2001, pp. 223-243.

Whitmire, A.S., “Applying function points to object
oriented software models”, Software Engineering
Productivity Handbook, Mc Graw-Hill, New York,
1992, pp. 229-244.

Zivkovic, A., Hericko, M., “Tips for estimating software
size with FPA method”, Proceedings of the IASTED
International Conference on Software Engineering,
Acta Press, 2004, pp. 515-519.

Zivkovic, A., Hericko, M., Brumen, B., Beloglavec, S.,
Rozman, I., “The impact of details in the class diagram
on software size estimation”, Informatica (Lithuania),
volume 16, no 2, 2005, pp. 1-18.

Zivkovic, A., Hericko, M., Kralj, T., “Empirical
assessment of methods for software size estimation”,
Informatica (Lithuania) volume 4, 2003, pp. 425-432.

Zivkovic, A., Rozman, I., Hericko, M., “Automated
software size estimation based on function points
using UML models”, Journal of Information and
Software Technology, volume 47, 2005, pp. 881-890.

FUNCTION POINT SIZE ESTIMATION FOR OBJECT ORIENTED SOFTWARE BASED ON USE CASE MODEL

145

