
ARIA LANGUAGE
Towards Agent Orientation Paradigm

Mohsen Lesani and Niloufar Montazeri
Computer Science Department, Shahid Bahonar University of Kerman, Kerman, Iran

Keywords: Agent Oriented Software Engineering, Agent Oriented Language, Software Agents.

Abstract: Agent oriented paradigm is one of the new contributions to the field of software engineering and has the
potential to significantly improve current practice of the field. The paradigm should be elaborated both
practically and conceptually. The contribution of this paper is twofold. Firstly, an agent oriented language
called Aria and its compiler are proposed. Aria language is a superset of Java language and the compiler
compiles a program in Aria to an equivalent program in Java. This enables Aria to fully integrate with and
preserve all the existing knowledge and code in Java. Secondly, the three well-known object oriented
principles of abstraction, inheritance and polymorphism are redefined for agent orientation. Two sample
cases are presented: a chat room and an agent oriented MVC pattern.

1 INTRODUCTION

Objects are passive entities and the thread of
execution is not a primary concept in object
orientation. On the other hand, increasing multi core
architectures provide hardware support for
concurrency. In a sheer agent oriented approach, a
system is designed as a team of cooperating
autonomous agents. The behavior of a multi-agent
software system is the emergence of cooperation of
the agents. In contrast to an object that is a passive
entity, an agent is modeled as a proactive social
entity. An object does not change state or make any
other object to change state unless it is told through
methods to do so. On the contrary, an agent is alive
and its behaviors are autonomously effective
regardless of other agents.

The developer’s attitude to shift to the new
language and hence the success of language is
highly dependent on backward compatibility i.e.
preserving the developer’s existing knowledge and
code. While there are some agent oriented languages
available, few of them are backward compatible
with object oriented languages. More importantly,
while object orientation is known to have three
principles, publications from neither of the previous
languages have theoretical discussions of the new
paradigm.

2 ARIA AGENT ORIENTATION

Aria agent oriented language proposes language
built-in support for specification of autonomous
agents. It conceptually overrides and extends the
three well known object orientation principles.
1. Abstraction: Everything is an agent or an object.
Agents interact by sending messages to each other.
2. Inheritance: An agent can inherit message
servicing and behaviors from a parent agent.
3. Polymorphism: An agent can override its parent
definitions for message servicing and behaviors and
the overriding definitions are effective even when
the agent is referenced as of its parent type.

3 ARIA LANGUAGE

3.1 Abstraction

An agent is specified in Aria as syntax in Code
Snippet 1. An agent is abstracted to perceive
messages of definite types and have several
concurrent behaviors.

Aria proposes a superior abstraction of
messaging concept in comparison to object
orientation. The object orientation abstraction for
messaging is to call methods on objects that is
conceptually a blocking message passing

79
Lesani M. and Montazeri N. (2008).
ARIA LANGUAGE - Towards Agent Orientation Paradigm.
In Proceedings of the Third International Conference on Software and Data Technologies - PL/DPS/KE, pages 79-82
DOI: 10.5220/0001874600790082
Copyright c© SciTePress

mechanism. Inter-agent communication is possible
through not only blocking but also non-blocking and
polling mechanisms. An agent can send messages to
other agents in three different ways that are through
tell, tellAndWait and tellAndPoll message passing
methods. An agent can tell a message and proceed
with its current behavior. An agent can also
tellAndWait a message and block for its reply before
advancing. The third approach is to tellAndPoll a
message and iteratively check for the reply. This
approach called polling allows for situations when a
behavior should be sustained while a message reply
is also waited for. These approaches are
syntactically specified as in Code Snippet 2, Code
Snippet 3 and Code Snippet 4.

An agent may receive messages of different class
types. The perceive block for a definite message
class is where every received message that is an
instance of that class is directed to. Every agent has
a hidden thread-safe message queue. All the
messages that other agents send to the agent are put
into its message queue. When an agent specification
is compiled, a hidden message dispatching behavior
is added to the agent behaviors. The message
dispatching behavior continuously iterates the
message queue, identifies the type of each message
and runs the perceive block of the identified
message type with the message as the parameter. All
the message queuing and runtime type identification
issues are handled behind the scene by the code that
is generated and inserted by the compiler into the
user code and in part by classes of Aria core
package. As all the perceive blocks of an agent are
executed sequentially in a single thread, a perceive
block can only contain a short processing on the
message. For instance it can contain the action that a
simple reflex agent performs in realizing a message
of a definite type. This is most common for user
interface agents. As most of the messages they
receive are requests for presentation and such
requests can be carried out rapidly, user interface
agents are usually reflex agents.

Behaviors are where the agent’s processing
should be coded. The code snippet of a behavior is
translated to a repeatedly running code. Every
behavior is executed on a separate thread by default
and this supports concurrent behaviors in an agent.

Processing needed to reply some message types
may be time consuming and messages of such types
can not be promptly answered. As perceive blocks
should only contain short processing tasks, there is a
need that messages of time consuming types be
directed to a behavior to be further processed. This
could be coded in Aria as coded in Code Snippet 5.

To support the user to accomplish this much easier,
Aria allows defining message processing behaviors.
A behavior can declare to process a definite message
type and the presented code is automatically
generated by the compiler. This means that Code
Snippet 6 has exactly the same effect as Code
Snippet 5.

A message that is being processed either in a
perceive or behavior block can be replied by the
reply keyword as shown in Code Snippet 7. When a
message is replied, if the sender is waiting for the
reply, the sender unblocks and gets the reply
message as the return value of tellAndWait method.
But if the sender is not waiting for the reply, the
reply is simply sent to it to be queued and processed
later. Reply statements without an explicit message
are usually used to unblock sender agents that are
waiting for a task to be finished. All the needed
synchronizations are handled by Aria core package.

An agent is created and made alive as shown in
Code Snippet 9. Agent’s (hidden) message
dispatching behavior and all the behaviors in the
agent definition are started when the agent is
commanded to become live. The atBirth block is
executed when the agent is becoming live just before
any of the behaviors are started. An agent can be
requested to terminate by telling it a message of
TerminateRequestMessage class. When a message
of TerminateRequestMessage class is received, the
agent dies by default by terminating all its behaviors
and executing the atDeath block when all the
behaviors are terminated. This default reaction to
TerminateRequestMessage can also be overridden
easily by providing a perceive block for it.

Agent definitions support all the constructs that
can be defined inside class definitions. Fields can be
defined for agent information storage. As fields are
accessible from all the perceive and behavior blocks
and agent behaviors can execute concurrently, care
should be taken for synchronizing field access.
Methods can also be defined for an agent but rarely
an agent’s method has a public access. Composition
serves as a way to reuse existing agents and built
more high-level agents with greater capabilities from
them. An agent can obviously be composed of other
agents. Each subagent can be capable of performing
a part of the agent’s responsibilities. The agent itself
can act as a manager or coordinator.

3.2 Inheritance and Polymorphism

Aria agent specification supports inheritance in both
agent specialization and service provision.

ICSOFT 2008 - International Conference on Software and Data Technologies

80

3.2.1 Agent Specialization

In addition to agent composition, agent
specialization can be employed to achieve software
reuse principle. All the capabilities present in an
existing agent type can be reused by specializing a
new agent from it and then the new agent can be
supplemented with further capabilities. Agent
specialization is the counterpart to class inheritance.
While object oriented inheritance involves fields and
methods, agent orientated specialization also
concerns message processing mechanisms and
behaviors. When a child agent inherits from a parent
agent, the entire parent’s perceive and behavior
blocks are inherited by the child agent. The child
agent can perceive all the message types that its
parent could perceive and has all the behaviors that
its parent has. In addition, new specific
functionalities can be added.

3.2.2 Service Provision

A service is specified in Aria in the syntax shown in
Code Snippet 8. A service specification formally
defines a service that agents may provide. A service
specification declares some message or request
types. An agent that declares to support a service
should be able to perceive all the message types
declared in the service. An agent that has declared
the perceive block for a message type is able to
perceive messages of that type. An agent that has a
message processing behavior for a definite message
type is also considered to be able to perceive
messages of that type. This is because the compiler
automatically generates a perceive block for a
message processing behavior. Service provision is
the counterpart of interface realization in object
orientation. A service can declare to extend other
services. An agent that declares to service a definite
Service B that extends another Service A, should be
able not only to perceive all the messages declared
in Service B but also all the messages declared in A.
An agent can offer different services. Different
agents can provide a unique service with different
implementations.

3.2.3 Polymorphism

A general agent with definite capabilities can be
specialized to have the capabilities more specifically
defined. A perceive or behavior block can be
overridden by an inheriting agent. A behavior
defined in a child agent that has the same name as of
a behavior in its parent agent overrides the parent’s

behavior. A perceive block defined in a child agent
for a specific message class overrides the perceive
block for the same message class in the parent agent.
Sending a message to an upcasted child agent is
polymorphic. This means that the perceive block
defined in the child agent specification is executed
rather than the perceive block defined in the parent
agent specification.

An agent can add a perceive or behavior block to
itself at runtime. The added perceive or behavior
block can be a new or an overriding one. Hence, an
agent can not only override the perceive and
behavior blocks of its ancestors at compile time, but
it can also override inherited and even its own
perceive and behavior blocks at runtime. This
supports an agent to change its behaviors in the
course of its life as a result of learning or adaptation.
As an instance, emerging a new message processing
behavior block can be performed at runtime as
coded in Code Snippet 10.

4 ARIA COMPILER (ARIAC)

Aria compiler is developed employing Antlr v.3
tool. Ariac translates a program in Aria language to
a semantically equivalent program in Java language
that is then compiled to Java bytecode. Besides
agent and service specifications, Ariac compiler also
accepts all the Java language constructs. It means
that Aria language is a superset of Java language and
Aria code is fully integrable with Java code.

The compiler has successfully passed compiling
two sample cases implemented in Aria. please check
http://ce.sharif.edu/~mohsen_lesani/aria.htm for
more information.

REFERENCES

Bellifemine, F., Bergenti, F., Caire, G., & Poggi, A.
(2005). JADE - A Java Agent Development
Framework. In R. H. Bordini, M. Dastani, J. Dix, & A.
El Fallah Seghrouchni, MultiAgent Programming:
Languages, Platforms and Applications. Springer-
Verlag.

Howden, N., Ronnquist, R., Hodgson, A., & Lucas, A.
(2001). JACK - Summary of an Agent Infrastructure.
5th International Conference on Autonomous Agents.

Pokahr, A., Braubach, L., & Lamersdorf, W. (2005).
JADEX: A BDI Reasoning Engine. In R. H. Bordini,
M. Dastani, J. Dix, & A. El Fallah Seghrouchni,
MultiAgent Programming: Languages, Platforms and
Applications. Springer-Verlag.

ARIA LANGUAGE - Towards Agent Orientation Paradigm

81

public agent AgentType specializes parentAgentType services ServiceType1, ServiceType2, ... {

atBirth {

}

perceive(Massageclass1 message) {

}

behavior behaviorName {

}

behavior behaviorName processes (MessageClass2 message) {

}

atDeath {

}

// Any OO field or method is also supported.

}

Code Snippet 1
agentName.tell(messageName)

Code Snippet 2
Message message = agentName.tellAndWait(messageName)

Code Snippet 3
MessageWaitedFor messageWaitedfor = agentName.tellAndPoll(messageName)

while (!messageWaitedFor.isMessageReplied()) {

// Do some tasks

}

Message replyMessage = messageWaitedFor.getMessage();

Code Snippet 4
private ThreadSafeQueue<MessageClassType> ariaMessageClassTypeQueue =

new ThreadSafeQueue<MessageClassType>();

perceive(MessageClass message) {

ariaMessageClassQueue.add(message);

}

behavior behaviorName {

try {

 MessageClass message = ariaMessageClassQueue.remove();

 // behavior code to process message

} catch (Exception e) {

 idle();

}

}

Code Snippet 5
behavior behaviorName processes (MessageClassType message) {

// behavior code to process message

}

Code Snippet 6

reply message

or
reply

Code Snippet 7

public service ServiceType

 extends AnotherServiceType1,

 AnotherServiceType2,

 ...

{

servicesTo(MessageClass1);

servicesTo(MessageClass2);

}

Code Snippet 8

AgentType agentName = new AgentType();
agentname.becomeLive();

Code Snippet 9

addBehavior(
 new MessageProcessingBehavior<MessageClass>("BehaviorName") {
 public void behavior(MessageClass message) {
 //Message Processing behavior code
 }
 }
);

Code Snippet 10

ICSOFT 2008 - International Conference on Software and Data Technologies

82

