
SOFTWARE RE-STRUCTURING 
An Architecture-Based Tool 

Violeta Bozhikova, Mariana Stoeva, Anatoly Antonov and Vladimir Nikolov 
Technical University, Str.“Studentska” No1, Varna, Bulgaria 

Keywords: Software re-structuring, software decomposition, program understanding, software clustering algorithms.  

Abstract: The practice shows that many software systems have been evolving for many years and are now large and 
complex. Because the structure of these systems is usually not well documented, great research effort is 
needed to find appropriate abstractions of their structure, that we can simplify their maintenance, evolution 
and adaptation. A variety of techniques and tools are developed trying to effectively solve this problem.  In 
this paper an Architecture-Based Framework for software re-structuring is discussed. Next, how this 
framework is implemented in an ever evolving and user-driven tool that can effectively support the software 
re-structuring process is commented. 

1 INTRODUCTION 

Since many software systems are now large, 
complex and poorly documented appropriate 
abstractions of their structure are needed to simplify 
program understanding and software re-structuring 
(D. Doval et al., 1999). A lot of techniques and tools 
are now developed to effectively support software 
architecture decomposition than facilitating software 
maintenance, software evolution and re-engineering.  

Since software decomposition is known to be 
NP-hard, obtaining a good partition by exhaustive 
exploration of the search space is unlikely. That is 
why the researchers focused on using heuristic 
search techniques (B. S. Mitchell et al., 2002) to find 
“good enough” solutions quickly.  

A lot of software clustering approaches can be 
found in the reverse engineering literature, each one 
using a different algorithm to identify clusters. 
Cluster analysis has been used in many disciplines to 
support grouping of similar objects (highly 
dependent objects) of a system. The resulting groups 
are called clusters.  

With Formal Concept Analysis (FCA) we can 
identify similarities among a set of program objects 
based on their attributes. Using Program Slicing we 
can locate within the source code that objects that 
use common data items. 

We have developed an architecture-based 
framework that integrates a group of heuristic 
techniques to solve this problem. A tool is developed 

(Божикова В.Т, 2001) that implements this 
framework and can be used to effectively support 
software re-structuring process. The newer version 
of this evolving tool (V.Bozhikova et al., 2007) is 
more interactive and flexible, enabling to better 
manage the re-structuring process. We can choose 
appropriate analysis technique; we can enter weights 
of components; we can change the restrictive 
conditions. In the paper, we briefly describe the 
framework and show how this framework is 
implemented in a software re-structuring tool. Using 
such tools we hope effectively extend the usable life 
of a legacy application recovering or re-organizing 
its structure. 

2 ARCHITECTURE 
DECOMPOSITION 

The problem of how to re-structure a software 
system can be seen as an architecture decomposition 
problem. Software architecture defines the 
components of the software system and embodies 
information (L. Bass et al., 1998), about how the 
components interact with each other. Software 
architecture is a collection of different structures 
(module structure, process structure, conceptual 
structure, uses structure, call structure, class 
structure etc.), different kind of components 
(modules, processes, procedures, objects…) and 

269
Bozhikova V., Stoeva M., Antonov A. and Nikolov V. (2008).
SOFTWARE RE-STRUCTURING - An Architecture-Based Tool.
In Proceedings of the Third International Conference on Software and Data Technologies - SE/GSDCA/MUSE, pages 269-273
DOI: 10.5220/0001873402690273
Copyright c© SciTePress



 

relationships among the components (calls, 
synchronization relations, relation type inherits-
from…), more than one kind of context 
(development time, runtime). Decomposition is one 
of the main operations in the software architecture 
theory. This operation is used to separate the 
system’s structure or a large system’s component 
into more, smaller ones sub-components. The result 
of this operation is a higher-level software structure.   

3 ARCHITECTURE-BASED 
FRAMEWORK (ABFSR) 

We have developed an architecture-based clustering 
framework, called ABFSR that can be used to come 
to a solution of the early defined problem. Central to 
ABFSR are the architectural structures.  

Some notions in the architecture-based 
framework described below are adopted from 
Symphony (A. van Deursen et al., 2004). Like 
Symphony the process of ABFSR contains 2 stages. 
Let us describe briefly this process:  

1. Decomposition Design 
2. Decomposition Performance 

During the first stage:  
• Target structure is selected;  
• Source structure is defined;  
• Mapping rules are defined; 
• Evaluation techniques and reference 

structures are defined. 
The source structure can be extracted from 

software artefacts (A. van Deursen et al., 2004), 
such as source code, build files, configuration 
information, documentation or traces. The target 
structure is the structure that we hope to solve the 
problem. The mapping rules define how the target 
structure is created from the source structure and 
depends on the analysis method used.  

During the second stage the mapping rules are 
applied to source structure to obtain the target 
structure, earlier defined (during the reconstruction 
design). This stage has only 2 steps: 

• Knowledge extraction 
• Information interpretation 

During the knowledge extraction step, the 
mapping rules, defined during reconstruction design 
are applied to the source structure and a target 
structure is obtained. During the next step the 
created target structure is analyzed and evaluated. 
Comparison with a reference structure is made. 
Results from this stage lead to a refined 

decomposition design, to choose a new analysis 
method or to choose a new mapping rule to 
eventually come to a satisfactory solution of the 
problem. 

4 A TOOL FOR SOFTWARE  
RE-STRUCTURING 

It is important to note that ABFSR has been 
practically in use since 2001. The re-structuring tool 
described in (Божикова et.al., 2001) is the first tool 
version and the first implementation of this 
methodology. Some advantages of the new version 
of the tool for software restructuring may be 
summarized as follows: 
a) It is more interactive enabling the user to better 
manage the re-structuring process. Figure 1 shows 
the main window. Users can specify the source 
structure as weighted oriented graph. 
b) It is more flexible, enabling the user to choose 
an appropriate analysis method and the appropriate 
algorithm that based on a particular analysis method. 
Figure 3 shows the window that appears when 
choosing a cluster analysis method. Figure 4 appears 
when a FCA method is chosen. 

Figure 1: The main window. 

When choosing a particular analysis method we 
can use different mapping rules (algorithms) to 
transform the source structure to a target structure. 
Mapping rules (i.e. algorithms) depend on the 
analysis method that is used. The tool enables the 
user to create the target structure using: a cluster 
analysis method (fig.2), FCA method and program 
slicing technique (fig.3). For each analysis method 
static relations between entities are taken as source 
viewpoint. Special external tools can be used to 

ICSOFT 2008 - International Conference on Software and Data Technologies

270



 

extract static information from software artefacts 
and to present this information graphically 
(Mancoridis et al., 2001). We start with inputting the 
source structure presented as a weighted oriented 
graph. Below the main window is presented (fig.1): 

The re-structuring process is supported through a 
set of heuristic algorithms. The task for finding the 
optimal solution to the software re-structuring 
problem is known to be NP-hard. That is why many 
researchers focused on using different heuristic 
techniques (Mancoridis, 2001) that find “good 
enough” solutions quickly. 
c) An improvement of the early included 
algorithms is realized in the tool. 

We aim at improving our algorithms 
permanently. The “Tabu-Search” clustering 
algorithm is (V.Bozhikova et.al, 2007) an 
improvement of an early developed descent-hill 
climbing algorithm for software clustering. It is 
based on weighted Module Dependence Graph – 
MDG=(X, U). The components of the source 
structure are modelled as the set of graph’s nodes 
(X, N=|X|), and the source code dependencies 
(inherit, call, instantiated) are modelled as the set of 
graph’s edges (U). The quality of the resulting target 
structure is evaluated through a quality function that 
measures the number “k” of the static dependences 
between the clusters (1): 

 

                                                                   (1) 
 
 

In the case, “k” is based on the “inter-
connectivity” - the solution with a lowest value of 
“k” would be the best solution to the problem. Let xi 
denote the node with an index i (i=1…N) and a 
weight of wi. Let “M” is the number of clusters in 
the target structure. The weight Wi (2) of each 
cluster “i” is the sum of the weights of all nodes in 
the cluster “i”. Wi must be less then W0, where W0 is 
a user-defined restrictive condition.  

 0iW W≤  (2) 

Figure 2.a shows the target structure that is a 
result of re-structuring the presented MDG in (Doval 
et al., 1999). We observe that our Tabu-Search 
algorithm produces a partition with a better quality - 
k=29, comparing the reference structure in figure 2-
b.  The result of applying the similarity measurement 
technique (Rainer Koschke et al., 2000) is also 
encouraging: the similarity between the two 
partitions is good.  

 

2.a) k=29                            2.b) k=32 

Figure 2: The target (a) and the reference (b) structures. 
Similarity ≈ 66%. 

Figure 3: Using a Cluster Analysis method. 

We have developed an approach that integrates 
FCA and Program Slicing and we show below 
(figure 4) the window visualizing the target 
structure.  The source structure includes the smallest 
architectural components – subprograms with their 
features (the data used by the component, i.e. global 
variables, constants and user-defined types). To find 
the target view, our algorithm groups subprograms 
having a common features, i.e. using a common set 
of global data elements. These groups of 
subprograms become candidates for modules, i.e.  
buildings blocks for larger architectural components, 
at the next higher architectural level.  

Figure 4: Using a FCA method. 

)1(min,
2
1

..1..1
∑∑
==

≠∀==
Mj

ij
Mi

jikk

1.. 1..

1 min,
2 ij

i M j M
k k i j

= =
= = ∀ ≠∑ ∑

SOFTWARE RE-STRUCTURING - An Architecture-Based Tool

271



 

Figure 5: The visualized target structure using Cluster 
Analysis Method  

We find it is not convenient to create fully 
automatic tools; we believe it is better to develop 
user-driven tools. Our tool offers an improved and 
more flexible user interface. To improve the final 
result we can visualize the source structure (figure 
1), three intermediate structures and the target 
structure (figures 2a, 4 and 5). We consider 
graphical visualizations an important aid to support 
the processes of program understanding and re-
structuring. 

5 EVALUATION TECHNIQUES 

Now that a lot of approaches to software re-
structuring exist, the validation of produced target 
structures is starting to interest the researchers. 
Recently, researchers have begun developing an 
infrastructure to evaluate clustering techniques, in a 
semi-formal way by proposing similarity 
measurements (Rainer Koschke et al., 2001), 
(Mancoridis et al., 2001), (B. S. Mitchell et al. 
2002). These measurements enable the results of 
clustering algorithms to be compared to each other, 
and preferably to be compared to reference structure 
agreed upon (“benchmark” standard). We emphasize 
that the reference structure need not be the optimal 
solution in a theoretical sense. Rather, it is a solution 
that is perceived as being “good enough”. 

There are a lot of similarity measurements for this 
purpose: Anquetil (Mancoridis et al., 2001) has 
published a similarity measurement technique, 
named “Precision and Recall”; Mojo has developed 
a technique that measures the distance between two 
decompositions of a software system by calculating 
the number of operations needed to transform a 
decomposition to an other; Tzerpos and Holt 
introduce also a distance quality measurement based 
on MoJo; Koschke and Eisenbarth (Rainer Koschke 
et al., 2000) have developed a framework for 
experimental evaluation of clustering techniques that 

we have used in our case study (figure 2).  We have 
evaluated our algorithm on several small size 
systems (where N≤20) with similar success to the 
one demonstrated in figure 2. In the future, we 
intend to conduct further validation of our technique 
using other systems. 

6 CONCLUSIONS 

It is widely known that more than 50% of the costs 
of a software system have to be attributed to 
maintenance. There is an urgent need for methods 
and tools which assist software understanding and 
software restructuring, reducing the maintenance 
costs. 

In the paper our Architecture-Based Framework 
(ABFST) for software re-structuring is briefly 
described. ABFST puts a strong emphasis on 
software architecture. We would like to point out 
that having a framework like ABFST can help 
practitioners by giving them guidance in performing 
an architecture re-structuring. In addition, ABFST 
can help researchers by providing a unified approach 
to re-structuring, with consistent terminology and a 
basis for improving, refining, quantifying, and 
comparing re-structuring processes.  

Next the paper describes our ever evolving tool as 
an implementation of ABFST and marks some new 
features. The paper demonstrates   how the source 
structure of a software system can be effectively re-
structured and understood using our tool (figure 2). 
In the future, we plan to conduct and document more 
intensive studies to demonstrate the effectiveness 
and the limitations we find in the tool version. We 
hope to further improve both its performance adding 
new heuristics and its visualization futures.  

ACKNOWLEDGEMENTS 

This work is supported by a project in Technical 
University of Varna, untitled “Software Intensive 
Systems Research”, with number 481 /2008. 

REFERENCES 

A. van Deursen, C. Hofmeister, R. Koschke, L. Moonen, 
and C. Riva. Symphony: View-driven software 
architecture reconstruction, Proceedings of the Fourth 
Working IEEE/IFIP Conference on Software 
Architecture, Washington, 2004. 

ICSOFT 2008 - International Conference on Software and Data Technologies

272



 

L. Bass, P. Clemens, R. Kazman, “Software architecture 
in practice”, Addison-Wesley Longman, 1998. 

Божикова В.Т., Карова М.Н., “Създаване, 
визуализация и операции на програмни 
структури”, Proceedings of the Int’l Scientific 
Conference on Energy and Information Systems and 
Technologies, Bitola, 2001, Vol.3., pp. 813-819. 

Mancoridis, Mitchell, “Comparing the Decompositions 
Produced by Software Clustering Algorithms using 
Similarity Measurements”, IEEE Proceedings of the 
2001 International Conference on Software 
Maintenance (ICSM'01). Italy, 2001, pp. 744 -753.  

Doval, Mancoridis, Mitchell. "Automatic Clustering of 
Software Systems using a Genetic Algorigthm", by In 
the IEEE Proceedings of the 1999 International 
Conference on Software Tools and Engineering 
Practice (STEP'99), Pittsburgh, PA, 1999. pp. 73-81 

Rainer Koschke and Thomas Eisenbath, “A Framework 
for experimental evaluation of clustering techniques”, 
International Workshop on Program Comprehension, 
2000. 

B. S. Mitchell, S. Mancoridis, M. Traverso. “Search Based 
Reverse Engineering” In ACM Proceedings of the 
2002 International Conference on Software 
Engineering and Knowledge Engineering (SEKE'02), 
Ischia, Italy, 2002. pp. 431-438.  

V. Bozhikova, M. Stoeva, “Applying Tabu-Search 
heuristic for software clustering problem”, 
ICEST’2007 - Proceedings of papers, Volume 2, pp 
861-864, Ohrid, Macedonia. 

SOFTWARE RE-STRUCTURING - An Architecture-Based Tool

273


