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Abstract: Reverse-engineering methods using dynamic techniques rests on the post-mortem analysis of the execution 
trace of the programs. However, one key problem is to cope with the amount of data to process. In fact, such 
a file could contain hundreds of thousands of events. To cope with this data volume, we recently developed 
a trace segmentation technique. This lets us compute the correlation between classes and identify cluster of 
closely correlated classes. However, no systematic study of the quality of the clusters has been conducted so 
far. In this paper we present a quantitative study of the performance of our technique with respect to the 
chosen parameters of the method. We then highlight the need for a benchmark and present the framework 
for the study. Then we discuss the matching metrics and present the results we obtained on the analysis of 
two very large execution traces. Finally we define a clustering quality metrics to identify the parameters 
providing the best results. 

1 INTRODUCTION 

During the last decade, software reengineering has 
been proposed as a viable solution to software 
ageing problem (legacy software). According to 
(Biggerstaff, 1994) the first step to reengineering, 
reverse-engineering, is “the process under which an 
existing software system is analyzed to identify its 
components and the relation between them and to 
create representation of the system at different 
conceptual levels”. Moreover, according to (Bergey, 
1999), reengineering initiatives that do not target the 
architectural level are more likely to fail. 
Consequently, many reengineering initiatives begin 
by reverse architecting the legacy software. The 
trouble is that, usually, the source code does not 
contain many clues on the high level components of 
the system (Kazman, 2002). However, it is known 
that to “understand” a large software system, which 
is a critical task in reengineering, the structural 
aspects of the software system i.e. its architecture 
are more important than any single algorithmic 
component (Tilley, 1996). Besides, we know that 
there is not a unique view of software architecture, 
there are many (Clements, 2002), each targeting a 
particular purpose. In this work, we aim at 
reconstructing the functional architecture of the 

system i.e. the structure of components and their 
relationships  that implement the high level business 
function of the software. Our technique rests on the 
post mortem dynamic analysis of the legacy 
software i.e. the analysis of the execution trace file 
after the software has been executed. Moreover, to 
be able to correlate the recovered components to the 
business function of the software, the latter is 
executed by following the recovered use-case 
performed by the actual users of the system. The 
technique to generate an execution trace file from a 
legacy software system has been presented 
elsewhere (Dugerdil, 2006). One key problem in 
post-mortem dynamic analysis is to cope with the 
amount of data to process. In fact, the execution 
trace file can contain hundreds of thousands of 
events, if not millions. To cope with this data 
volume, we recently developed a trace segmentation 
technique (Dugerdil, 2007b) that provided 
encouraging results. So far, the parameters of this 
technique have been set somewhat arbitrarily. In 
fact, we did not know what parameter would provide 
optimal results. In this paper we present a 
quantitative study of the performance of our 
segmentation technique according to the parameters 
chosen. To be able to assess the quality of the result 
we used a benchmark: a recent and well architected 
Java system whose functional components 
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correspond closely to its package structure. Then, we 
measure the match of the recovered components 
with the package structure. The closer the match, the 
better the result. In section 2 we briefly present our 
segmentation and component identification 
technique. Then, in section 3 we present the 
evaluation framework and the metrics we used to 
evaluate the quality of the results. In section 4 we 
present the empirical results in several 
configurations of the parameters. These experiments 
are discussed in section 5. In section 6, we define the 
Clustering Quality metric to assess the performance 
of our clustering technique with respect to the 
chosen parameters. The related work is presented in 
section 7. Section 8 concludes the paper by 
presenting our future work. 

2 SEGMENTATION 

The execution trace files in all but trivial programs 
are generally very large. In one of our experiments, 
we got a file with more than 7.106 events (procedure 
calls). Although many authors try to cope with the 
quantity of information to process by compressing 
the trace using more or less sophisticated techniques 
(Hamou-Ladj, 2002), we have developed another 
technique: trace segmentation (Dugerdil, 2007b). 
First, the trace is split into contiguous segment of 
equal size. Then we observe the class occurrence in 
each segment and compute a correlation factor 
between the classes: if classes are simultaneously 
present or absent in the same segments, then they are 
considered as highly correlated. The highly 
correlated classes will be considered as forming 
functional clusters or components. In this context, a 
functional component is a set of classes working 
closely together to implement some useful business 
function.  Let us define the number of segments in 
the trace as Ns and the binary occurrence vector VC 
for a given class C as a vector whose size is Ns and 
whose ith component indicates the presence (1) or 
absence (0) of the class in the ith segment. Then, the 
correlation between any two classes C1, C2 is given 
by (Dugerdil, 2007b): 
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Where V1.V2 is the usual dot product for vectors 
and V1[i]⊕V2[i] is the boolean OR operator between 
the corresponding components of both vectors.  

Two classes are considered strongly correlated if 
their correlation is higher or equal to some 
predefined threshold T. Using this metric, we cluster 
the classes that are mutually strongly correlated. 
Each such a cluster will represent a functional 
component. The rationale behind this technique is 
that functional components should be highly 
cohesive and their classes strongly coupled. In this 
technique, two parameters must be determined: the 
number of segments (Ns) and the correlation 
threshold (T). Then, this approach has been applied 
to the reverse engineering of an industrial software 
(Dugerdil, 2007a). Although the results were 
encouraging, since we observed clusters that were 
common among several use-cases, we did not 
systematically investigate the effect of the choice of 
parameters (Ns and T) on the clustering. In these 
experiments, we somewhat arbitrarily chose Ns = 
twice the number of classes present in the execution 
trace and two correlation factors: 60% ≤ T < 80% for 
moderately correlated classes and T ≥ 80% for 
strongly correlated classes. Since the technique 
seems promising, we need to study the effect of the 
parameters on the quality of the result. Besides, in 
all our experiments, we saw that some classes were 
present in most of the segments of the execution 
trace. These are similar to the utility classes in the 
work of (Hamou-Ladj, 2005): they are classes that 
perform some utility work, not specific to any 
functional component. Then, we filtered out these 
classes before proceeding with the computation of 
the clusters. Let us define G = (C,R) a weighted 
graph whose set of nodes C is the set of classes 
identified in an execution trace and whose edges are 
defined by the correlation R between these classes. 
The weight of an edge is the strength of the 
correlation between the connected nodes. Then our 
clustering technique computes the connected 
subgraphs of G whose weight is greater or equal to 
the chosen threshold T.  

Since a given class can be part of several 
connected subgraphs, it will also be part of several 
clusters. Moreover, our technique will not only 
generate clusters whose classes are located in a 
single directory but also clusters spanning several 
directories. Finally, there will be classes not 
associated to any clusters. This is the case when a 
class works in isolation i.e. does not collaborate with 
any other class to fulfil its responsibilities. 
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3 FRAMEWORK AND METRICS 

Basically, all clustering techniques try to “discover” 
the components of the software under study in order, 
for the software engineer, to reconstruct the 
architecture of the system. However to evaluate the 
quality of the clustering technique we need to define 
a benchmark. Then, we decided to apply our 
technique on a recently written, well architected 
system written in Java. This system holds more than 
600 classes. The packages of this system represent 
well defined functional components. Therefore, if 
our technique is able to discover the functional 
components of the system, then there will be a 
strong match between the recovered component and 
the package structure. In other words, the recovered 
cluster would indeed represent functional 
components. Then, faced with an unknown legacy 
system, we could apply the technique to recover its 
functional architecture. Now the problem is to 
evaluate the match between the clusters and the 
directories. In figure 1 we present the workflow of 
the tools we used to perform our experiments. 
Starting from the source code, it is first instrumented 
to be able to generate the execution trace. The result 
is compiled and executed on the target platform. 
Then the execution trace file is created. This file is 
analyzed to identify the clusters. The set of clusters 
is then matched against the packages found in the 
source code and the matching strength is computed. 

 
Figure 1: Workflow for the evaluation of the match 

As a first approximation, we could have set the 
strength of the match as the ratio of the number of 
clusters whose classes are all located in the same 
package compared to the total number of clusters. 
However, this approximation has a strong limitation: 
in the case of minimal cluster size (pairs of classes) 
even if all the clusters would each be located in a 

single directory, they would be far from representing 
a good approximation of the original architecture. It 
must also be noted that we cannot compute the 
match the other way around, starting from the 
packages in the source code. In fact, a single 
execution of the system is very likely not to involve 
all the classes in the system. Therefore the ratio of 
packages identified in the clusters compared to all 
the packages cannot be a good evaluation of the 
match. Another important factor to evaluate the 
match is the coverage of the classes in the trace by 
the clusters i.e. the ratio of the classes that have been 
clusterized compared to the total number of classes 
in the trace. Normally the more the coverage the 
better, provided that the clusters hold a “significant” 
number of classes. In other words, we would not be 
happy with a large coverage by “atomic” clusters of 
minimal size. All other things being equal, we would 
rank higher a clustering where clusters would 
contain classes belonging to a single package.  

4 EMPIRICAL RESULTS 

4.1 Introduction 

In our experiment, we chose to set the number of 
segments Ns according to the number n of classes in 
the trace. In fact, it seems reasonable to claim that 
Ns cannot be set independently from n (Dugerdil, 
2007b). Then, we performed our clustering 
experiments with the following parameters: 

Ns = 2*n, 4*n, 8*n, 16*n, 32*n, 64*n  

T = 50%, 60%, 70%, 80%, 90% 

The resulting clusters are classified by cluster 
“type”, where the type represents the number of 
packages the contained cluster span. We present the 
results as a graph showing the contribution to the 
class coverage of each of the cluster category named 
after the number of packages spanned. Therefore we 
will show the “layer” representing the clusters 
whose classes are located in only one package, the 
“layer” representing the clusters whose classes are 
located in 2 packages and so on. The class coverage 
represents the ratio of the classes located in the 
clusters over the total number of classes identified in 
the trace file. Since a class can simultaneously be 
located in several clusters, we present two class 
coverage graphs. The first shows the class coverage 
taking into account all the duplicates. This is why 
the maximum coverage is higher than 100%, This 
represents the raw result of our clustering technique. 
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Then, we present the same graph but with all the 
duplicates removed using the following technique: if 
a class is present in a cluster spanning n packages 
then we remove it from the clusters spanning n+k 
packages with k= 1,2,3.  But class coverage is not 
enough. In fact, depending on the segmentation 
technique, we could end up with an excellent 
coverage due to clusters of minimal size (2 classes). 
This would definitely not represent a good recovery 
of the original architecture. Therefore, it is important 
to know the average size of the clusters and the 
standard deviation. Finally, we represent the number 
of different packages found in the clusters that span 
only one package. In fact, even if each cluster has all 
its classes in the same package, it is important to 
know if all the classes of all the clusters are in the 
same package or if there are many packages 
involved. 

4.2 Results for the First Trace 

The execution trace of the first use-case contains 
more than 7*106 events (method calls). The number 
of classes in the trace n = 158.  

 
Figure 2: Class coverage by cluster type with duplicates 
classes. 

 
Figure 3: Class coverage by all clusters types without 
duplicate classes. 

The labels on the horizontal axis of all the 
figures represent the number of segments (Ns) and 

the correlation threshold (T). Since the number of 
segments is a multiple of the number of classes in 
the trace, we only display the multiplier (2, 4, 8, 16, 
32, 64). 

 
Figure 4: Average number of classes per cluster. 

 
Figure 5: Std deviation of the number of classes per 
cluster. 

 
Figure 6: Number of different packages in the case of 
clusters located in one package only. 

4.3 Results for the Second Trace 

The execution trace of the second use-case contains 
more than 5.105 events, therefore about 10 times less 
events than in the first trace. In this second case, the 
number of classes in the trace n = 138. 

 
Figure 7: Class coverage by all clusters types with 
duplicate classes. 
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Figure 8: Class coverage by all clusters types without 
duplicate classes. 

 
Figure 9: Average number of classes per cluster. 

 
Figure 10: Std deviation of the number of classes per 
cluster. 

 
Figure 11: Number of different packages in the case of 
clusters located in one package only. 

5 DISCUSSION 

The first finding is that the duplicate classes in 
clusters vary highly among the use-cases. While in 
the largest execution trace, we have at most 30% 
duplicates, we obtained 150% in the second case. 
However, after having removed these duplicates the 
interesting fact is that, if one puts aside the 
segmentation with a number of segments Ns = 2*n, 

we get a high level of class coverage in both 
experiments, between 70 and 90 %. But the 
important difference between both situations is the 
change in coverage ratio with respect to Ns. In the 
first case, this ratio is almost insensitive to Ns while 
in the second case it changes much with Ns. We may 
think that because in the first experiment there are 
10 times more events in each segment than in the 
second experiment, the correlation between the 
classes would be very different in both experiments. 
In fact, since the computation of the correlation is 
based on the presence or absence of a class in a 
segment, we could expect that the larger the size of a 
segment the higher the correlation. If this was true, 
we should observe much larger clusters in the first 
experiment than in the second. But this is not the 
case. The cluster size with respect to the number of 
segments stays remarkably similar in both 
experiments: starting at about 10 to 12 classes on 
average per cluster with Ns = 2*n, it stabilizes at 
about 3-4 classes in both cases. Although the std 
deviation is somewhat different, this result in 
encouraging since it tends to suggest that our 
technique is robust with respect to the trace size.  
Moreover, the variation of the number of classes per 
cluster with respect to the correlation threshold T for 
each value of Ns shows a striking symmetry in both 
experiments. While the number of classes varies a 
lot for Ns < 16*n, it stabilizes rapidly with Ns ≥ 
16*n. Besides, the variation of the average number 
of classes per clusters with respect to the correlation 
threshold T for a given value of Ns is in accordance 
to our expectation: the higher T, the less the number 
of correlated classes and the lower the cluster size. 
We also observe that, for a given value of Ns, the 
higher T the higher the coverage of classes by the 
cluster spanning only one package. Again, this is 
also in accordance to our expectations: if the system 
is well designed then the coupling among classes 
(that we measure with our correlation metrics) must 
be higher within a given package than among 
packages. Therefore, by increasing T, we de-couple 
the loosely coupled classes among packages (fig 12). 
This phenomenon can be observed for each value of 
Ns, but it is much more salient in the low values of 
Ns. A key difference in the results of both 
experiments, however, is the coverage by the 
clusters located in a single package (the lowest 
“layer” in the figures 3 and 8): in the largest trace, 
the coverage is quite regular whatever Ns (between 
15% and 30%) but in the second it goes from 10% to 
60%). This suggest that the higher Ns the less the 
span of the clusters among several packages. This 
again is a good result of our method since it reveals 
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the high cohesion and loose coupling feature of the 
benchmark system. 

 
Figure 12: De-coupling loosely coupled classes. 

Finally, in both experiments we observed a 
decrease in the class coverage for Ns > 64*n (not 
shown in the figures).  This can be easily explained: 
the higher Ns the less the computed value of the 
correlation between classes therefore the less the 
number of clusters. 

As a first result of this study, we observed that 
the cohesion/coupling nature of a system could be 
assessed using our technique. A system whose 
packages or modules represent functional 
components should therefore exhibit the following 
behaviour, when analyzed : 

• For 2*n ≤ Ns ≤ 64*n, the ratio of the class 
coverage by the clusters located in a single 
component should, for each Ns, increase with 
T. 

• For 50% ≤ T ≤  90%, the ratio of the class 
coverage by the clusters located in a single 
component should, for each T, increase with 
Ns. 

These rules are obviously independent of the 
duplicate classes, since we focus on the cluster 
located in a single component. Finally, these 
experiments did not allow us to find a definite 
criterion to set Ns and T for the identification of the 
functional components of a legacy system.  

6 SEGMENTATION METRICS 

Now, we must define a quality metrics to identify 
the best segmentation parameters (Ns and T) to use. 
First, the metric should highlight the component 
discrimination of the segmentation. Then we must 
focus on the clusters located each in a single 
package (lowest “layer” in figures 2, 3, 7, 8). The 

metrics should get its highest value when the 
identified clusters are the same as the components 
(packages). This is given by the ratio of the number 
of different packages over the number of clusters. 
The maximum is reached when the number of 
clusters are the same as the number of packages (it 
could obviously never be bigger). Therefore this 
ratio is in the range [0..1]. But this is not enough: the 
metrics should also include the class coverage: the 
more the classes included in the identified 
components the better. Then we define the clustering 
quality CQ metric by: 

CQ=(Nb of packages/Nb of clusters)*class coverage 

Where the number of packages and the number of 
clusters concern the clusters whose classes are 
located in a single package. The result of this 
metrics for each combination of parameters is 
displayed in figure 13. 

 
Figure 13: Clustering quality metrics. 

When we reverse-engineer a software system, we 
must choose a unique value of T for the analysis of 
all its execution traces, since this sets the internal 
cohesion of the clusters (components). If we used 
different values of T then the recovered components 
would not all have the same internal cohesion i.e. the 
same level of “quality”. Therefore, we must look for 
the parameters that provide optimum results taking 
all the execution trace of the system into account. In 
the experiment presented in this paper we observe 
that for both use-cases considered together the 
optimum result is found at Ns = 32*n and T = 90% 
(see figure 13). 

7 RELATED WORK 

In the literature, many techniques have been 
proposed to recover the structure of a system by 
splitting it into components. They range from 
document indexing techniques (Marcus, 2004), 
slicing (Verbaere, 2003) to the more recent “concept 
analysis” technique (Siff, 1999) or even mixed 
techniques (Harman, 2002)(Tonella, 2003). All these 

cluster 
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techniques are static i.e. they try to partition the set 
of source code statements and program elements into 
subsets that will hopefully help to rebuild the 
architecture of the system. Then, the key problem is 
to choose the relevant set of criteria (or similarity 
metrics (Wiggerts, 1997) with which the “natural” 
boundaries of components can be found. In the 
reverse-engineering literature, the similarity metrics 
range from the interconnection strength of Rigi 
(Müller, 1993) to the sophisticated information-
theory based measurement of Andritsos and Tzerpos 
(Andritsos, 2003)(Andritsos, 2005), the information 
retrieval technique such as Latent Semantic Indexing 
(Marcus, 2004) or the kind of variables accessed in 
formal concept analysis (Siff, 1999)(Tonella, 2001). 
Then, based on such a similarity metric, an 
algorithm decides what element should be part of the 
same cluster (Mitchell, 2003).  In dynamic analysis 
(Zaidman, 2005) proposed a slicing technique to 
cope with the size of the execution trace. The main 
idea is to cluster the classes using metrics similar to 
the ones used in Webmining projects (the HITS 
algorithm used to reference pages in the web). In 
another work, Zaidman and Demeyer proposed to 
manage the volume of the trace by searching for 
common global frequency patterns (Zaidman, 2004). 
In fact, they analyzed consecutive samples of the 
trace to identify recurring patterns of events having 
the same global frequencies. In other words they 
search locally for events with similar global 
frequency. It is then quite different from our 
approach that analyzes class distribution throughout 
the trace. In their work, Xiao and Tzerpos compared 
several clustering algorithms based on dynamic 
dependencies. In particular they focused on the 
clustering based on the global frequency of calls 
between classes (Xiao, 2005). This approach does 
not discriminate between situations where the calls 
happen in different locations in the trace. This is to 
be contrasted with our approach that analyzes where 
the calls happen in the trace. Very few authors have 
worked on sampling techniques for trace analysis. 
One pioneering work is the one of Chan et al. (Chan, 
2003) to visualize long sequence of low-level Java 
execution traces in the AVID system (including 
memory event and call stack events). But their 
approach is quite different from ours. It selectively 
picks information from the source (the call stack for 
example) to limit the quantity of information to 
process.  Although the literature is abundant in 
clustering and architecture recovery techniques, we 
have had a hard time finding any research work 
whose results would actually be benchmarked 
against some reference clustering, to the notable 

exception of Mitchell (Mitchell, 2003) who uses 
static techniques. Our approach seems original also 
to this respect. 

8 CONCLUSIONS 

This paper focuses on the systematic assessment of 
our dynamic analysis technique for component 
identification in reverse engineering. After having 
shortly presented the method, we set the framework 
for the experiment. In particular, the key feature of 
such an assessment is the definition of a benchmark. 
Then, we used a well designed system whose 
packages truly represent the functional components 
of the system. Therefore, the results of our dynamic 
analysis method can be compared to the package 
structure of the software under study. The closer the 
recovered components to the latter structure, the 
more efficient the analysis technique. We observed 
that our dynamic analysis technique exhibited highly 
desirable behaviour like a good sensitivity to the 
cohesion / coupling feature of the software under 
study. We suggested that our dynamic analysis could 
be used to assess the quality of the system studied 
(on the cohesion / coupling axis). Next we defined a 
Clustering Quality metric (CQ) to compute the 
optimal values for Ns and T. We found that Ns = 
32*n and T = 90% give the optimal results for both 
use-cases in the experiment presented in this paper. 
Although these results need further experimentation, 
they show that our technique represents an effective 
way to identify functional components in legacy 
software. Finally, it is worth mentioning that our 
statistical approach to dynamic analysis is able to 
cope with very large data volume (~107events). As 
further work, we will extend this study to systems 
written in different languages to see if it is robust 
across programming languages. 
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