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Abstract: Feature selection is an important step in any data mining process, for many reasons. In this paper we 
consider the improvement of the prediction accuracy as the main goal of a feature selection method. We 
focus on an existing 3-step formalism, including a generation procedure, evaluation function and validation 
procedure. The performance evaluations have yielded that no individual 3-tuple (generation, evaluation and 
validation procedure) can be identified such that it achieves best performance on any dataset, with any 
learning algorithm. Moreover, the experimental results suggest the possibility of tackling a combined 
approach to the feature selection problem. So far we have experienced with the combination of several 
generation procedures, but we believe that the evaluation functions can also be successfully combined.   

1 INTRODUCTION 

In supervised learning, a set of instances, each 
having a number of features, is given, and the goal is 
to evaluate some objective function, and optimize it. 
A common objective function is the prediction 
accuracy, and in this paper we are considering it as 
the evaluation criterion. It is a well known fact that 
no classifier can perform remarkably well on any 
data set (neither real, nor artificial). Hence, the 
classifier should be selected and adjusted according 
to the data particularities. Previously, (Moldovan, 
2007) we have introduced a method for establishing 
the baseline accuracy for any problem domain. Thus, 
the choice of a specific learning scheme for a certain 
problem is further justified only if its performance is 
better than that of the system proposed there. The 
new system was evaluated on several classical 
benchmark datasets, and its performance was 
compared to that of its component classifiers. 
Moreover, comparative evaluations have been 
carried out with ensemble learning methods in order 
to emphasize the advantages of the chosen 
methodology. The results obtained have confirmed 
the assumptions related to the selective superiority 
of classifiers and have shown that the system’s 
accuracy is, overall, higher than that of the 
individual classifiers. Stability across different 
learning problems was also improved. 

Supposing that, for a given dataset, the best 
classifier has been identified, the assumption of 

monotonic behaviour – that more instances and more 
attributes improve the performance – is not generally 
valid. This means that further refinement is required 
in order to ensure the best possible performance of a 
given classifier. Identification of the optimal feature 
subset becomes thus a prerequisite which allows a 
classifier to improve its performance. As the search 
for such a subset can be driven in various ways, in 
this paper we focus on evaluating several feature 
selection methods. We have started this work with 
the intention of developing a methodology to select 
the optimal feature subset for any data set. However, 
the experimental results have shown that no such 
single, all-purpose method could be designed, as the 
feature selection mechanism is strongly related to 
the particularities of the dataset, in a similar way the 
learning scheme is. Therefore we extended our work 
on more selection mechanisms, combining the 
results with different classifiers, in the attempt to 
identify the best combination for each individual 
dataset.  Just like in the case of classifiers, our goal 
is to device a methodology for determining the 
baseline accuracy for the feature subset selection 
function, to represent a starting point in the attempt 
to develop a better method on a given particular 
dataset. 

Although the final purpose of any data mining 
effort is to solve a real-world problem, and our work 
also focuses on that, any new approach needs to be 
first validated on benchmark data, to allow for 
comparative evaluations. All the tests presented in 
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this paper have been performed on benchmark data, 
from the UCI Machine Learning Repository (UCI). 

The rest of the paper is organized as follows: 
section 2 describes the feature selection method. The 
experimental work is presented in section 3, while 
section 4 contains our conclusions and further work. 

2 FEATURE SELECTION 

In this information age, the volume of data which is 
gathered for a certain problem is usually immense. 
The monotonic assumption (i.e. classification on a 
set of features should perform better than on any 
subset it contains), has proven to be false for real-
world datasets. In many applications, the size of a 
dataset is so large that learning might perform 
extremely poorly on the full feature set. This 
introduces the need to restrict the learning process to 
an optimal subset of predictor attributes. If the cost 
is taken into account, it is even more desirable to 
determine the optimal subset of features that are 
relevant to the target concept to reduce the 
evaluation cost. Moreover, if the running time is 
considered, by reducing the search space (due to the 
reduced number of features), the running time of the 
learning algorithm is also improved. 

Feature selection is a research area with 
remarkable results. Important efforts are made to 
find better methods for feature subset selection, in 
order to make classifiers more efficient. However, 
most methods offer different answers when 
determining whether a particular feature is or not 
relevant. As presented in (Nilsson, 2007), there are 
several definitions of relevance, depending on the 
end goal of the analysis. This results in different 
feature selection problems, for which Nilsson offers 
very comprehensive definitions. He also presents the 
relation between the different feature subsets. 

Another good overview of the available 
formalisms is presented in (John, 1994) and 
(Kohavi, 1997). The last argues that, from a purely 
theoretical standpoint, whether a feature is relevant 
or not is not as important. Instead, the optimal set of 
features for a given inducer and problem should be 
analyzed, taking into the account the inducer’s 
heuristics, biases and tradeoffs. Although a relation 
between the optimal feature subset and relevance is 
provided, one should focus on finding optimal 
features, rather than theoretically relevant features. 

A lot of work has been carried out to develop 
feature selection methods, in order to satisfy the 
demand for obtaining good machine learning 
techniques. There exist two main categories of 
feature selection algorithms: filter methods, which 

base their selection on the properties of the data 
distribution alone, and wrapper methods, which 
employ an empirical risk estimate for a certain 
inducer to evaluate a feature subset. Representative 
for the first category are: FOCUS (Allmualim, 
1997), RELIEF (Kira, 1992), LVF (Liu, 1996), 
statistical methods based on hypothesis tests, e.t.c. 
Wrappers have been first introduced in (Kohavi, 
1997).   

(Dash, 1997) contains a comprehensive 
overview of many existing methods. They are 
classified using two criteria: generation method and 
evaluation measures. Fifteen possible categories are 
identified, and representative methods are discussed. 
A similar survey, but which uses a 3-dimension 
classification on existing methods is presented in 
(Molina, 2002). There, algorithms are classified 
using three criteria: search organization, generation 
of successors and evaluation function.   

Among the many feature aspects considered by 
feature selection methods, we focus on identifying 
those features which characterize the target concept 
best. Therefore, we are not interested in the 
theoretical classification of features in weak/strong 
relevant, or relevant/irrelevant/redundant/correlated. 
In real-world situations, relevant/ irrelevant features 
are unknown a priori. Therefore, many candidate 
features are introduced assuming they represent the 
domain better. However, some of them fail to 
characterize the target concept, so that the overall 
result is the degradation of the objective function. A 
mechanism to make an initial selection on a new 
real-world data set is required. Such a mechanism 
includes a generation procedure, an evaluation 
function, and a validation procedure. 

Definition: The feature selection process 
selects the minimal subset of features, considering 
the prediction accuracy as evaluation function. 

So, after selecting the feature subset, we consider 
each selected feature as (strong) relevant, and 
rejected features as irrelevant (with no further 
refinement). 

Definition: The generation procedure is a 
search procedure that selects a subset of features (Fi) 
from the original feature set (F), Fi ⊆ F. 

There are many search methods available today, 
from greedy hill climbing search, to genetic or 
random search methods. Each has its advantages and 
disadvantages. For the purpose of this paper, we 
have evaluated 4 of the best known search 
procedures, on 11 data sets (in more detail later). 

Since the particularities of each dataset strongly 
influence the choice of the best feature subset, there 
is no general method for partitioning the dataset in 
relevant/irrelevant features. Exhaustive search in the 
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attribute space may provide better results on a new 
dataset, but its application in problems with more 
than a few attributes is intractable due to complexity 
issues. 

Definition: The evaluation function measures 
the quality of a subset obtained from a given 
generation procedure. 

As the optimal features subset depends on the 
evaluation function, the process of selecting the 
appropriate evaluation function is dependent on the 
particular initial data set. An evaluation function 
measures the capability of a feature (subset of 
features) to distinguish among different class labels. 

We have considered the prediction accuracy as 
the evaluation function (the wrapper method). A 
subset is considered to better characterize the data 
set if and only of it improves the prediction 
accuracy. 

Definition: The validation procedure tests the 
validity of the selected subset through comparisons 
obtained from other feature selection and generation 
procedure pairs. 

The objective of the validation procedure is to 
identify the best performance that could be obtained 
in the first two steps of the method for a given data 
set, i.e. to identify the selection method which is 
most suitable for the given dataset and classification 
method. As a consequence, the minimal feature 
subset is selected. All features from the subset are 
considered relevant to the target concept. Moreover, 
the classification method performs the best, so it is 
to be considered for further classifications. In order 
to perform the validation we have employed 4 
different learning algorithms: Naïve Bayes 
(Cheeseman, 1995), AdaBoost.M1 (Freund, 1997), a 
PANE method (Onaci, 2007) and a method for 
determining the baseline accuracy of a dataset, based 
on the theory of Dempster-Shafer (DST) (Moldovan, 
2007). This was also done with the purpose of 
studying the connection between the selected subset 
of features and the final learning scheme: is the 
attribute subset universally good or there is a strong 
connection between it and the employed learning 
algorithm?  

Our vision on the feature selection process 
assumes a very strong connection between the 
different steps of the method. Moreover, since there 
is no generic best approach to feature selection (no 
single combination of steps yields the best solution 
on a random dataset), there appears the need to 
consider several approaches at once on a new real-
world problem. Although this might not lead to the 
best possible performance, it guarantees 
improvement over the initial dataset, due to its 

stability. Thus, it offers an effective starting point 
for the evaluation of a new problem. 

3 EXPERIMENTAL WORK 

In the evaluation part we concentrate on one feature 
selection method, the wrapper subset evaluation 
method, which uses the learning algorithm as 
evaluation function. This method has been reported 
to obtain more significant accuracy improvements 
than other feature selection approaches (Hall, 2003). 
As generation procedures, we focused on 4 well 
known methods: greedy forward selection and 
backward elimination, and forward and bidirectional 
best-first search.  

Forward selection starts with an empty subset of 
attributes. At each step, it tries to add a new attribute 
to the subset, by evaluating the worth of the subset 
with the added attribute, using some numeric 
measure of the expected performance of the dataset. 
The best attribute according to this measure is 
selected, and the procedure continues with the new 
subset. The search stops when no further 
improvement can be found. Backward elimination 
works in a very similar way: it starts with the full 
feature set and, at each step, tries to eliminate an 
attribute. Best-first search is slightly more 
sophisticated. It does not terminate when the 
performance drops, but instead keeps a list of best 
partial attribute subsets evaluated so far, so that it 
can backtrack.  

We have employed J4.8 (revision 8 of the more 
popular C4.5 algorithm (Witten, 2005)) as 
evaluation function. For validation we used 4 
different learning methods. In the trials we have 
performed we experimented with the WEKA 
implementation of the wrapper subset evaluation and 
search methods (Witten, 2005).  

The datasets we experimented on have been 
taken from the UCI Machine Learning Data 
Repository. We selected datasets for which the 
baseline accuracy (determined with the method 
presented in (Moldovan, 2007)) was around 70-90%, 
because these possess the highest capacity for 
improvement. Most of the datasets are two-class 
problems, with both nominal and numeric attributes. 

A first set of tests was conducted to establish 
whether a certain search method performs better 
than the others when used with wrapper subset 
evaluation. We used forward (gsf) and backward 
(gsb) greedy stepwise search, and forward (bfs) and 
bidirectional (bfs_bid) best first search. Ten fold  
cross-validation was performed, which generated  
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Table 1: Accuracy levels of J4.8 on attribute subsets resulted from wrapper subset evaluation with different search methods. 

Dataset 
 Initial 
Attrib. 

Initial 
Accuracy 

bfs 
Attrib.

bfs 
Acc. 

gsb 
Attrib.

gsb 
Acc. 

gsf 
Attrib.

gsf 
Acc. 

bfs_bid 
Attrib. 

bfs_bid 
Acc. 

Australian 14 86.2 6 85.10 8 87.43 1 85.51 5 84.97 
Breast-cancer 9 73.68 4 75.67 4 75.67 3 75.60 4 75.67 
Cleve-detrano 13 76.63 7 79.84 5 78.64 5 77.28 5 78.86 
Crx 15 84.93 5 85.87 6 86.32 4 85.49 6 85.36 
German 20 71.72 10 73.82 10 74.12 8 73.85 7 74.86 
Heart 13 76.16 4 83.19 7 80.19 4 83.19 5 82.00 
Hepatitis 19 78.05 3 83.59 10 82.28 3 83.59 4 83.45 
Labor 17 78.38 6 80.17 7 79.90 4 81.63 6 80.17 
Lymphography 18 76.46 6 82.90 8 82.20 4 81.23 6 82.90 
Pima diabethes 8 73.82 3 74.26 3 75.73 3 74.26 3 74.26 
Tic-tac-toe 9 83.43 7 82.96 6 81.44 1 69.94 6 81.44 

 
selection percentages for each individual attribute. 
These percentages were used to quantify the “worth” 
of an attribute. The final feature subset was 
composed of those attributes having percentages 
above the average. The feature subset selected by 
each individual method was then presented to J4.8 
for classification (validation), and the accuracy of 
the learned model was evaluated.  

The results are presented in table 1. Although 
accuracy improvements can be observed for all but 
one dataset, there is no single method that constantly 
boosts the performance on every dataset. As 
reported in (John, 1997), greedy stepwise search 
may halt prematurely, leaving forward selection with 
too few attributes, and backward elimination with 
too many. Best first search (both forward and 
bidirectional) are somewhere in between, selecting 
usually more attributes than forward selection and 
fewer than backward elimination. Like in the case of 
classifiers, attribute selection methods also exhibit a 
selective superiority, which makes the problem of 
appropriately choosing the selection scheme be very 
important. 

Next we wanted to verify whether the evaluation 
function used in the wrapper selection introduces a 
significant bias, or the feature subset that was 
selected and validated with a certain procedure is 
successful with other learning methods. Therefore, 
we evaluated the accuracies of the selected subsets 
with four other learning methods: Naïve Bayes, 
AdaBoost.M1, a PANE method and a method for 
determining the baseline accuracy of a dataset, based 
on the theory of Dempster-Shafer (DST). 

Naïve Bayes (Cheeseman, 1995) is a simple 
probabilistic classifier. It employs Bayes’ theorem 
under strong independence assumptions. It is naïve 
because, in practice, the independence assumptions 
usually don’t hold.  

AdaBoost.M1 (Freund, 1997) employs an 
ensemble method, by combining several weak  

Table 2: The accuracy of Naïve Bayes on the attribute 
subsets selected previously, with different search methods. 

Dataset Initial 
Acc 

bfs  
Acc 

gsb 
Acc 

gsf 
Acc 

bfs_bid
Acc 

Australian 77.35 86.68 76.71 85.51 84.78
Breast-cancer 73.16 74.87 74.87 74.97 74.87
Cleve_detrano 83.73 84.06 83.89 83.30 83.44
Crx 77.86 86.00 78.87 85.45 85.41
German 75.16 73.70 74.70 73.72 73.28
Heart 83.59 82.26 81.00 82.26 83.00
Hepatitis 83.81 83.67 85.89 83.67 85.3 
Labor 93.57 89.63 92.23 89.23 89.63
Lymphography 84.90 77.00 77.65 79.52 77.00
Pima diabethes 75.75 75.68 76.72 75.68 75.68
Tic-tac-toe 69.64 71.14 73.12 69.94 73.12

Table 3: The accuracy of AdaBoost.M1 on the attribute 
subsets selected previously, with different search methods. 

Dataset Initial 
Acc 

bfs 
Acc 

gsb 
Acc 

gsf 
Acc 

bfs_bid
Acc 

Australian 84.64 85.55 85.35 85.51 85.26
Breast-cancer 72.38 73.58 73.58 74.41 73.58
Cleve_detrano 83.30 84.12 82.91 83.20 83.99
Crx 84.80 85.61 85.48 85.49 85.64
German 71.27 71.74 72.57 72.49 71.8 
Heart 81.59 84.85 80.56 84.85 84.52
Hepatitis 81.37 81.80 79.95 81.80 80.72
Labor 88.37 86.43 90.70 87.67 86.43
Lymphography 74.98 75.72 75.72 74.84 75.72
Pima diabethes 74.92 74.80 74.43 74.80 74.80
Tic-tac-toe 72.72 72.34 71.35 69.94 71.35

classifiers through voting; the resulting composite 
classifier generally has a higher predictive accuracy 
than any of its components. Each distinct model is 
build through the same learning mechanism, by 

TOWARDS A COMBINED APPROACH TO FEATURE SELECTION

137



 

varying the distribution of examples in the training 
set. 

After each boosting phase, the weights of the 
misclassified examples are increased, while those for 
the correctly classified examples are decreased. 

Table 4: The accuracy of DST on the attribute subsets 
selected previously, with different search methods. 

Dataset Initial 
Acc 

bfs  
Acc 

gsb 
Acc 

gsf 
Acc 

bfs_bid
Acc 

Australian 83.63 83.69 83.28 85.26 85.98
Breast-cancer 71.02 74.76 74.76 74.80 74.76
Cleve_detrano 76.34 78.17 79.45 74.50 78.91
Crx 83.79 84.27 84.34 82.42 85.36
German 69.99 69.69 69.92 67.82 68.64
Heart 76.09 81.17 77.23 81.17 80.90
Hepatitis 81.53 83.19 80.69 83.19 81.15
Labor 80.00 77.00 79.10 77.50 77.00
Lymphography 77.36 77.32 79.11 75.89 77.32
Pima diabethes 72.06 70.68 70.34 70.68 70.68
Tic-tac-toe 87.63 83.30 82.34 69.89 82.34

Table 5: The accuracy of PANE on the attribute subsets 
selected previously, with different search methods. 

Dataset Initial 
Acc 

bfs 
Acc 

gsb 
Acc 

gsf 
Acc 

bfs_bid 
Acc 

Australian 85.36 86.28 85.25 85.29 85.89 
Breast-cancer 72.23 74.00 74.00 74.41 74.00 
Cleve_detrano 76.42 79.27 78.77 81.19 81.67 
Crx 85.33 85.46 86.06 86.19 85.42 
German 71.36 74.14 74.02 75.03 74.56 
Heart 78.14 82.57 80.12 82.57 81.87 
Hepatitis 80.04 84.17 84.37 84.17 83.54 
Labor 79.19 82.64 79.73 79.88 82.64 
Lymphography 77.9 78.87 78.90 80.21 78.87 
Pima diabethes 74.5 75.27 75.22 75.27 75.27 
Tic-tac-toe 84.31 81.40 79.60 69.42 79.60 

The PANE method (Onaci, 2007) focuses on 
improving the performance of symbolic classifiers 
(such as decision trees, or rule learners), by using as 
preprocessing step a neural network ensemble. The 
aim is to improve the performance and the stability 
of the classification process, while keeping its 
transparency.  

The DST method (Moldovan, 2007) focuses on 
establishing the baseline accuracy of a dataset, such 
as to allow the initial assessment of a dataset. It uses 
belief functions and the plausible reasoning from the 
Dempster-Shafer Theory to combine the predictions 
of different learning schemes. 

Table 6: The accuracy of J4.8 on the attribute subsets 
selected with the combination method. 

Dataset Initial 
Attrib.

Initial 
Accuracy 

Combination 
Accuracy 

Combin.
Attrib.

Australian 14 86.2 84.83 5 
Breast-cancer 9 73.68 75.67 4 
Cleve-detrano 13 76.63 82.88 5 
Crx 15 84.93 86.25 8 
German 20 71.72 73.88 9 
Heart 13 76.16 83.19 4 
Hepatitis 19 78.05 83.18 7 
Labor 17 78.38 81.63 4 
Lymphography 18 76.46 82.90 6 
Pima diabetes 8 73.82 74.26 3 
Tic-tac-toe 9 83.43 75.08 3 

The results for this second batch of tests are 
shown in tables 2-5. Although no selection method 
yields always the best improvement, the bfs and gsb-
based methods perform constantly very well. 
Moreover, the attribute subset that obtains the best 
improvements depends strongly on the learning 
scheme. It is known that for the Bayesian classifier, 
the independence of the attributes is of utmost 
importance (Cheeseman, 1995), while the decision 
trees prefer fewer and more relevant attributes. Thus, 
the choice of the selection scheme, such that it 
produces the optimal attribute subset for a given 
problem and learning algorithm is of interest. 

Our current efforts focus on combining the 
selections made with different search methods. In 
this direction we have already performed 
experiments with three search methods: forward and 
backward greedy stepwise and forward best first 
search. In this version also cross-validation was 
employed, and we considered the votes of each 
search method uniformly, resulting in the selection 
of those attributes which “gathered” a percentage 
above the average of the three different methods. 
The results for this experiment are presented in table 
6 below. With the exception of two datasets, 
significant accuracy improvements are observed. 
The accuracy levels are similar to the highest rates 
achieved by the individual selection strategies in 
table 1, or higher. Also, the combination method 
improves the stability of the selection schemes. 

4 CONCLUSIONS 

Experience has proved to us that feature selection is 
a very important step in the data mining process. 
Although there are many good approaches for 
selecting a feature subset, there appears to be no 
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such thing as a globally best feature selection 
method, or a globally optimal feature subset. No 
individual 3-tuple (generation, evaluation and 
validation procedure) can be identified such that it 
achieves best performance on any dataset, with any 
learning algorithm. However, due to the 
particularities of the attributes selected by individual 
inducers, we expect that the tuples using the same 
inducer in the evaluation and validation steps will 
perform better than combined tuples.   

Moreover, the experimental results suggest the 
possibility of tackling a similar approach to the one 
in (Moldovan, 2007). There, because of the high 
degree of stability (smaller variations than single 
classifiers across several datasets), the system can be 
used to establish the baseline accuracy for a certain 
dataset. In a similar manner, the selections of several 
generation methods can be combined in order to 
achieve higher stability and (possibly) improved 
performance. The evaluations performed so far in 
this direction have yielded promising results. 
However, work still has to be done, to perfect the 
method, and try new combination approaches. Here 
we only experimented with a number of different 
generation procedures, in a manner similar to the 
ensemble learning methods. The evaluation 
functions can also be combined. To do that, 
however, you need a more sophisticated approach. 
One that seems appropriate is the one used to 
establish the baseline accuracy of a dataset, using the 
Dempster-Shafer theory. 

The feature selection process can be considered 
for data imputation as well. By switching the target 
concept from the class to a particular feature which 
is incomplete, we can efficiently predict the missing 
values using only the optimal feature subset which 
characterizes the particular attribute. This is another 
current concern in our work.   

Also, to enhance cost-sensitive learning, the 
feature selection mechanism could be modified such 
as to consider a cost-sensitive evaluation function, 
instead of the prediction accuracy. This is something 
we haven’t tackled yet, but the idea seems 
promising.  
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