
COMPRESSED DATABASE STRUCTURE TO MANAGE LARGE 
SCALE DATA IN A DISTRIBUTED ENVIRONMENT 

B. M. Monjurul Alom, Frans Henskens and Michael Hannaford 
School of Electrical Engineering & Computer Science, University of Newcastle , Callaghan, NSW 2308, Australia 

Keywords: Compression, Single Column, Fragment, Single Vector, Cardinality. 

Abstract: Loss-less data compression is attractive in database systems as it may facilitate query performance 
improvement and storage reduction. Although there are many compression techniques which handle the 
whole database in main memory, problems arise when the amount of data increases gradually over time, and 
also when the data has high cardinality.  Management of a rapidly evolving large volume of data in a 
scalable way is very challenging.  This paper describes a disk based single vector large data cardinality 
approach, incorporating data compression in a distributed environment.  The approach provides substantial 
storage performance improvement compared to other high performance database systems.  The compressed 
database structure presented provides direct addressability in a distributed environment, thereby reducing 
retrieval latency when handling large volumes of data.    

1 INTRODUCTION 

In main memory database systems data resides 
permanently in main physical memory, whereas in a 
conventional database system it may be disk resident 
(Garcia-Molina and Salem 1992).  Conventional 
database systems cache data in main memory for 
access; in main memory database systems data may 
have a backup copy on disk.  In both cases, 
therefore, a given object can have copies both in 
memory and on disk.  The key difference is that in 
main memory databases the primary copy lives 
permanently in memory.  Main memory is normally 
directly accessible and volatile while disks are not.  
The layout of data on a disk is much more critical 
than the layout of data in main memory, since 
sequential access to a disk is faster than random 
access (Garcia-Molina and Salem 1992).  The main 
pitfall of main memory databases is that they cannot 
handle very large amounts of data because they are 
fully dependent on main memory.  This can be 
alleviated somewhat, for example the HIBASE 
compression technique (Cockshott, Mcgregor et al. 
1998) is main memory based and applicable to low 
cardinality of domain values.  In this paper we 
present a single vector large data cardinality 
structure (SVLDCS) that is disk based and supports 
large databases as well as high cardinality of domain 
values with the facility to access compressed data in 

distributed environments.  Portions of the 
compressed database structure are available in main 
memory on the basis of the query demand from 
different sites.  The main copy of the domain 
dictionary is stored permanently on the disk and a 
back up copy is available in the main memory.  This 
structure is used to handle large scale of tuples and 
attributes while providing a level of storage 
performance comparable to conventional database 
systems.  This structure may be easily used in areas 
where database is often typically only, for example 
for analytical processing, data warehousing and data 
mining applications.  
The remainder of this paper is organized as follows: 
Related work is described in section 2.  The existing 
HIBASE method is presented in section 2.1 - our 
method is an extension of this architecture.  The 
(SVLDCS) single vector large data cardinality 
structure is described in 3.  Section 4 and 5 present 
the search technique and analysis of storage capacity 
respectively.  The paper concludes with a discussion 
and final remarks in section 6. 

2 RELATED WORK  

        The HIBASE architecture (Cockshott, Mcgregor et 
al. 1998) defines a way of representing a dictionary 
based compression technique for relational databases 

37
M. Monjurul Alom B., Henskens F. and Hannaford M. (2008).
COMPRESSED DATABASE STRUCTURE TO MANAGE LARGE SCALE DATA IN A DISTRIBUTED ENVIRONMENT.
In Proceedings of the Third International Conference on Software and Data Technologies - ISDM/ABF, pages 37-44
DOI: 10.5220/0001875600370044
Copyright c© SciTePress



 

that are fully main memory based.  This structure is 
designed for low cardinality of the domain 
dictionaries, with an architecture that replaces code 
rather than the original data values in tuples.  The 
main pitfall of this method is that the structure 
cannot handle large databases because of full 
dependency on main memory in combination with 
the limitations of large memory spaces.  
Investigation of main memory database systems is 
well described in (Garcia-Molina and Salem 1992), 
with a major focus on fidelity of main memory 
content compared to conventional disk based 
database systems.  Memory resident database 
systems (MMDB’s) store their data in main physical 
memory, providing high data access speeds and 
direct accessibility.  As semiconductor memory 
becomes less expensive, it is increasingly feasible to 
store databases in main memory and for MMDB’s to 
become a reality. 

The unique graph-based data structure called 
DBGraph may be used as a database representation 
tool that fully exploits the direct access capability of 
main memory.  Additionally, the rapidly decreasing 
cost of RAM makes main memory database systems 
a cost effective solution to high performance data 
management (Pucheral, Thevnin et al. 1990).  This 
overcomes the problem that disk-based database 
systems have their performance limited by I/O. 

A compressed 1-ary vertical representation is 
used to represent high dimensional sparsely 
populated data where database size grows linearly 
(Hoque 2002).  Queries can be processed on the 
compressed form without decompression; 
decompression is done only when the result is 
necessary.  Different kinds of problem, such as 
access control and transaction management, may 
apply to distributed and replicated data in distributed 
database systems (DDBMS) (Alkhatib and Labban 
1995).  Oracle, a leading commercial DBMS, 
defines a way to maintain consistent state for the 
database using a distributed two phase commit 
protocol.  (Alkhatib and Labban 1995) address some 
issues such as advantage, disadvantage, and system 
failure in distributed database systems.  Since 
organizations tend to be geographically dispersed, a 
DDMBS fits the organizational structure better than 
traditional centralized DBMS.  Advantages of 
DDBMS include that failure of a server at one site 
will not necessarily render the distributed database 
system inaccessible.  A general architecture for 
archiving and retrieving real-time, scientific data is 
described in (Lawrence and Kruger 2005).  The 
basis of the architecture is a data warehouse that 
stores metadata on the raw data to allow for its 

efficient retrieval.  A transparent data distribution 
system uses the data warehouse to dynamically 
distribute the data across multiple machines. 

A single dictionary based compression technique 
to manage large scale databases is described by 
Oracle corporation (Poess and Potapov 2003).  The 
authors also address an innovative table compression 
technique that is very attractive for large relational 
data warehouses.  This technique is used to 
compress and partition tables.  The status of a table 
can be changed from compressed to non-compressed 
at any time by simply adding the keyword 
COMPRESS to the table’s meta-data. 

The LH*RS scheme defines a way of storing   
available distributed data (Litwin, Moussa et al. 
2004).  This system includes distributed data 
structures [SDDS] that are intended for computers 
over fast networks, usually local networks.  This 
architecture is a promising way to store distributed 
data and gaining in popularity. 

A distributed storage system for structured data  
called Bigtable is presented  in (Chang, Dean et al. 
2006).  The system is used for managing data that is 
designed to scale to very large size datasets 
distributed across thousands of commodity servers.  
Bigtable has successfully provided a flexible, high 
performance solution for all of the Google products.  

2.1 Existing HIBASE Compression 
Technique 

The basic HIBASE model, as described in 
(Cockshott, Mcgregor et al. 1998), represents  tables 
as a set of columns (rather than as a set of rows as 
used in a traditional relational database). This 
structure is dictionary based, and designed for low 
cardinality of domain values.  The architecture 
replaces code rather than the original data values, in 
tuples. The main pitfall of this method is that it 
cannot handle large databases because of its fully 
main memory dependency.  HIBASE uses single 
block column vector; each attribute is associated 
with a domain dictionary and a column vector.  The 
columns are organized as a linked list, each of which 
points into the dictionary.  Figure 1 shows a 
HIBASE structure together with its domain 
dictionary.  There are 7 distinct lastnames 
represented by identifiers numbered 0 to 6 which 
can be represented by 3 bits; similarly suburb, state 
and marital status are represented by 2, 1 and 1 bits 
respectively.  Hence, in compressed representation  
7 bits are required to represent one tuple using the 
HIBASE method.  For the set of 8 tuples, 56 bits 
would be required.  In the uncompressed relation 

ICSOFT 2008 - International Conference on Software and Data Technologies

38



 

(Figure 1) an average of 10 bits are required for each 
attribute, totalling 40 bits for each tuple, hence the 
total uncompressed relation requires 320 bits for all 
tuples.  The HIBASE approach thus appears to 
achieve a huge compression ratio; in fact the overall 
compression is somewhat less impressive because 
representing the domain dictionary requires some 
memory space. 

 
Figure 1: Compressed relation with domain dictionary. 

3 PROPOSED SINGLE VECTOR 
LARGE DATA CARDINALITY 
(SVLDCS) STRUCTURE 

The single vector large data cardinality structure 
(SVLDCS) is disk based, supports large data 
cardinality of domain dictionaries, and can used in a 
distributed environment.  In this structure an 
Attribute_Bit_Storing dictionary is used to store the 

length of the required bit sequence for each attribute.  
This system generates a serial number for each tuple 
in the original relational table, and does not provide 
lineation of columns for different attributes as seen 
in the HIBASE method.  

The (possibly huge amount of) information in a 
relational table is stored in compressed form with 
partitioning the attributes into different blocks.  In 
each tuple of the compressed relation there may be a 
different number of blocks, and it is possible to store 
the information of a large number of attributes in 
each block.  Each of the database fragments can 
accommodate 232

 tuples.  Searching techniques can 
be applied to this compressed database format, and 
the actual information then retrieved from the 
domain dictionary.  As the database gradually 
increases, the domain dictionaries can be partitioned 
so there is one (active) part in main memory and 
other (inactive) parts in permanent storage.  A single 
vector is used to point each of the database 
fragments.  

When the number of tuples and attributes 
gradually increase, the single vector continues to be 
sufficient to handle this large data cardinality.  The 
vector represents a collection of different fragments 
with multiple blocks and a large number of tuples.  
Any fragment of the compressed database can be 
distributed into any of the sites of the distributed 
environment, and a copy of the whole compressed 
database can be stored on disk.  

Among the set of fragments there will at any 
time be a limited number of fragments in main 
memory.  To satisfy query demand, other fragments 
may need to become available in main memory.  
New search key values (lexeme) are always inserted 
at the end of the domain dictionary.  Encoding is 
performed before inserting the lexeme to make sure 
the lexeme is not redundant.  The Id of the search 
key values are retrieved from original database 
relation before starting query, after which the query 
results are found from the domain dictionary.  In 
Figure 1, all the information is compressed using 
binary values in the domain (columns) (Cockshott, 
Mcgregor et al. 1998).  The SVLDCS approach 
represents this same information using a single 
columnar block as shown in Figure 2.  When the 
number of attributes and tuples increases, the 
SVLDCS structure is capable of representing this 
information using multiple blocks and compressed 
fragments are pointed to by a single vector. 

Last 

Name 

Suburb State Marital 

Status 

Michael Lambton NSW Married 

Stephen Lampton Victoria Unmarried 

Alex Hamilton NSW Married 

Drew Jesmond NSW Married 

Frans Lambton Victoria Married 

Lin Lambton NSW Married 

David Jesmond Victoria Married 

Alex Jesmond NSW Unmarried 

 

Id Last 

Name 

Suburb State Marital 

Status 

0 Michael Lambto NSW Married

1 Stephen Hamilto Victoria Unmarried

2 Alex Jesmond  

3 Drew   

4 Frans   

5 Lin   

6 David   

0(000) 0(00) 0 0
1(001) 0(00) 1 1
2(010) 1(01) 0 0
3(011) 2(10) 0 0
4(100) 0(00) 1 0
5(101) 0(00) 0 0
6(110) 2(10) 1 0
2 (10) 2(10) 0 1

Compression Engine 
Compressed Relation

Original Relation 

Domain Dictionary

COMPRESSED DATABASE STRUCTURE TO MANAGE LARGE SCALE DATA IN A DISTRIBUTED
ENVIRONMENT

39



 

 
Figure 2: Compressed structure using single block. 

The structure as used in a distributed environment is 
given in Figure 3.  The SVLDCS data structure is 
represented in Figure 4.  Each fragment can consist 
of up to 232 tuples, and each block can hold up to 32 
bits of information.  While only 4 blocks are 
presented in Figure 4, the same arrangement may be 
used to handle more blocks as well as a larger 
number of attributes.  In Figure 4, the single vector 
structure points to each compressed database 
fragment, each of which in turn is used to hold the  
information of a large number of tuples. 
 
 

4 SEARCHING TECHNIQUE  

The algorithm as described in Figure 5 is used to 
handle large amounts of data using a single vector 
consisting of multiple fragments with multiple 
blocks.  This algorithm is used to search the large 
data cardinality structure.  To understand the 
algorithm the following data structures are 
necessary: 

 

Figure 3: Overall Structure of SVLDCS in distributed 
environment. 

Data Structure: 
AttributeBitStoring[]: Stores the required bit length 
for each attribute of the relation. 
Lexeme: Value of the search key attribute. 
Token: The Id of the encoded lexeme; retrieved 
lexeme: desired key (lexeme) values. 
Domain_dictionary [ ] [ ]: Stores the distinct tuples 
for each attribute with token value. 
Compressed_Data[ ]: Stores the results in 
compressed format. 
Vector_index: Points to each fragment of the 
compressed database. 
Single_vector [ ]: Stores the index of a vector up to 
n; where n= total number of tuples in main relation / 
232 . 

Multi Block Compressed Database 

Database Coordinator 

Data Fragmentation 

Engine 

Site1 Site2 

Compressed 

database 

Original Database in Disk Domain dictionary 

Output 

…. Siten 

Compressed 

database 

Compresse

d database 

Compresse

d database 

ICSOFT 2008 - International Conference on Software and Data Technologies

40



 

Y[]: Array that stores all the compressed decimal 
values of specific tuple from a specific fragment. 
X[]: Array used to store the binary representation of 
the decimal value that is stored in Y. 
Single Column: Used to store the information of the 
relation when the number of tuples and attributes are 
not on a large scale.  

 

Figure 4: Single vector structure with multi block 
compressed data representation. 

Algorithm Search_SVLDCS()   
Begin 
Search the serial_Id for the given 
lexeme from main database relation; 
Vector_Index= Serial_Id of the given 
lexeme/ 2 32 ; 
//Accessing the values of multiple 
//block from the specific tuple of 
//specific fragment 
For  (i=0 to p-1 Block do)   
  Begin             
    // where p (total blocks)=    

//maximum bit length of the tuple 
//of main relation/32; 
Y[i]=Single_vector[vector_index]->  
compressed_data[serial_Id][i]; 

  End; 
//retrieving the compressed value 
from //single columnar vector table;   
X= X1X2…….Xn=Int_to_Binary [Yi …..Yp]; 
Retrieved_lexeme=Domain_dictionary[sou
rce][tagret];   
Where target= the index number of 
target (output)attribute from 
Attribute_Bit_Storing Dictionary;  
first_bit_length= ∑ Bit length (from 
starting bit length to length of 
query attribute from 
Attribute_Bit_Storing Dictionary); 
source=Converted decimal value of 
X[],from position of the 

first_bit_length to number of bit 
length of query  attribute;  
If( retrieved_lexeme )  return 1;  
//Value found 
       Else return 0;  
// or search for another input;  

End. // End of Main. 

Figure 5: Algorithm Single vector Structure for large 
compressed database. 

4.1 Explanation of the Searching 
Technique of (SVLDCS) Structure 

Consider the original relation given in Figure 1, 
Attribute_Bit_Storing Dictionary, 
Domain_dictionary, and Single_Column as given in 
Figure 2, suppose it is required to find the State 
information of LastName= Drew.  The system finds 
the Serial Id of the lexeme (LastName from original 
relation), which is 3.  The value of that index (Serial 
Id) position from Single_Column is 28.   

So Y=Single_Column [3] = 28.  The converted 
binary value of Y is stored in X.  Thus 
X=X0…..X6=Int_to_Binary (Y) =0011100 (as the 
length bit is 7). 

Retrieved_lexeme (Value of State) = 
Domain_Dictionary [source] [target], where target = 
the index number of the (State) attribute from 
Attribute_Bit_Storing_Dictionary=3 

source=Converted decimal value of X [ ], from 
position of the first_bit_length to the number of bit 
length of retrieved_lexeme.  

Where first_bit_length= ∑ Bit length (From the 
starting bit length upto the length of retrieved 
lexeme (from Attribute_Bit_Storing Dictionary)). 

Firstbitlength=3+2=5 and length of the attribute 
state is 1.   

Source= Converted decimal value of X [ ] [From 
the 5th  position to 5th position, as length of attribute 
state is 1)=Bin_to_Decimal (0)=0 

Retrieved_lexeme (Value of State) = Domain 
Dictionary [source] [target] = Domain_Dictionary 
[0] [3]= NSW.  We see the value of the retrieved 
lexeme (State) =NSW which is also the same in the 
original database relation.  Similarly this technique 
is applied to the large number of tuples with multiple 
fragments and attributes divided into blocks 
according to the given algorithm in Figure 5.  In 
Figure 4, the information for a large number of 
attributes and tuples are presented, providing 
multiple fragments and blocks with a single vector. 

 

        B1              B2                B3                B4…… 

        0….    31  32…… 63  64         95 96      127

Block 

Compressed_Data 

 Vector 

0 

…. 

.… 

n 
           ….. 1234422 234156 5678754 2345
            …..     409000000 1290900 10987650 9098
            …. ………..... ……….. ………… ……
            ….. …………. ……….. ………… ……
          n-tuple 858993459 ………. ……….. ……

           0 1234422 23415 5678754 2345678 
           1 409000000 12909 1098765 9098772 
           2 ………..... …… ……… ………. 
           … …………. …… ……… ……….. 
           …. ………….. …… ……… ……….. 
          232

-1 429006600 …… ……….. ………. 

 Fragmentn 

   Fragment1 

COMPRESSED DATABASE STRUCTURE TO MANAGE LARGE SCALE DATA IN A DISTRIBUTED
ENVIRONMENT

41



 

4.2 Searching Time Analysis of Our 
SVLDC Structure 

The total search time of SVLDC structure is 
( SVLDT ) = (Time taken to search the lexeme Id from 
original relation + Domain Dictionary searching + 
Compressed_Data searching from Single vector): 

SVLDT = CDDDLOR TTT ++            (1) 

In a compressed_data search from a single 
vector, a hashing technique is applied to find the 
vector index as well as fragment location (given as 
fragment_no=hash (serial_id_lexeme)/232).  So the 
compressed_data searching time is: 

CDT = )1(Ο                           (2) 
In the domain dictionary only the value of the 

particular attributes are retrieved during a search of 
the structure. Therefore the search time of the 
domain dictionary is constant.  To insert a new tuple 
in the database, the domain dictionary would be 
searched to make sure of its existence in the 
database; if the lexeme is not found in the domain 
dictionary, the new lexeme is inserted at the end of 
the domain dictionary and a token is created for that 
lexeme. So  

DT = )1(Ο + )(nΟ         (3) 

where n is the total number of tuples in the domain 
dictionary.  To find  out the Serial_Id of the lexeme 
from the main relation the required time would be: 

LORT = Ο ( nn 2log* + n
2log )        (4) 

A binary search technique may be applied to find 
any lexeme’s serial Id and it would take 

Ο ( n
2log ) time, where n is the total number of 

tuples.  Before applying a binary search technique, it 
is required to sort the relation according to any 

specific attribute, and that takes O ( nn 2log* ) 

time.  

5 THE ANALYSIS OF STORAGE 
CAPACITY OF SVLDC 
STRUCTURE  

The required memory for each Compressed Data 
fragment is: 
 

CFS = )**(∑ bpm                      (5) 

Where m= maximum_no_of tuples of a 
fragment=232; p=no_of_block_per_tuple; 
b=avg_bytes_required_each_block; n= Total no of 
tuples in main relation /m; Fragment_tuple= Total 
no of tuple in main relation % m; 
 When (Fragment_tuple) =0, this represents that 
every fragment in a single vector is filled up with the 
maximum number of tuples.  

Hence the required memory for a Single Vector 
is: 

SVS  =∑
=

n

j
CFS

1
)(                   (6) 

The required memory for the Domain Dictionary 
is: 

DDS =∑
=

q

i

LC
1

)*(                   (7) 

where q is the total number of tuples in domain 
dictionary, C is the number of attributes, L is the 
average length of each attribute.  Combining 
equation (6) and (7) the total required memory for 
SVLDCS is:  

SVLDCS = SVS + DDS             (8) 

When (Fragment_tuple) is not zero, this 
indicates that all the fragments are not filled by the 
maximum number of tuples.  It is convention that 
the last fragment has tuples that are less than the 
maximum number of tuples.  In that case the 
required memory is: 

SVLDCS = ∑
=

n

j
CFS

1
)([ + DDS + ]NFS       (9) 

where NFS =fragment_tuple*no_of_blocks_per_tupl
e*bytes_required_for_each_block. 

5.1 Analytical Analysis of Storage 
Capacity using Different Methods 

Let CF be the compression factor, StorageUR  be 
the required storage for uncompressed relation, 

StorageCRV  be the storage capacity for compressed 

relation in SVLDCS, DDS  be the domain dictionary 
storage capacity.  The compression factor is 
represented by  

CF = )( DDstoragestorage SCRVUR +              (10) 

ICSOFT 2008 - International Conference on Software and Data Technologies

42



 

It is estimated that if the dictionary takes 25% of 
total storage, then DDS  = .25 StorageUR ; 

StorageCRV = .75 StorageUR  ;  

So, DDS / StorageCRV = .25/.75 =.33;  

DDS =.33* StorageCRV                    (11) 

Combining (10) and (11) we have 

CF = storagestorage CRVUR *33.1  

StorageUR = CF * storageCRV*33.1          (12) 

Oracle data compression (Poess and Potapov 2003) 
achieves the average compression factor 

orcCF =3.11.  The total storage required in the 

Oracle compression technique: StorageORC   :  
= the required storage for uncompressed data / 
Compression factor 

StorageORC = StorageUR / CForc; 

Using equation (12) we have: 

StorageORC   = CF * storageCRV*33.1  / 11.3  

StorageORC = CF * storageCRV*43.        (13) 

In (Lawrence and Kruger 2005) the Tera-scale 
architecture is described on a Dual processor, 
achieving a data rate in compressed form of 
3GB/day, whereas uncompressed data stream is 
about 15GB/day, so compression ( teraCF  ) factor is 
about 5.  So the storage capacity for Tera-scale is:  

storageTera  =  StorageUR  / teraCF ; 
Using equation (12) we have 

storageTera = storageCRVCF *33.1*  / 5 ; 

storageTera = *596.1 StorageCRV           (14) 

A graphical representation of memory 
requirements of uncompressed database, SVLDCS, 
compressed database in Oracle (Poess and Potapov 
2003) and compressed database in Tera-scale 
(Lawrence and Kruger 2005) structure are presented 
in Figure 6.  It is clear that the storage size of 
databases increases due to increase in the number of 
tuples.  The number of tuples (in million) are 
represented by the X axis and the storage capacity 
(in Tera Bytes) of different methods are represented 
by the Y axis.  The storage comparison is also 
presented in a tabular form (in Table 1) for different 
methods using equation (8), (9),(12), (13) and (14). 

Table 1: Required Memory (in Terabytes) Using Different 
Methods. 

Note that Oracle (Poess and Potapov 2003) and 
Tera-Scale ((Lawrence and Kruger 2005) requires 
710 GB and 440 GB respectively while SVLDCS 
reduces these significantly to only 275 GB.  From 
Table 1, we see the compression factor is almost 8:1, 
comparing uncompressed to compressed relation 
(SVLDCS).  After considering the domain 
dictionary (using equation (12)), this compression 
factor becomes 6:1. 

 
Figure 6: Comparison of Storage Space for Different 
Methods. 

6 CONCLUSIONS 

Management and processing of large scale data sets 
is time-consuming, costly and an obstruction to 
research.  Accessing a rapidly evolving large scale 
database in a concurrent environment is also 
challenging because the number of disk accesses 
increases as the database size grows; the response 

No_of 

Tuples  

million 

Uncomp 

ressed 

(TB) 

ORACLE 

(TB) 

 

TERA- 

SCALE 

(TB) 

SVLDCS  

(TB) 

759 0.1875 0.059 0.037 0.023 

1215 0.3 0.096 0.06 0.0375 

1620 0.4 0.129 0.08 0.05 

2025 0.5 0.161 0.1 0.0626 

3038 0.75 0.239 0.15 0.093 

3443 0.85 0.273 0.17 0.106 

3848 0.95 0.307 0.19 0.119 

4172 1.03 0.335 0.207 0.13 

5388 1.33 0.43 0.266 0.167 

8600 2. 20 0.71 0.44 0.275 

COMPRESSED DATABASE STRUCTURE TO MANAGE LARGE SCALE DATA IN A DISTRIBUTED
ENVIRONMENT

43



 

time of any query also increases.  This paper 
describes an innovative disk based single vector 
large data cardinality approach, incorporating data 
compression in a distributed environment.  
According to this technique data are stored in a more 
space-efficient way than is provided by other 
existing schemes such as HIBASE, Oracle and Tera-
scale.  The compressed structure of SVLDCS is 
better than compression in Oracle, because Oracle 
applies block level compression that includes some 
redundancy.  The Tera-scale architecture also 
compress data file but querying is not possible when 
the data is in compressed form.  When the SVLDC 
approach is applied to a database of 2.2 TB (tera 
bytes), only 275 GB of storage is required, a 
significant improvement over other schemes.  The 
compression factor achieved using the SVLDCS 
structure is 6:1 compared to uncompressed relation. 

Querying, updating, inserting, deleting, and 
searching data in the databases is supported by the 
SVLDCS technique; details of these will be further 
reported as research progresses.  

REFERENCES 

Agrawl, R., A. Somani, et al., 2001. Storage and Querying 
of E-commerce Data. The 27th International 
Conference on Very Large Databases(VLDB). Roma, 
Italy. 

Alkhatib, G. and R. S. Labban., 1995. "Transaction 
Management in Distributed Database Systems: the 
Case of Oracle’s Two-Phase Commit." The Journal of 
Information Systems Education 13:2: 95-103. 

Chang, F., J. Dean, et al., 2006. Bigtable: A Distributed 
Storage System for Structured Data. The International 
Conference on Operating Systems Design and 
Implementation (OSDI). Seattle, Wa, USA. 

Cockshott, W. P., D. Mcgregor, et al., 1998. "High-
Performance Operations Using a Compressed 
Database Architecture”. The Computer Journal 41:5: 
283-296. 

Garcia-Molina, H. and K. Salem., 1992. "Main Memory 
Database Systems: An Overview " IEEE Transaction 
on Knowledge and Data Engineering 4:6: 509-516. 

Hoque, A. S. M. L., 2002. Storage and Querying of High 
Dimensional Sparsely Populated Data in Compressed 
Representation. Euro-Asia ICT. LNCS 2510. 

Hoque, A. S. M. l., D. McGregor, et al., 2002. Database 
compression using an off-line dictionary method. The 
Second International Conference on Advances in 
Information Systems (ADVIS). LNCS 2457, Springer 
Verlag Berlin Heidelberg. 

Lawrence, R. and A. Kruger., 2005. An Architecture for 
Real-T'ime Warehousing of Scientific Data. The 
International Conference on Scientific Computing 
(ICSC). Vegus, Nevada. 

Lawrence, R. and A. Kruger., 2005. An Architecture for 
Real-Time Warehousing of Scientific Data. The 
International Conference on Scientific Computing 
(ICSC). Vegus, Nevada, USA. 

Lee, I., H. Y. Yeom, et al., 2004. "A New Approach for 
Distributed Main Memory Database Systems:  A 
Casual Commit Protocol." IEICE Trans. Inf. & Syst. 
87:1 196-204. 

Lehman, T. J., E. J. Shekita, et al., 1992. "An Evaluation 
of Starburst’s Memory Resident Storage Component." 
IEEE Transaction on Knowledge and Data 
Engineering: 555-566. 

Litwin, W., R. Moussa, et al. (2004). LH*RS: A Highly 
Available Distributed Data Storage The 30th 
International Conference on Very Large Databases  
Conference. Toronto, Canada. 

Poess, M. and D. Potapov., 2003. Data Compression in 
Oracle. The 29th International Conference on Very 
Large Databases(VLDB), Berlin, Germany. 

Pucheral, P., J.-M. Thevenin, et al., 1990.  Efficient Main 
Memory Data Management using DBGraph Storage 
Model. The 16th International Conference on Very 
Large Databases(VLDB). Brisbase, Australia. 

Simonds, L., 2005. A Terabyte for your Desktop. The 
Maxtor Corporation Technical Report. 

Stonebraker, M., D. J. Abadi, et al., 2005. C-Store: A 
Column-Oriented DBMS. The 31st International 
Conference on very Large Dtabases (VLDB). 
Trondheim, Norway.   

Thakar, A., A. Szalay, et al., 2003. "Migrating a Multi-
Terabyte Archive from Object to Relational Databas." 
The Journal of Computing Science and Engineering 
5:5 16-29. 

 
 

ICSOFT 2008 - International Conference on Software and Data Technologies

44


