
FROM UML TO ANSI-C
An Eclipse-based Code Generation Framework

Mathias Funk
Department of Electrical Engineering, Eindhoven University of Technology, The Netherlands

Alexander Nyβen, Horst Lichter
Research Group Software Construction, RWTH Aachen University, Germany

Keywords: Embedded & Real-Time Systems, ANSI-C, UML, Code Generation.

Abstract: Model-driven engineering has recently gained broad acceptance in the field of embedded and real-time soft-
ware systems. While larger embedded and real-time systems, developed e.g. in aerospace, telecommunication,
or automotive industry, are quite well supported by model-driven engineering approaches based on the UML,
small embedded and real-time systems, as they can for example be found in the industrial automation industry,
are still handled a bit novercal. A major reason for this is that the code generation facilities, being offered by
most of the UML modeling tools on the market, do indeed support C/C++ code generation in all its particu-
lars, but neglect the generation of plain ANSI-C code. However, this would be needed for small embedded
and real-time systems, which have special characteristics in terms of hard time and space constraints.
Therefore we developed a framework, which allows to generate ANSI conformant C code from UML models.
It is built on top of Eclipse technology, so that it can be integrated easily with available UML modeling
tools. Because flexibility and customizability are important requirements, the generation process consists of a
model-to-model transformation between the UML source model and an intermediate ANSI-C model, as well
as a final model-to-text generation from the intermediate ANSI-C model into C code files. This approach has
several advantages compared to a direct code generation strategy.

1 INTRODUCTION &
MOTIVATION

Model-Driven Engineering (MDE) has become very
popular in recent times, particularly in the domain of
embedded software systems. Although model-driven
approaches like e.g. ROOM (Selic et al., 1994),
ROPES (Douglass, 1999), or COMET (Gomaa, 2000)
have been known to the embedded application domain
for several years, they have never reached the very
break through. According to our observations, it was
not before the release of the current Unified Modeling
Language (UML) standard (OMG, 2007b) - as well as
the inception of the related SysML standard (OMG,
2007a) - that this trend has significantly gained im-
pact.

One major reason for this is in our opinion today’s
availability of a broad range of mature, standard-
conformant UML and SysML modeling tools, as ad-
equate tool support is the precedence for a success-

ful application of MDE, because only thereby its full
benefits can be unleashed.

However, while modeling from the early require-
ments engineering up to the late detailed design can
be quite well supported by those state-of-the-art UML
and SysML tools, we noticed that support for gener-
ating code from the resulting design models is often
not yet satisfying.

The main reason for this is that flexible customiza-
tion of the code generation process is often not pos-
sible at all, or only with great effort, as nearly all
tool vendors have their own proprietary code gener-
ation API. Customization potentials are often limited
to what the vendor anticipated beforehand, which is
not always what the user expects or desires.

Another reason, closely related to the first one
which emerges in the domain of small embedded and
real-time software systems, is that due to the hard
space and timing constraints those systems have to
face, code generation of mixed C/C++ code, as it is

12
Funk M., Nyβen A. and Lichter H. (2008).
FROM UML TO ANSI-C - An Eclipse-based Code Generation Framework.
In Proceedings of the Third International Conference on Software and Data Technologies - SE/GSDCA/MUSE, pages 12-19
DOI: 10.5220/0001874000120019
Copyright c© SciTePress

solely offered by nearly all state-of-the-art UML and
SysML modeling tools, most often is not adequate.
Instead generation of ANSI conformant C code would
be needed for those systems, as this still is the state-
of-the-practice implementation language (van Solin-
gen, 2004) for which approved compilers are avail-
able.

As we aim at providing mature model-driven en-
gineering for the domain of small embedded and real-
time software systems (Nyen and Lichter, 2007), we
introduced a code generation framework (Funk, 2006)
(Kevinc, 2007) to support the flexible and customiz-
able generation of ANSI-C code from UML models.

2 RELATED WORK

Many commercial MDE tools targeting the domain
of embedded and real-time systems exist on the mar-
ket (an inventory is provided by (Graaf et al., 2002),
a quite extensive comparison of case tools targeting
the embedded and real-time domain can be found in
(Schätz et al., 2003)). Quite a few of those tools offer
UML modeling capabilities, as the UML has become
the predominant modeling language for MDE. Nearly
all of those tools supporting the UML do as well offer
direct code generation capabilities from UML mod-
els. However, as already mentioned, the offered gen-
eration capabilities are mostly inflexible and hard to
customize. Moreover, the generation of plain ANSI
conformant C code is often not supported. Instead,
most of the tools deliver proprietary runtime libraries
and concentrate on the generation of C++ code which
is not applicable to the domain of small embedded and
real-time systems.

While commercially available tools thus only
marginally cover the regarded domain of small em-
bedded and real-time systems, academic approaches
do not seem to consider the domain at all. That
is, there are almost no approaches investigating the
generation of ANSI conformant C code from UML
models. The reason for this - as we think - is that
academic state-of-the-art and industrial state-of-the-
practice are separated by a time gap of around 10-15
years, so that real-world problems being relevant to
the regarded domain have simply gotten out of aca-
demic scope. That is, ANSI conformant C code gen-
eration from UML models has been inside academic
scope in the early days of the UML (e.g. the gener-
ation of C code from state machines or from simple
class diagrams), but after that not much research ef-
fort has been spent to those questions. For instance,
the generation of ANSI-C code from UML composite
structure or component diagrams, being introduced to

the UML in its recent version to especially address
embedded and real-time systems, has not been inves-
tigated yet.

The code generation framework we propose is in-
tended to fill the described gap. It allows for rapid de-
velopment of custom ANSI-C code generators as they
are required by the regarded domain of small embed-
ded and real-time systems. We see this as a prereq-
uisite for the successful application of MDE technol-
ogy.

3 REQUIREMENTS

Besides the fundamental functional requirement to
support the generation of ANSI-C code from UML
models, the most important requirement for our code
generation framework is - as already mentioned - a
non-functional, namely to be flexible and adaptable.
That is, the code generation process has to be such
that different transformation strategies, different ap-
plication domains, as well as different target plat-
forms are supported. Furthermore, as the code gen-
eration process may change over time, maintainance
has to be as straight-forward as possible.

In consequence, we demand that the code gener-
ation framework should have a very modular archi-
tecture, separating the logical transformation process
(i.e. how UML model elements are mapped to C lan-
guage constructs) from the rather technical process
of code generation. This way, changes to the logi-
cal transformation - which we consider to be the one
that most likely changes - can be done without affect-
ing the rather technical process of generating the C
language unit files which is considered to be rather
stable.

Eclipse has established itself as a de facto in-
dustry standard, and the related tools and technol-
ogy projects offer a mature C/C++ development en-
vironment (Eclipse CDT tools project (The Eclipse
Foundation, 2000a)) as well as underlying technol-
ogy for model-driven engineering based on UML
(Eclipse MDT (The Eclipse Foundation, 2000d) and
GMT (The Eclipse Foundation, 2000b) technology
projects). This led us to the decision to realize our
code generation framework based on that technology
as well. This way, it can be easily integrated with sev-
eral other UML and SysML modeling tools, as vari-
ous considerable tool manufacturers as IBM Rational,
Borland, Mentor Graphics, Gentleware, No Magic,
Embedded Plus (SysML Toolkit for Rational Soft-
ware Development Platform), and others build their
tools on top of Eclipse technologies.

FROM UML TO ANSI-C - An Eclipse-based Code Generation Framework

13

4 CONCEPT AND DESIGN

As already indicated, we decided to do the transfor-
mation of UML models into ANSI-C code in two
steps, namely a logical transformation step between
the UML model and an intermediate ANSI-C model,
which represents the C language elements as defined
by the respective language grammar (Kernighan and
Ritchie, 1988), as well as a subsequent generation
step from the intermediate ANSI-C model to C code.

UML
Model

UML
Modeling

Tool

UML- ANSI-C
Transformator

ANSI-C
Model

ANSI-C
Code

Generator

ANSI-C
Code

UML
Meta Model

ANSI-C
Meta Model

Transformation Generation

A produces BA B B A A consumes B BA B is instance of A

Figure 1: Code Generation Strategy.

In the sense of model-driven engineering, the
code generation process itself therefore consists of
a model-to-model transformation between the UML
source model and an intermediate ANSI-C model, as
well as a final model-to-text generation from the inter-
mediate ANSI-C model into C code files, as demon-
strated in Figure 1.

This approach, using an intermediate ANSI-C
model, has several advantages compared to a direct
code generation strategy.

First, as the logical mapping between the UML
model elements and their ANSI-C representations
can be dealt with isolated from the technical domain
of generating the source code files, easy adoption
and customization of the transformation logic can be
achieved without having to go into the technical de-
tails of the generation.

Second, as the model-to-text generation process
can on the other hand be regarded as rather stable
and does not have to be changed in the normal case,
but can be reused as-is, this leads to increased robust-
ness and stability of any code generator being built on
top of the framework. Furthermore, increased main-
tainability and testability can be expected because the
separation allows for maintainance and testing of both
parts individually. This is in particular the case for the
logical transformation process, which is realized in
the technical domain of model-to-model transforma-
tion, so that the transformation strategy itself can be
easily tested by checking the source and target models
affected by the transformation.

Further, it can as well be ensured that the finally
generated source code is ANSI conformant, as this
is already ensured by the syntactical correctness and
well-formedness of the intermediate ANSI-C meta

model.
Such a solution offers the advantage of an overall

reduced complexity. One can imagine that a combina-
tion of both steps, bringing the two problems together,
would be much harder and error-prone to solve, let
alone the reduced quality in terms of testability and
maintainability. In this sense, the decision to split the
overall process into a transformation and a generation
part already simplifies the development, adaption and
extension of the framework.

4.1 ANSI-C Meta Model

Having motivated the need for an intermediate ANSI-
C model, the conception of a respective ANSI-C meta
model was an essential part in the realization of our
framework. Indeed, its realization is quite straight-
forward, as it has to represent the whole C language
grammar (Kernighan and Ritchie, 1988). According
to this, a C translation unit (which corresponds to a .h
or .c file) contains three main language items, namely
preprocessor constructs, language constructs (i.e. ab-
stract syntax tree elements), and annotations (com-
ments) that may be attached to both types of con-
structs.

The corresponding part of the meta model is
displayed in Figure 2. It shows the integration of
preprocessor constructs and abstract syntax tree
elements, as well as annotations, which can appear
admixed in the source code but which are han-
dled each during different stages of the compilation
process. They will therefore not interfere during com-
pilation, but have to coexist in the model. As it has to
be possible to add preprocessor elements before, af-
ter, and inside (structured) AST elements (e.g. inside
aForStatement, before the first nestedStatement),
and as it further possible to add annotations be-
fore, after, and inside (structured) preprocessor
statements as well as AST elements, respective
relationships between the meta model elements were
designed (in case of a structureASTElement or
PreprocessorElement, innerLeadingPosition
and innerTrainlingPosition refer to the posi-
tions directly before the first nested element as well as
directly after the last nested one; in case of unstruc-
tured ASTElements and PreprocessorElements
those associations are undefined).

Down from the PrepocessorElement and
ASTElement meta model elements, the construc-
tion of the ANSI-C meta model is a pretty simple
translation of the respective C language grammar
elements, so we do not present this in very detail
here. Annotations are more interesting as they
may appear in the form ofComments as well as

ICSOFT 2008 - International Conference on Software and Data Technologies

14

Figure 2: Core of the ANSI-C Meta Model.

Figure 3: Annotations Hierarchy.

ProtectedRegionAnnotations (cf. Figure 3).
Comments have to be represented in the ANSI-

C meta model to offer the possibility to trans-
port knowledge that is expressed “non-structurally”
from the UML model to the ANSI-C model.
ProtectedRegionAnnotations, have special se-
mantics regarding the code generation process,
namely to mark sections inside the source code where
custom code can be inserted, being preserved from
manipulation by subsequent re-generation runs. We
stress this point, as this is a prerequisite for the prac-
tical usability of a code generation framework, as
thereby users can alter, specialize or remove gener-
ated code and tailor the constructs to their needs.

The C language grammar naturally just defines the
structure of elements embedded into a single transla-

tion unit (.h or .c file). As a complete model-to-model
transformation will have to deal with a potentially
high number of translation units, additional structur-
ing means are needed. That is why the container hier-
archy as displayed in Figure 4 was introduced. Con-
tainers allow to structurally organize translation units.
They will be transferred into file system folders dur-
ing the final generation of C code, and thus allow to
specify which translation units are grouped together
into folders.

Figure 4: Container Hierarchy.

As already indicated in the introduction, we de-
cided to use Eclipse technology for the technical
implementation of the ANSI-C meta model. Be-
sides Eclipse has become generally accepted in prac-
tice, the fact that an Eclipse Modeling Framework
(EMF) (The Eclipse Foundation, 2000c) based im-
plementation of the UML meta model is provided by
the Eclipse Model Development Tools (MDT) (The
Eclipse Foundation, 2000d) project, was a significant

FROM UML TO ANSI-C - An Eclipse-based Code Generation Framework

15

driver for this decision. This way, the model-to-model
transformation can be easily realized whithout leaving
the technical domain of EMF.

4.2 Model-to-model Transformation

As already elaborated, the logical mapping from
UML elements to their ANSI-C representations is re-
alized by a model-to-model transformation between a
UML input model and an ANSI-C output model. This
allows us to separate the logical aspects of the code
generation process from the rather technical process
of generating the source code ouput files.

As both input and output models are based on
EMF technology, the realization of such model-to-
model transformations can be achieved quite easily
with the technology offered by the Eclipse Generative
Modeling Techniques (GMT) project (The Eclipse
Foundation, 2000b).

We decided to use the thereby provided openAr-
chitectureWare (OAW) framework for this purpose.
It provides powerful mechanisms to operate on EMF-
based models, by offering three script languages to
specify model-to-model and model-to-text transfor-
mation and generation, as well as for checking mod-
els.

ansic::Container createPackage(uml::Package p) :

/* create a new container */

let d = new ansic::Container :

/* provide the name of the newly created container */

d.setName(p.Name()) ->

/* process nested packages recursively; add their

container representations to subcontainer list */

d.subContainer.addAll(p.nestedPackage.createPackage()) ->

/* classifiers contained in the package are transformed

into sub containers, which contain .h and .c transl.

units for the actually realizing the classifier */

d.subContainer.addAll(p.getGeneratedClassifiers()

.createClassifier()) -> d

;

Figure 5: xTend Code for Transformation of UMLPackage.

A model-to-model transformation can in this con-
text be described in the form of transformation rules,
being specified in the functional oAWxTend script
language. The example in Figure 5 shows a transfor-
mation rule for a UML package (and its nested pack-
ages and classifiers).

4.3 Model-to-text Generation

While the logical information about the transfor-
mation of UML model elements into their respec-
tive ANSI-C representations is encapsulated by the
model-to-model transformation, the actual code gen-
eration step is a simple model-to-text generation pro-
cess. It is rather straight-forward because the ANSI-C
model is simply different representation of the trans-
lation unit’s syntax tree structure.

As before, oAW technology is employed to real-
ize the model-to-text generation. That is, the transla-
tion unit as well as each of its contained language ele-
ments are generated based on oAW’sxPand language.
xPand is a template based language, i.e. the text frag-
ment that is generated for each model element is spec-
ified in form of a parameterizable text template. An
example for anxPand template is shown in Figure 6.
It depicts the template for a translation unit which is
transferred into a file containing a top comment. Gen-
eration of contained preprocessor and AST elements
is delegated to respective templates.

DEFINE E FOR ansic::TranslationUnit

FILE container.getFullFilePath() + "/" + name/

* File: name

* Generated by ViPER.Codegen

***/

EXPAND ASTElement::E FOREACH

getOrphanPreprocessorStatements()

EXPAND ASTElement::E FOREACH astElement

ENDFILE

ENDDEFINE

Figure 6: xPand Code for Generation of
TranslationUnit.

5 FRAMEWORK
ARCHITECTURE

In order to use a code generator in daily work, it has
to be integrated with other development tools (com-
piler, editor, etc.). We decided to realize our frame-
work in the form of extensible Eclipse plug-ins. This
does not only allow for integration into the Eclipse
IDE itself, but as well into other development envi-
ronments built on top of Eclipse. We decided to split
the architecture of our framework into two subsys-
tems, thecore, which realizes the underlying trans-
formation and generation processes, and theuser in-
terface, which queries information from the user and

ICSOFT 2008 - International Conference on Software and Data Technologies

16

controls the transformation and generation processes.
We will describe both in the following.

5.1 Core Subsystem

The model-to-model transformation and the model-
to-text generation are realized in this subsystem by
respective transformation and generation units, as de-
picted in Figure 7.

Figure 7: Core Subsystem Architecture.

Reading input source models as well as writ-
ing output target models is realized with the help
of model readers and writers which are specializa-
tions of generic oAW provided XMI readers and writ-
ers.xTend andxPand scripts which realize the actual
transformation and generation respectively are exe-
cuted by the oAW workflow engine.

To be able to customize and extend the frame-
work constituents, both units offer extension mech-
anisms where customized components for model-to-
model transformation and model-to-text generation
can be inserted. While the model-to-model transfor-
mation is regarded to be subject to changes quite often
during development (most customizations will affect
this part of the over-all code generation process), the
model-to-text generation part is regarded to be rather
stable, as it translates already similar structures from
the model representation into the textual represanta-
tion of source code. However, it might be that cus-
tomization is needed there as well, e.g. because run-
time libraries or platform-specific files have to be gen-
erated together with the source code. Therefore we
provide an extension mechanism for this part as well.

All extensions have to offer a check component
(realized by an oAW Check script) which is used to
verify that the respective source model is a valid in-
put model for the respective transformation or gener-
ation step, and a transformation respectively genera-
tion component, which bundles thexTend or xPand
scripts realizing the transfomation respectively gener-
ation.

We developed so-called contributions to both ex-
tension points to demonstrate the capabilities of the
framework. The reference implementation for the
model-to-text generation part is regarded to be an es-
sential part of the framework itself as it can be reused
in different code generation scenarios. In contrast,
the default implementation contributing the model-to-
model transformation is understood as a mere demon-
stration example. It will most likely be replaced with
a custom transformation by end users of the frame-
work. We used it to demonstrate the capabilities of the
framework by generating ANSI conformant C code
from the structural information captured in a UML
model.

5.2 User Interface Subsystem

The core transformation and generation units are inte-
grated into the Eclipse with the help of wizards, which
are called from respective context menus integrated
into the Eclipse navigator view. This gives direct ac-
cess to the desired transformation respectively gener-
ation functionality when a UML and ANSI-C model
is selected as a resource in the Eclipse workbench.
Figure 8 gives an overview on how this integration is
achieved with the help of so calledActionDelegates.

By choosing the respective context menu entry, a
wizard is started and guides the user through the trans-
formation or generation step. In both cases, the se-
lected input model is first validated using the provided
check component. After that, further parametrization
data needed for the transformation respectively gen-

Figure 8: User Interface Subsystem Architecture.

FROM UML TO ANSI-C - An Eclipse-based Code Generation Framework

17

eration step is collected and passed to the underlying
core component. Afterwards, the execution of the re-
spective core component is started from the wizard
and the results of the transformation or generation
step are displayed to the user, giving the possibility
to cancel the operation.

6 EVALUATION

We evaluated our code generation framework by im-
plementing a platform-dependentcode generator. The
code generator produces customized ANSI confor-
mant C code for the Renesas M16C target platform
(Renesas Technology, 2008), which is a typical repre-
sentative for the domain of small embedded and real-
time systems. Based on the default transformation
unit provided by the framework, the M16C generator
supports the generation of ANSI conformant C code
from the structural information contained in a UML
model, i.e. the structural information contributed to a
UML model by means of UML structure diagrams.

The concept of customizability was proofed so far
as the customization did indeed affect only the trans-
formation part of our code generator and was there-
fore restricted to local changes only. The reference
generation was not subject to change because it solely
dependends on the intermediate ANSI-C model and
does not contain any platform dependencies.

Experience thus showed that the separation of
transformation and generation logic is a reasonable
approach. In contrast to the standalone development
of a comparable code generator, the overall imple-
mentation effort could be significantly reduced, as
all technical details related to the generation pro-
cess could be delegated to the reference generation
unit. This would even hold if the transformation unit
were developed from scratch, not based on the default
transformation unit provided with the framework.

What can of course not be concealed is that the im-
plementation the transformation logic entails an ini-
tial learning effort. This holds for the technical im-
plementation, which is done in terms of developing
oAW xTend scripts, as well as for the logical transfor-
mation, which requires knowledge about the ANSI-C
model structure. This has to be taken into considera-
tion.

Statements about the quality, performance, or
maintainability of the generated code, as well as
of the effort related to the construction of concrete
input UML models for this specific code genera-
tor can of course not be generalized to properties
of the overall code generation framework. How-
ever, it can be stated that - as experience showed -

the maintainability and customizability of the gen-
erated code depends much on the appropriate usage
of ProtectedRegionAnnotations in the design of
the logical transformation process. They mark those
source code locations which should not be affected by
re-generation runs of the generator and thus allow the
user to safely insert own code fragments. To this ex-
tend, the quality and robustness of the generated code
directly depends on how well necessary additions or
changes to the generated code are anticipated in the
transformation logic design.

7 SUMMARY & CONCLUSIONS

As we stated in the introduction, we see that model-
driven engineering based on the UML is getting more
and more impact in the domain of small embedded
systems. Due to the fact that small embedded sys-
tems are subject to hard space and timing constraints,
Java code generators are not appropriate. Further-
more, C++ also has not saturated the field yet. In this
sense, the C language is still the primary program-
ming language in this domain.

We believe that the full benefits of a model-driven
engineering approach can only be unleashed with the
help of adequate tool support. This is the motivation
for the need for a code generator, supporting the gen-
eration of ANSI conformant C code out of UML mod-
els. Our solution is a flexible and customizable frame-
work to support the realization of custom ANSI-C
code generators. As Eclipse has become the predomi-
nant integrated development environment, we decided
to have our framework residing in that technical do-
main as well in order to achieve a seamless integration
with such tools.

The framework as well as the custom code gen-
erators used for evaluation purposes, are made avail-
able as part of the ViPER platform being offered by
our group. They can be obtained from the ViPER
project site (RWTH Aachen University, Research
Group Software Construction, 2005). We are con-
vinced that our contribution supports the adoption of
a model-driven engineering approach in the domain
of small embedded systems, which is currently not
the main focus of UML modeling tool vendors, but
which is a domain, where model-driven engineering
can improve a lot, showing all its advantages.

REFERENCES

Douglass, B. P. (1999).Doing Hard Time - Developing
Real-Time Systems with UML, Objects, Frameworks,

ICSOFT 2008 - International Conference on Software and Data Technologies

18

and Patterns. Addison Wesley - Object Technology
Series.

Funk, M. (2006). Generierung von effizientem C-Code
aus UML2-Strukturdiagrammen. Diploma Thesis,
RWTH Aachen University, http://www.swc.rwth-
aachen.de/lufgi/teaching/theses/completed/Mathias
Funk ThesisReport.pdf.

Gomaa, H. (2000).Designing Concurrent, Distributed, And
Real-Time Applications with UML. Addison Wesley -
Object Technology Series.

Graaf, B., Lormans, M., and Toetenel, H. (2002). Software
technologies for embedded systems: An industry in-
ventory. InPROFES ’02: Proceedings of the 4th In-
ternational Conference on Product Focused Software
Process Improvement, pages 453–465, London, UK.
Springer-Verlag.

Kernighan, B. W. and Ritchie, D. M. (1988).The C Pro-
gramming Language - Second Edition. Prentice Hall
- Software Series.

Kevinc, O. (2007). Erweiterung des ViPER Codegenerators
um Nebenlufigkeit und Zeitverhalten. Diploma The-
sis, RWTH Aachen University, http://www.swc.rwth-
aachen.de/lufgi/teaching/theses/completed/Oezguer
Kevinc ThesisReport.pdf.

Nyen, A. and Lichter, H. (2007). MeDUSA - MethoD for
Uml2-based Design of Embedded Software Applica-
tions. Technical Report AIB-2007-07, RWTH Aachen
University.

OMG (2007a). OMG Systems Modeling Lan-
guage (OMG SysML) Specification. OMG
Proposed Available Specification 07-02-04.
http://www.omg.org/docs/ptc/07-02-04.pdf.

OMG (2007b). UML Superstructure Specifica-
tion, v2.1.2. OMG Formal Document 07-11-
02.http://www.omg.org/cgi-bin/doc?formal/07-11-02.

Renesas Technology (2008). M16C Family
(R32C/M32C/M16C/R8C). http://www.renesas.com/
fmwk.jsp?cnt=m16cfamily landing.jspfp=/products/
mpumcu/m16cfamily, retrieved: 2008/14/05.

RWTH Aachen University, Research Group Soft-
ware Construction (2005). ViPER project site.
http://www.viper.sc, retrieved: 2008/13/03.

Schätz, B., Hain, T., Houdek, F., W.Prenninger, Rappl, M.,
Romberg, J., Slotosch, O., Strecker, M., and Wis-
speintner, A. (2003). CASE-Tools for Embedded Sys-
tems. Technical Report TUM-I0309, TU München.

Selic, B., Gullekson, G., and Ward, P. T. (1994).Real-Time
Object-Oriented Modeling. Wiley.

The Eclipse Foundation (2000a). Eclipse C/C++
Development Tooling (CDT) project site.
http://www.eclipse.org/cdt, retrieved: 2008/13/03.

The Eclipse Foundation (2000b). Eclipse Gen-
erative Modeling Technologies project site.
http://www.eclipse.org/gmt, retrieved: 2008/13/03.

The Eclipse Foundation (2000c). Eclipse Model-
ing - Eclipse Modeling Framework (EMF) project
site. http://www.eclipse.org/modeling/emf, retrieved:
2008/13/03.

The Eclipse Foundation (2000d). Eclipse Mod-
eling - Model Development Tools (MDT)
project site, http://www.eclipse.org/MDT.
http://www.eclipse.org/modeling/mdt, retrieved:
2008/13/03.

van Solingen, R. (2004). State of the practice in European
embedded software engineering. InMOOSE seminar,
Oulu, Finland.

FROM UML TO ANSI-C - An Eclipse-based Code Generation Framework

19

