
VERIFICATION OF SCENARIOS USING THE COMMON
CRITERIA

Atsushi Ohnishi and Hiroya Itoga
Department of Computer Science, Ristumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, Japan

Keywords: Scenario analysis, security requirements elicitation.

Abstract: Software is required to comply with the laws and standards of software security. However, stakeholders
with less concern regarding security can neither describe the behaviour of the system with regard to security
nor validate the system’s behaviour when the security function conflicts with usability. Scenarios or use-
case specifications are common in requirements elicitation and are useful to analyze the usability of the
system from a behavioural point of view. In this paper, the authors propose both (1) a scenario language
based on a simple case grammar and (2) a method to verify a scenario with rules based on security
evaluation criteria.

1 INTRODUCTION

Scenarios are important in software development
(Cockburn, 2001), particularly in requirements
engineering (Alexander and Maiden, 2004), since
they provide concrete system description (Sutcliffe
et al., 1998), (Weidenhaupt, 1998). Moreover
scenarios are useful in defining system behaviors
done by system developers and validating the
requirements undertaken altogether with customers
(Carroll, 2000). In many cases, scenarios become
foundation of system development. Incorrect
scenarios will lead to negative impact on system
development process in overall. However, scenarios
are informal and it is difficult to verify the
correctness of scenarios. The errors in incorrect
scenarios may include:

1. Vague representations,
2. Lack of necessary events,
3. Extra events,
4. Wrong sequence among events.

The authors have developed a scenario language
for describing scenarios in which simple action
traces are embellished to include typed frames based
on a simple case grammar (Fillmore, 1968) of
actions and to describe the sequence among events
(Zhang and Ohnishi, 2004). Since this language is a
controlled language, the vagueness of the scenario
written using this language can be reduced (Ohnishi,
1996). Furthermore, the scenario created with this

language can be transformed into internal
representation. In the transformation, both lack of
cases and illegal usage of noun types can be detected,
and concrete words will be assigned to pronouns and
omitted indispensable cases (Ohnishi, 1996). As a
result, the scenario with this language can avoid
errors typed 1 previously mentioned.

Furthermore, software security requirements
affect the whole behavior of the software system and
not only parts of the system. Most stakeholders may
not be software security professionals. Almost all
users and clients of the system will have no
knowledge about software security. However, they
still feel that it is important to comply with the laws
and standards for information systems and software
security.

Therefore, they may suggest requirements to
comply with such standards although they may not
be able to envision the behavior of the system once
these suggestions are incorporated. Consequently, it
is necessary for them to leave validation of
requirements about their business rules to developers
who do not have knowledge about the business rules.

Although developers have knowledge about
software security, this is usually limited to general
knowledge. They cannot decide who to apply the
techniques of software security to specific business
rules. If the system satisfies the laws and the
standards, the users may find that the behavior
differs from that initially envisioned after the
completion of development.

5
Ohnishi A. and Itoga H. (2008).
VERIFICATION OF SCENARIOS USING THE COMMON CRITERIA.
In Proceedings of the Third International Conference on Software and Data Technologies - SE/GSDCA/MUSE, pages 5-11
DOI: 10.5220/0001873900050011
Copyright c© SciTePress

Behaviors related to software security often
conflict with other requirements, such as usability,
cost and performance. Therefore, the developers
cannot include all functional and non-functional
requirements regarding software security in the
software requirements specification.

There are a number of reasons why it is necessary
to focus on elicitation of security and usability
requirements. The requirements regarding usability
will conflict with security requirements. The
remaining requirements, such as cost or performance
requirements, can be resolved by increasing other
resources.

We focus on the verification method of scenarios
with rules (Toyama and Ohnishi, 2005) and
customize the rules to satisfy the software security
common criteria (ISO/IEC 15408, 2005).

2 SCENARIO LANGUAGE

2.1 Outline

Our scenario language has been already introduced
in several papers such as in (Zhang and Ohnishi,
2004), (Ohnishi and Potts, 2001). However, in this
paper, a brief description of this language will be
given for convenience.

A scenario can be regarded as a sequence of
events. Events are behaviors employed by users or
systems for accomplishing their goals. We assume
that each event has just one verb, and that each verb
has its own case structure. The scenario language
has been developed based on this concept. Verbs and
their own case structures depend on problem
domains such as elevator control (Ohnishi and Potts,
2001), PC chair’s job (Barish, 1997) and train ticket
reservation (Railway Information System, 2001), but
the roles of cases are independent of problem
domains. The roles include agent, object, recipient,
instrument, and source, etc (Fillmore, 1968),
(Ohnishi and Potts, 2001).

We provide Requirements Frames (Ohnishi,
1996) in which verbs and their own case structures
are specified. This frame depends on problem
domains. Each action has its case structure, and each
event can be transformed into internal representation
based on this frame. In the transformation, concrete
words will be assigned to pronouns and omitted
indispensable cases. With Requirements Frame, we
can detect both the lack of cases and the illegal
usage of noun types (Ohnishi, 1996).

We assume four kinds of time sequences among
events: 1) sequence, 2) selection, 3) iteration, and 4)

parallelism. Actually most events are sequential
events. Our scenario language defines the semantic
of verbs with their case structure. For example, data
flow verb has source, goal, agent, and instrument
cases. Since such case structure can define the
abstraction level, scenario provided using our
scenario language becomes the almost same level of
the abstraction.

2.2 Scenario Example

We consider a scenario of train ticket reservation in
a railway company. Figure 1 shows a scenario of
customer’s purchasing a ticket of express train at a
service center. This scenario is written with our
scenario language based on a video that records
behaviors of both a user and a staff at one particular
service center.
[Scenario title: A customer purchases a train ticket of
reservation seat]
[Viewpoints: Staff, customer]
[Pre-condition: the customer has enough money to buy
a ticket & has not a ticket & has not reserved a seat]
[Post-condition: the customer will get a ticket &
reserved a seat]
1. A staff asks a customer leaving station and
destination as customer’s request.
2. He sends the customer’s request to reservation center
with a terminal.
3. He retrieves available trains with the request.
4. He informs the customer of a list of available trains.
5. The customer selects a train that he/she will get.
6. The staff retrieves available seats of the train.
7. He shows a list of available seats of the train.
8. The customer selects a seat of the train.
9. If (there exists a seat selected by the customer) then
the staff reserves the seat with the terminal.
10. He gets a permission to issue a ticket of the seat.
11. He receives money for the ticket from the customer.
12. He gives the ticket to the customer.

Figure 1: Scenario example.

A title of this scenario is given at the first two
lines in Fig.1. Viewpoints of considered scenario are
specified at the third line. In this paper, viewpoints
mean active objects such as human or system
appearing in the scenario. There exist two
viewpoints, namely staff and customer. The order of
specified viewpoints means the priority. In this
example, the first featured object is staff and the
second one is customer. In such a case, the former
becomes the subject of an event.

In addition, pre-condition specifies a condition
that satisfies at the start of the scenario. Post-
condition specifies a condition that satisfies at the

ICSOFT 2008 - International Conference on Software and Data Technologies

6

end of the scenario.
In this scenario, most events are sequential,

except one selective event (the 9th event). Selection
can be expressed with if-then syntax like program
languages. Actually, event number is for reader’s
convenience and not necessary.

3 VERIFICATION OF
SCENARIOS

When a scenario is described, necessary events may
be missing, unnecessary events may be mixed or
time sequence among events may be inaccurate.
These errors may have a negative impact on system
development; therefore, it is necessary to detect
these errors. The errors, also employed as
correctness verification items, of scenarios include:

1. Lack of necessary events
2. Extra events
3. Wrong time sequence among events

We can check whether an event is lacking, being
extra one or being sufficient one by comparing its
correct occurrence times with the times that it
occurred in the scenario. Similarly, we can check
whether the time sequence among events is wrong
by comparing the correct time sequence with the
time sequence described in the scenario.

We propose a method to verify the correctness of
scenarios by using rules to detect the errors in
scenarios. We assume that a rule is a description of
the correct occurrence times of an event and/or the
correct time sequence among events, which the
scenario ought to satisfy. One scenario may be
verified with several rules.

3.1 Rule

Rule is composed of the description of rule's event
and the description of event's occurrence times
and/or time sequence among events. In this sense,
our rules just specify the occurrence of events and/or
the sequence of events. If the abstraction level of
events of rules becomes high, the rules can be
applied to scenarios of several different domains.

3.1.1 Events in Rule

In a rule, there are one or more events, whose
occurrence times and/or time sequences are
specified. When a scenario is verified with a rule,
the rule's events can correspond to the scenario's
events. By finding the corresponding events in the

scenario, and by checking the occurrence times
and/or the time sequence of these events, one
scenario can be verified.

 As a result, it is necessary to get the
corresponding relation between the rule's events and
the scenario's events. For this reason, the rule's
events are also described based on Requirements
Frames, and can also be transformed into the internal
representation. If the rule's event and the scenario's
event have the same internal representation, then
they are deemed as corresponding events.

In order to improve the verification effect, it is
not sufficient that the corresponding relation
between the rule's event and the scenario's event is 1
to 1 ratio. It is expected that a rule's event can
correspond to several scenario's events. As a result,
the occurrence times and/or the time sequence of
these scenario's events can be checked with one rule.
In such a case, the rule's event has an abstract
representation, and the corresponding scenario's
events have several concrete representations.

For the above reason, we permit the abstract
description of rule's event. An abstract event may be
transformed into several concrete events, when
finding its corresponding events in the scenario. At
this time, the corresponding relation between the
rule's event and the scenario's event is 1 to many.
There are two kinds of abstract events in the rule.

1. Some indispensable cases are omitted in the
event sentence.

2. There include "something," "someone," "same
thing," "same one," etc. in the event sentence.

In the first kind of abstract events, the omitted
cases fit any noun. This kind of abstract events will
be transformed into concrete events by substituting
concrete nouns for omitted cases, when finding its
corresponding events in observed scenario. For
example, a rule's event "system feedbacks to user"
can be transformed into an internal representation.

This event can correspond to any scenario's event
whose action is "feedback, etc.", agent case is
"system", and recipient case is "user". In the second
kind of abstract events, "something" / "someone" is
similar to the omitted case in the first kind of
abstract events, and fit anything / anyone. The
reason of dividing abstract events into two kinds
should be explained. We assume that there is a rule
that describes the time sequence among events.
Under this rule there exist two separate events and
under these two events there exist a case A and a
case B. We want to specify that case A and case B
can have any content but they have to be the same
content. If we simply omit case A and case B in the

VERIFICATION OF SCENARIOS USING THE COMMON CRITERIA

7

rule description, it cannot be warranted that case A
and case B have the same content. By specifying
"something" / "someone" for case A, "same thing" /
"same one" for case B, case A and case B can have
any content, and they are the same content.

In the second kind of abstract events, "same
thing" / "same one" fits the same noun with
"something" / "someone" that appears in the same
rule. This kind of abstract events will be transformed
into concrete events by substituting concrete nouns
for "something" / "someone" / "same thing" / "same
one", etc. when finding its corresponding events in
the scenario.

3.1.2 Occurrence Times of an Event

The correct occurrence times of an event, which the
scenario ought to satisfy, can be specified as a rule.
By comparing the correct occurrence times with the
times that this event occurred in the scenario,
whether this event is lack of or excess of occurrence
can be checked. The occurrence times of an event
are described based on regular expression as follows.

1. E: event E occurs just one time.
2. E+: event E occurs one or more times.
3. E?: event E occurs one time or does not occur.
4. E!: event E never occurs.
5. E{m}: event E occurs m times.
6. E{m,}: event E occurs m or more times.
7. E{,n}: event E occurs n or less times.
8. E{m,n}: the occurrence times of event E is from

m to n.

We adopted the syntax of regular expression and
similar its semantics.

3.1.3 Time Sequence Among Events

The correct time sequence among events that
scenario ought to satisfy can be specified as rules.
By comparing the correct time sequence with the
time sequence described in the scenario, time
sequence among events can be checked. According
to the time sequence in the scenario described in
section 2.1, we assume the following rules.

1. Before/After E1, E2: Before/After event E1
occurs, event E2 should occur.

2. If (condition) (E1, E2): Event E1 and event E2
occur selectively. If the condition is true, event
E1 occurs. If the condition is false, event E2
occurs.

3. Do (E1,E2,...) until(condition): Until the
condition becomes true, event E1, E2, ... occur
iteratively.

4. AND(E1,E2,...): All of the events E1, E2, and
others parallel occur.

5. OR(E1,E2,...): One of the events E1, E2, ... or
more parallel occurs.

6. XOR(E1,E2,...): Just one of the events E1,
E2, ... occurs.

As previously described, when a scenario is
verified with a rule that includes the abstract event,
it is possible that an abstract event corresponds to
several scenarios' events. In this case, it is necessary
to check the time sequence of every corresponding
event in the scenario and the results should be shown
one by one.

3.2 Scenario-checking with Rule

Our scenario-checking procedure consists of two
phases. The first phase is selection of applicable
rules from rule DB. We specify both (1) pre-
conditions and post-conditions and (2) viewpoints in
each of the rules. When the conditions and
viewpoints of a rule are much the same as those of a
given scenario, the rule is selected for checking the
scenario.

The second phase is analysis of rules and
checking the consistency between a rule and the
scenario as described in 3.1. The result will be
passed to a checking-system user. The scenario
checking can be achieved by automatically checking
whether the scenario satisfies the rules, through the
internal representation of scenario and the internal
representations of rules.

Initialize a counter (counter=0).
Find the scenario's event that corresponds to the rule's
event
while (the corresponding event in the scenario will be
found)

do
 counter=counter+1

 Show the corresponding event and its occurrence
condition to user.

 Find the next scenario's event that corresponds to the
rule's event.

od
Compare the occurrence times specified in the rule with
the counter, and show the result.

Figure 2: Checking procedure of the occurrence of events.

We firstly find events in a scenario each of which
corresponds to an event in a rule as described in
3.1.1. When a scenario is checked with a rule, the
occurrence times and/or the time sequence of
corresponding events in the scenario will be checked.

ICSOFT 2008 - International Conference on Software and Data Technologies

8

We provide two checking procedures. One is for
checking the occurrence time and the other is for
checking the time sequence. Figure 2 shows outline
of checking procedure for the occurrence time of an
event and Figure 3 shows outline of checking
procedure for the time sequence between events E1
and E2.

Find the scenario's event that corresponds to E1 from
the beginning of the scenario.
if (the corresponding event of E1 not be found)
 then show this error, and the checking ends.
 else do

 Show the corresponding event and its occurrence
condition.

 Find an event that corresponds to E2 and satisfies
the time sequence

 if (the corresponding event of E2 not be found)
 then show the result that the scenario does not

satisfy the rule
 else do

 Show the corresponding event and its
occurrence condition.

 Find the next scenario's event that
corresponds to E2 and satisfies the time
sequence.

 until (the corresponding event of E2 not be
found)
 fi
 Find the next scenario's event that corresponds to
E1.
 until (the corresponding event of E1 not be found)
fi

Figure 3: Checking procedure of the sequence of events.

3.3 Evaluation

We have developed a prototype system based on the
method. There exist 35 errors in 15 scenarios. These
35 errors can be classified into three categories,
namely (1) wrong sequence of events, (2) lack of
events, and (3) extra events. The number of errors
grouped into the above categories are 16, 8 and 11,
respectively. We could detect part of these errors
with our method shown in Table 1.

The detection ratio is 63%. The reason why our
method seems to be weak for detecting extra events
is that it is very difficult to predict extra events and
make rules for them in advance. On contrast, it is not
so difficult to predict indispensable events and
correct sequence of events and make rules for them
in advance. Another reason why our method is
strong for detecting wrong sequence of events and
lack of events is that rules for the occurrence time of
events are effective to detect lack of events and rules
for the sequence of events are effective to detect

wrong sequence of events. To improve the detection
ratio, we have to introduce another type of rules for
detecting extra events.

The describers can easily correct the detected
errors. Since scenario writers can determine the
abstraction level of scenarios, the number of events
may differ depending on the scenario writers. Causes
of undetected errors related to both lack of events
and extra events are misunderstandings of the
reservation jobs.

Table 1: Detected errors in scenario.

 The
number
of errors

The number of
detected errors

Wrong
sequence
of events

16 14

Lack of events 8 6
Extra events 11 2

Total 35 22

3.4 Rules Based on Common Criteria

7. Class FIA: Identification and authentication

7.1 Authentication failures (FIA_AFL) require
that the system be able to terminate the session
establishment process after a specified number of
unsuccessful user authentication attempts. It also
requires that, after termination of the session
establishment process, the system be able to
disable the user account or the point of entry
from which the attempts were made until an
administrator-defined condition occurs.

FIA_AFL.1.1.
The security function shall detect when

[selection: [assignment: positive integer
number], an administrator configurable positive
integer within [assignment: range of acceptable
values]] unsuccessful authentication attempts
occur related to [assignment: list of
authentication events].

FIA_AFL.1.2.
When the defined number of unsuccessful

authentication attempts has been met or
surpassed, the security function shall
[assignment: list of actions].

Figure 4: An excerpt of security evaluation criteria.

VERIFICATION OF SCENARIOS USING THE COMMON CRITERIA

9

[Authentication failures][system, user]
{
The system requests the user for a password.
The system receives the password from the user.
The system authenticates the user via the
password
if (unsuccessful authentication attempts meet or
exceeds 3 times) then
The system switches to “Invalidate ID”.
fi
}

Figure 5: An example of a scenario.

The security evaluation criteria suite used in this
paper is ISO/IEC 15408 Evaluation Criteria for IT
Security (ISO/IEC 15408, 2005). The evaluation
criteria suite is useful to verify scenarios because
some of them are easily represented as rules. We can
detect scenarios which do not satisfy rules based on
the security evaluation criteria.

We can verify the scenario shown in Fig. 5 with
rules shown in Fig. 4 and confirm the scenario
satisfies the rules.

If the authentication event occurs more than
three times, the verifier can detect the unsuccessful
status and also detect the switching to “invalidate
ID.” These results will be provided to a user and he
will judge the correctness of the scenario.

4 DISCUSSION

ISO/IEC 15408 is a most commonly used security
evaluation criteria suite and it has descriptions of
functional requirements classified according to
purpose and function of IT system to be developed.
The suite also has descriptions of simple behaviors
to meet the functional requirements.

In the security evaluation criteria suite, there are
68 families of functional requirements into 11
components, such as encryption, authentication, etc.
In this paper, we focus mainly on usability, and
consider 12 functional requirements families and
other related families, because these families can be
easily represented as rules for the verification.

The remaining requirements families are for
quality of function or evaluation of the functions
themselves, and so they do not affect the behaviors
that can be seen by the users. The remaining families
are difficult to transform rules. This point is a major
problem of the proposed research. Actually, we can
represent 23 rules for security requirements of the
security evaluation criteria, while 44 security

requirements of the criteria cannot be represented as
rules.

In this paper, we consider “7.1 Authentication
failures” and show the verification process of the
scenario with rules.

The rules must be written by security
professionals to detect wrong scenarios which
involve incorrect security behavior that causes a
critical vulnerability in the system. The professionals
can rewrite the scenario to meet the security
evaluation criteria into scenario easily.

Some criteria are not suitable to represent as rules
and scenarios cannot be verified with these points of
view. To solve this problem is left as a future work.

5 RELATED WORKS

Araujo and Whittle et al. proposed an analysis
method in their scenario description process (Araujo,
Whittle and Kim, 2004) (Whittle and Araujo, 2004).
This method focuses on generation of state machines
by synthesizing scenarios and validating their
correctness. This method is very useful for
requirements analysis and the design process after
requirements elicitation. Instead, our method focuses
on validation in the requirements elicitation phase
and finding the conflicts of requirements.

Sindre and Opdahl proposed Misuse Cases
(Sindre and Opdahl, 2005) and McDermott and Fox
proposed Abuse Cases (McDermott and Fox, 1999)
for security requirements elicitation. These methods
are useful for brainstorming or discussion by
clarifying the threats. However, our method uses the
security evaluation criteria and focuses on the
comprehensive elicitation of security requirements.

SIREN is a security requirements management
method that focuses on security evaluation criteria or
common criteria (Toval et al., 2002), but this method
focuses on reuse of requirements specifications
regarding security requirements and they did not
mention the behavior of the security requirements
functions.

Sutcliffe et al. propose a verification method of
scenarios based on validation-frame (Sutcliffe et al.,
1998). This frame consists of situation part and
requirements part. In situation part, pattern of events
and actions are defined. In requirements one, some
generic requirements are needed to handle each of
these patterns. Using validation-frame,
crosschecking between scenario and requirements is
possible. Our approach is similar, but we enable to
check (1) wrong sequence of events and (2) the
number of occurrence of events. On contrast,

ICSOFT 2008 - International Conference on Software and Data Technologies

10

validation-frame does not check them.

6 CONCLUSIONS

The authors proposed a scenario checking method
with rules based on the security evaluation criteria.
We can specify the occurrence times of events
and/or the time sequence among events as rules.
Both scenario and rules can be transformed into the
internal representation so that we can check scenario
with rules and evaluate the correctness of one
particular observed scenario.
 The proposed method was demonstrated by
the example and was evaluated. The evaluation
results show that errors (the lack of events, extra
events, the wrong sequence among events, and
wrong behaviors against the security common
criteria) in scenario can be effectively detected by
checking the scenario with rules. By using this
correctness checking method, we can get a scenario
that satisfies security common criteria more
effectively in system development.

ACKNOWLEDGEMENTS

The authors thank to Mr. Tatsuya Toyama and Mr.
Kenta Nishiyuki for their contributions to the
research.

REFERENCES

Alexander, I. F., and Maiden, N., 2004. “Scenarios,
Stories, Use Cases – Through the Systems
Development Life-Cycle”, John Wiley & Sons.

Barish, R, 1997. ACM Conference Committee Job
Description, Conference Manual, Section No. 6.1.1,
http://www.acm.org/sig_volunteer_info/conference_m
anual/6-1-1PC.HTM.

Carroll, J.M., 2000. “Making Use: Scenario-based Design
of Human Computer Interactions”, MIT Press.

Cockburn, A., 2001. “Writing Effective Use Cases”,
Addison Wesley, USA.

Fillmore, C. J., 1968. “The Case for Case”, Universals in
Linguistic Theory, ed. Bach & Harms, Holt, Rinehart
and Winston Publishing, Chicago.

“IEEE Std. 830-1998, 1998.” IEEE Recommended
Practice for Software Requirements Specifications.

“ISO/IEC 15408 common criteria, 2005.”
McDermott, J. and Fox, C., 1999. “Using Abuse Case

Models for Security Requirements Analysis”,
Proceedings of the 15th IEEE Annual Computer

Security Applications Conference (ACSAC’99), pp.
55-65.

Ohnishi, A., 1996. “Software requirements specification
database based on requirements frame model”,
Proceedings of the Second IEEE International
Conference on Requirements Engineering (ICRE’96),
pp. 221-228.

Ohnishi, A., Potts, C. 2001. Grounding Scenarios in
Frame-Based Action Semantics, Proc. of 7th
International Workshop on Requirements Engineering:
Foundation of Software Quality (REFSQ’01),
Interlaken, Switzerland, June 4-5, pp.177-182.

Railway Information System Co., Ltd., 2001. JR System,
http://www.jrs.co.jp/keiki/en/index_main.html.

Schneier, B., 2001. Secrets & Lies Digital Security in a
Networked World, John Wiley & Sons.

Sindre, G. and Opdahl, A. L., 2005. “Eliciting security
requirements with misuse cases,” Requirements
Engineering, Vol. 10, pp. 34-44.

Sutcliffe, A. G., Maiden, N. A. M., Minocha S., Manuel
D., 1998. Supporting Scenario-Based Requirements
Engineering, IEEE Trans. Software Engineering,
Vol.24, No.12, pp.1072-1088.

Toval, A., Nicolaus, J. Moros, B. and Gracia, F., 2002.
Requirements Reuse for Improving Information
Systems Security: A Practitioner’s Approach,
Requirements Engineering, Vol. 6, No. 4, pp. 205-219.

Toyama, T., Ohnishi, A., 2005. Rule-based Verification of
Scenarios with Pre-conditions and Post-conditions,
Proc. Of the 13th IEEE International Conference on
Requirements Engineering (RE’05), Paris, France,
pp.319-328.

Weidenhaupt, K., Pohl, K., Jarke, M., Haumer, P., 1998.
Scenarios in System Development: Current Practice,
IEEE Software, Vol.15, No.2, pp.34-45.

Zhang, H. and Ohnishi, A., 2004. “Transformation
between Scenarios from Different Viewpoints”, IEICE
Transactions on Information and Systems, Vol. E87-
D, No. 4, pp. 801-810.

VERIFICATION OF SCENARIOS USING THE COMMON CRITERIA

11

