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Abstract: Research in software engineering data analysis has only recently incorporated computational intelligence 
methodologies. Among these approaches, genetic programming retains a remarkable position, facilitating 
symbolic regression tasks. In this paper, we demonstrate the effectiveness of the genetic programming 
paradigm, in two major software engineering duties, effort estimation and defect prediction. We examine 
data domains from both the commercial and the scientific sector, for each task. The proposed model is 
proved superior to past literature works. 

1 INTRODUCTION 

Among the software engineering management 
duties, the effort estimation and the assessment of 
the software quality are still considered challenging 
tasks. Undoubtedly, an enhancement in software 
effort estimation could affect dramatically the 
overall project cost. Accordingly, appropriate quality 
assessment can also result into proper resource 
allocation and avoidance of further expenditures. In 
the past, various parametric models, such as 
COCOMO (Boehm, 1980), have been used for 
software effort estimation. To address software 
quality, the development of code metrics has taken 
place, aiming to facilitate the diagnosis of error-
prone code (McCabe, 1976). Most of these models 
make use of past information, in an attempt to 
develop simple or complex mathematical 
expressions, usually in ad-hoc or exhaustive 
manners. On the other hand, the genetic 
programming paradigm (Koza, 1992), which has 
been around during the last decades, is applied in 
numerous domains, successfully addressing data 
mining and knowledge extraction tasks. The 
evolutionary search and the expression ability of the 
genetic programming have made this approach a 
popular research tool in symbolic regression 
problems. Consequently, this paradigm is expected 
to provide competitive results into the effort 
estimation and the prediction of error-prone code in 
software projects. In this paper, the genetic 
programming approach is applied into the two 

aforementioned software engineering tasks, effort 
estimation and defect prediction. Regarding effort 
estimation, we aim to provide symbolic regression, 
deriving accurate and small-sized expressions. For 
this, we examine datasets from both a commercial 
software domain, and a scientific one. In respect to 
prediction of error-prone code, the target is to 
produce discriminators between faulty and non-
faulty modules, in the form of if-then rules. These 
formulas should be relatively small and accurate. 
Here too, two domains are examined, one from the 
commercial sector, and a scientific one. The genetic 
programming system we used, adopts recent 
developments in respect of the operation rates and 
the use of the validation set. The paper is organized 
as follows. Next section describes the scientific 
background, presenting in short the characteristics of 
the examined software engineering tasks and the 
genetic programming principle. Section 3 describes 
the data domains and the GP system design. The 
results and a followed discussion are shown in 
Section 4. The paper ends with our conclusions and 
future directions in Section 5. 

2 BACKGROUND 

One of the principal factors affecting the software 
project cost is the labor cost. Effort estimation and 
defect prediction aim to effectively allocate 
personnel in tasks and assure the software quality, 
both helping at reducing the software project cost. 
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The software project effort estimation involves the 
definition of resources, the management of the 
development activities and the calculation of the 
estimation risk (Lum et al., 2003).  There are four 
types of effort estimation: historical analogy, 
experts’ decision, use of models and rules-of-thumb. 
Historical analogy is used when there are similar 
data available from the past and it involves 
comparison, using measures or data that has been 
observed in previous software works. Experts’ 
decision describes the estimates produced by a 
human expert based on what he has experienced 
from past projects. Use of models is estimating by 
mathematical or parametric cost models (which are 
derived usually statistically). Finally, rules-of-thumb 
are used for effort estimation, usually in the form of 
very simple mathematical equations. A data-mining 
task is therefore a historical analogy approach. 
Depending on the problem encountered, various data 
can be recorded for use. Two such domains are 
described in Table 1 and Table 2. On the other hand, 
aiming to enhance software quality and the resources 
allocation, various approaches of software code 
assessment have been developed, such as the static 
code metrics. These mostly come from the research 
of (McCabe, 1976) and (Halstead, 1977).  McCabe’s 
metrics are the cyclomatic complexity, the essential 
complexity, the design complexity and the number of 
lines of code.  Cyclomatic complexity, v(G), counts 
the number of linearly independent paths:  

v(G) = e – n +2 (1) 

where G is the module's flow-graph, e are the 
arcs in the flow-graph, and n are the nodes. The 
essential complexity, ev(G), measures the potential 
shrink of the flow-graph: 

ev(G)= v(G) – m (2) 

where m are the  sub-flow-graphs of G that are 
D-structured primes (Fenton and Pfleeger 1977). 
Design complexity, iv(G), is the cyclomatic 
complexity of a module's reduced flow-graph 
(McCabe, 1976). Lines of code are counted based on 
to McCabe's conventions. Halstead’s measures are 
classified into three groups: base measures, derived 
measures and measures related to lines of code. 
Table 4 summarizes the aforementioned measures.  
Other frameworks are often adopted for defect 
prediction, regarding special needs of a project, such 
as the Quality Improvement Paradigm (QIP) (Basili 
et al., 1994), in order to apply a systematic quality 
assurance, by reusing the experience. This 
framework involves software measurement and 
analysis from carefully designed experiments. The 

metrics selected from such an approach, are shown 
in Table 3. Genetic programming - GP (Koza, 1992) 
is an advance to the genetic algorithms paradigm. 
This paradigm enables symbolic regression, i.e. the 
search for complex solutions in the form of 
mathematical formulas. Further research extended 
this concept to calculate any kind of boolean or 
programming expression. Although widely used 
during the last two decades, the GP has only recently 
been applied into software engineering tasks, such as 
the evaluation of software project managers 
(Boetticher et al., 2006). In order to improve the 
search and expression ability, the function set that 
composes a GP desired solution is often traced with 
the aid of a grammar. Here, we apply grammar-
guided search for the two defect prediction tasks 
(e.g. classification problems), using a context-free 
grammar for the production of if-then hierarchical 
rules (Tsakonas and Dounias, 2002).  

3 SYSTEM DESIGN  

3.1 Domain Description 

The following detailed description of the datasets 
aims to denote the high variance in their 
composition (in terms of the features used), which 
could assist in generalising on the performance of 
our system. Regarding effort estimation, we first 
address the Desharnais domain. This is consisted of 
Canadian software house data for commercial 
projects (Desharnais, 1989). It contains 81 records. 
Table 1 summarizes the variables’ descriptions. 

Table 1: Desharnais data feature description. 

Variable Explanation 
TEM Team experience (in years) 
MNG Manager experience (in years) 
YER Year end 
LEN Length 
TRN System’s basic transactions 
ENT # entities in the system’s data model 
PTA Adjusted points 
ENV Envergure 
PTN Non-adjusted points 
LAN Language 
Person-months Effort in months (regression target)  

The NASA93 dataset consists of 93 NASA projects 
from different centres for projects taken place 
between 1971-1987. This software comes from the 
aerospace domain. There are 17 attributes that are all 
numeric: 15 attributes are the effort multipliers, one 
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is the Lines-of-Code (LOC) and one attribute is the 
actual development effort. The LOC variable has 
been estimated directly or computed beforehand, 
using function point analysis (Dreger 1989).  

Table 2: NASA93 data description. 

Variable Explanation 
rely Required software reliability 
data Data base size 
cplx Process complexity 
time Time constraint for CPU 
stor Main memory constraint 
virt Machine volatility 
turn Turnaround time 
acap Analysts capability 
aexp Application experience 
pcap Programmers capability 
vexp Virtual machine experience 
lexp Language experience 
modp Modern programming practices 
tool Use of software tools 
sced Schedule constraint 
ln(KSLOC) Software size lines-of-code 
ln(months) Effort in months (regression target) 

Table 3: Datatrieve data description – measurements 
according to QIP. 

Variable Explanation 
LOC60 Number of LOC of module m in version 6.0 
LOC61 Number of LOC of module m in version 

6.1. 
aLOC LOC added to module m in v.6.1 
dLOC LOC deleted from module m in v.6.0 
DBLK Number of different blocks module m 

between versions 6.0 and 6.1 
MRAT Rate of modification of module m, equals to 

(a ) /( 60 a )LOC dLOC LOC LOC+ +  
MKNW Team's knowledge on module m  
rLOC LOC of module m in v.6.0 reused in v.6.1 
Class 0 for non-faulty modules, 1 for the rest 

The task is to tune a new cost model, for a given 
background knowledge. Table 2 describes the 
dataset features. The Datatrieve data set follows the 
QIP approach and it contains 130 records (Morasca 
and Ruhe, 2000). This data is from the Datatrieve 
product, which was undergoing both adaptive and 
corrective maintenance. The objective of the data 
analysis is to examine whether it was possible to 
predict the faulty modules based on a set of 
measures that have been collected on the project. 
Table 3 summarizes the descriptions of the 
calculated features. The JM1 domain is consisted of 
10,885 records that contain measurements from 

NASA’s C modules of a real time predictive ground 
system that uses simulations to generate predictions.  

Table 4: NASA JM1 data description – McCabe and 
Halsted metrics. 

Variable Explanation 
mu1 number of unique operators 
mu2 number of unique operands 
N1 total occurrences of operators 
N2 total occurrences of operands 
N N =  N1 + N2  (length) 
mu mu =  mu1 + mu2 (vocabulary) 
P P = V = N   log2(mu) (volume)  
V* V* =  (2 + mu2')  log2(2 + mu2')  
L L = V * / N  (program length) 
D D = 1 / L (difficulty) 
L’ L’= 1 / D 
I I = L’ V’  (intelligence) 
E E =  V / L (effort to write program) 
T T = E / 18  
lco Halstead count of lines of code 
lcm Halstead count of lines of comments 
lcb Halstead count of blank lines 
lcc Halstead count of LOC and comments 
brc Branch count of the flow-graph 
LOC McCabe's lines of code 
v(G) v(G) = e – n +2 
ev(G) ev(G)= v(G) – m 
iv(G) iv(G)=v(G), module's reduced flow-graph 
class binary, whether the case had defects or not 

This data has been publicly available by NASA’s 
Metrics Data Program (MDP) (http://mdp. 
ivv.nasa.gov/). It has 22 input features and one 
binary output, whether the case had defects or not. 
Table 4 summarizes the feature descriptions. All 
these data are publicly available from the PROMISE 
reporitory (http:// promise.site.uottawa. 
ca/SERepository/). 

3.2 System Setup 

We normalized each data set linearly (i.e. using the 
min-max transformation) in the range [-1,1], in order 
to improve the search process. The genetic 
programming parameters are shown in Table 5. We 
applied 10-fold cross validation, having each time a 
10% of the data outside of the training procedure, to 
be checked as test set. A validation set is used to 
avoid overfitting to the training set. In order to 
promote a solution that carries a higher value in the 
training set, the candidate should either also have a 
higher value in the validation set or the absolute 
difference between validation fitness and training 
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fitness score should be smaller, the latter being a 
property empirically driven during our experiments, 
found to increase generalization strength. For the 
regression problems (effort estimation), as fitness 
measure we have used the mean magnitude relative 
error, MMRE, (eq. 3):  

1

0

ˆ100=
n

i i

i i

y yMMRE
n y

−

=

−∑  (3) 

Due to critics on using a single measure for 
evaluating models (Foss et al., 2003), as well as for 
comparison reasons, the measures (4)-(6) are also 
calculated: 
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In all above equations, iy  : actual value of case i, ˆiy  

: estimated value of case i, iy  : mean value of test set 
cases, n   : number of cases in test set, r  : value 
(range) for which the PRED function is calculated, 
usually being equal to 25 or 30. For the 
classification problems (defect prediction) we 
selected the fitness function as follows.  When the 
system classifies a case, the following situations 
may happen (Koza, 1992): tp: true positive, fp: false 
positive, tn: true negative and, fn: false negative, 
according to. Taking in respect these outcomes, we 
used the following measure as fitness function 
(Berlanga et al. 2005): 

support= tp tnpd TNRate
tp fn tn fp

⋅ = ⋅
+ +

 (7) 

As other measures have been proposed in 
literature (Menzies et al. 2007), they are also 
calculated in our experiments; these are the 
precision, the pf (probability of failure) and the 
accuracy: 

tpprec
fp tp

=
+

 (8) 

fppf
tn fp

=
+

 (9) 

tp tnaccuracy
tp tn fp fn

+
=

+ + +
 (10) 

Table 5: Genetic programming parameter setup. 

Parameter Value 
Population 9,000 individuals 

GP 
implementation 

Steady-state GP (regression 
problems) 
Steady-state grammar-guided GP 
(classification problems) 

Selection Tournament of 6 with elitist strategy 
Training  10-fold cross validation  
Crossover/ 
Mutation/ Copy 

Adaptive (Tsakonas and Dounias, 
2007) 

Maximum size 650 nodes 
Maximum 
generations 200 

4 RESULTS AND DISCUSSION 

In order to allow direct comparison between the 
proposed system and the past work, we selected to 
report our results, for each dataset, using the 
measures that past literature has adopted. Addressing 
the effort estimation task, we first examine the 
Desharnais domain. In Table 6, the results from our 
10-fold validation are presented together with test 
results from WEKA’s (http:// 
www.cs.waikato.ac.nz/~ml/weka/) linear 
regression system (10-fold validation) and the best 
model from the work in (Shepperd and Schofield, 
1997). The latter, previous work results are the only 
ones found in literature, concerning this data set. As 
it can be seen, our system maintains the highest 
values in all compared accuracy measures.  The 
following simple solution was derived in fold #1, it 
uses the adjusted points and the number of entities, 
and it achieved 100% PRED(25). 

( ) ( ) ( )0.1
N N N

personhours PTA ENT= − ⋅  (11) 

where ( ) N
⋅  denotes that the normalized 

values of the corresponding variables are used. 

Table 6: Results comparison for the Desharnais effort 
estimation domain. 

  RRSE RAE MMRE Pred(25) 
WEKA L-R 67.7 64.99 n/a n/a 
Shepperd n/a n/a 64  42 
This work 67.15 62.01 31.32 77.78 

The next domain to examine in regard of effort 
estimation is the NASA93 data set.  This problem has 
only been addressed in (Menzies et al., 2006). Table 
7 compares our 10-fold validation results to the best 
of the models reported in that work.  As it can be 
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seen, our model has the highest Pred(30) and a 
competitive MMRE, whilst the standard deviation 
remains the smallest.  

Table 7: Results comparison for the NASA93 effort 
estimation domain. 

 Pred(30) MMRE 
mean 

% 
sd% 

nasa93:center.2  83 22 38 
nasa93:project.Y 78 22 20 
nasa93:fg.g 65 32 39 
This work 85.78 23.25 17.31 
 
The following small solution that was derived in 

fold #2, uses only one feature (apart KSLOC), and it 
achieved 100% PRED(25). 

( )( ) ( )( ) ( )ln ln 0.2
NN N

months KSLOC cplx= + ⋅ (12) 

where ( )  
N

⋅  is the symbol for the normalized 
values of the corresponding variables, as previously. 

Regarding the defect prediction task, we first 
address the Datatrieve problem. The only past 
research where this data is examined is in (Morasca 
and Ruhe, 2000), using logistic regression and rough 
sets (leave-one-out cross validation). We have 
included the same measures for comparison reasons. 
Table 8 presents analytic results of our model. Table 
9 compares the three systems in terms of 
classification accuracy, precision and recall. As it 
can be seen, our system outperformed the previous 
two in terms of accuracy. Our GP system has shown 
more balanced results than the past models, since it 
achieves high precision rate and good recall rate 
whilst having the higher overall accuracy of all three 
systems. 

Table 8: Results in Datatrieve problem. 

GP Predicted 
non- 

faulty 

Predicted 
faulty 

Total 

Actual  
non-faulty 

90.0% 3.8% 93.8% 

Actual faulty 1.5% 4.6% 6.2% 
Total 91.5% 8.5% 100% 

One derived GP solution is shown in Figure 1, in 
prefix notation. This is the #1 fold best solution and 
it achieved 100% accuracy in the test set. As it can 
be seen, all the available features from Table 3 -
except LOC60- are used for making the 
classification. In  this formula,  CLS0 corresponds to 

non-faulty class and CLS1 to the faulty one. 

Table 9: Results comparison for the Datatrieve defect 
prediction domain. 

Precision Recall 
(pd) 

Accuracy

Logistic 
Regression

90.6% 21.3% 70.8%

Rough sets 50.0% 70.6% 93.8%
This work 75.0% 54.5% 94.6%

 
IF> MKNW 0.76 (IF< aLOC -0.45 (IF< 
LOC61 -0.35 CLS0 CLS1) CLS1) (IF= dLOC 
1.05 (IF> LOC61 0.53 CLS0 (IF< CLS1 -
0.12 CLS1 (IF= DBLK 1.06 CLS0 (IF= MRAT 
0.29 CLS0 CLS0)))) CLS0))  

Figure 1: Hierarchical rule tree for the Datatrieve domain. 

The next defect prediction domain to address is 
the NASA JM1 data set. This problem has been 
addressed previously only in (Menzies et al., 2004). 
Table 10 compares the 10-fold validation mean, with 
these literature results. As it can be seen, our system 
outperformed the previous model regarding pd 
(probability of detection). 

Table 10: Results comparison for the NASA JM1 defect 
prediction domain. 

 pd pf Precision Accuracy 
Menzies et 
al. 

25 18 n/a n/a 

This work 64.2 32.01 32.53 67.26 

The solution in Figure 2, presented here in prefix 
notation, derived during fold #10, and it has pd equal 
to 66.67%, pf equal to 32.2%, precision 33.1% and 
accuracy 67.58%. Here too in this formula, CLS0 
corresponds to non-faulty class and CLS1 to the 
faulty one. For the rest variables in this expression, 
the reader is referred to Table 4. 

5 CONCLUSIONS 

This work presented the application of the genetic 
programming for software engineering data analysis. 
The problems addressed were selected in respect of 
the data availability and the potential of applying 
historical analogy estimation. The genetic 
programming system incorporated recent advances 
in respect of the operator rates and the use of the 
validation set. Two tasks were designated aiming to 
contribute in software cost control and software 
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quality. The first task was to produce effort 
estimators using GP symbolic regression. The 
second task was to produce classification rules using 
grammar-guided GP for if-then rules. For each 
problem, two available datasets were examined. In 
the regression task of effort estimation, the system 
produced short and comprehensible mathematical 
expressions that outperformed previous models. In 
the classification task of defect prediction, the 
system produced the best-so-far or otherwise 
competitive results, while succeeding in deriving 
small hierarchical rule trees. Although the system 
has been proved capable of producing highly 
accurate and meaningful results for each case, this 
success is only domain dependent, e.g. it seems that 
due to the different dataset compositions, there is no 
ability to drive overall conclusions on each of the 
two tasks (effort estimation, defect prediction). 
Further research involves the application of other 
computational intelligent approach in these domains, 
such as neuro-fuzzy rule-based systems, as well as 
the application of genetic programming into other 
related software engineering issues. 

 
(IF= (% D 0.35) 0.01 CLS1 (IF> I -0.84 
(IF> I -0.84 (IF> LOC -0.98 CLS1 CLS0) 
(IF> LOC -0.98 CLS1 CLS0)) (IF> I -0.85 
CLS1 (IF< LBL -0.98 (IF> L -0.53 CLS0 
(IF> EVG -0.83 CLS1 (IF= (% D 0.35) 
0.01 CLS1 (IF> I -0.84 (IF> I -0.84 
(IF> LOC -0.98 CLS1 CLS0) (IF> LOC -
0.98 CLS1 CLS0)) (IF> I -0.85 CLS1 (IF< 
IVG 0.06 (IF> I -0.80 (IF> I -0.83 CLS1 
(IF= (% D 0.36) 0.01 CLS1 (IF> I -0.85 
CLS1 (IF> LOC -0.98 CLS1 CLS0)))) (IF> 
L -0.53 CLS0 (IF> I -0.87 CLS1 (IF> I -
0.85 CLS1 (IF> TON -0.82 CLS1 (IF> LOC 
-0.98 CLS1 CLS0)))))) CLS1)))))) 
CLS1)))) 

Figure 2: Hierarchical rule tree for the NASA JM1 
domain. 
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