
APPLICATION OF GENETIC PROGRAMMING IN SOFTWARE
ENGINEERING EMPIRICAL DATA MODELLING

Athanasios Tsakonas and Georgios Dounias
Department of Financial and Management Engineering, University of the Aegean, 31 Fostini St., Chios, Greece

Keywords: Genetic programming, software engineering, data mining, effort estimation, defect prediction.

Abstract: Research in software engineering data analysis has only recently incorporated computational intelligence
methodologies. Among these approaches, genetic programming retains a remarkable position, facilitating
symbolic regression tasks. In this paper, we demonstrate the effectiveness of the genetic programming
paradigm, in two major software engineering duties, effort estimation and defect prediction. We examine
data domains from both the commercial and the scientific sector, for each task. The proposed model is
proved superior to past literature works.

1 INTRODUCTION

Among the software engineering management
duties, the effort estimation and the assessment of
the software quality are still considered challenging
tasks. Undoubtedly, an enhancement in software
effort estimation could affect dramatically the
overall project cost. Accordingly, appropriate quality
assessment can also result into proper resource
allocation and avoidance of further expenditures. In
the past, various parametric models, such as
COCOMO (Boehm, 1980), have been used for
software effort estimation. To address software
quality, the development of code metrics has taken
place, aiming to facilitate the diagnosis of error-
prone code (McCabe, 1976). Most of these models
make use of past information, in an attempt to
develop simple or complex mathematical
expressions, usually in ad-hoc or exhaustive
manners. On the other hand, the genetic
programming paradigm (Koza, 1992), which has
been around during the last decades, is applied in
numerous domains, successfully addressing data
mining and knowledge extraction tasks. The
evolutionary search and the expression ability of the
genetic programming have made this approach a
popular research tool in symbolic regression
problems. Consequently, this paradigm is expected
to provide competitive results into the effort
estimation and the prediction of error-prone code in
software projects. In this paper, the genetic
programming approach is applied into the two

aforementioned software engineering tasks, effort
estimation and defect prediction. Regarding effort
estimation, we aim to provide symbolic regression,
deriving accurate and small-sized expressions. For
this, we examine datasets from both a commercial
software domain, and a scientific one. In respect to
prediction of error-prone code, the target is to
produce discriminators between faulty and non-
faulty modules, in the form of if-then rules. These
formulas should be relatively small and accurate.
Here too, two domains are examined, one from the
commercial sector, and a scientific one. The genetic
programming system we used, adopts recent
developments in respect of the operation rates and
the use of the validation set. The paper is organized
as follows. Next section describes the scientific
background, presenting in short the characteristics of
the examined software engineering tasks and the
genetic programming principle. Section 3 describes
the data domains and the GP system design. The
results and a followed discussion are shown in
Section 4. The paper ends with our conclusions and
future directions in Section 5.

2 BACKGROUND

One of the principal factors affecting the software
project cost is the labor cost. Effort estimation and
defect prediction aim to effectively allocate
personnel in tasks and assure the software quality,
both helping at reducing the software project cost.

295
Tsakonas A. and Dounias G. (2008).
APPLICATION OF GENETIC PROGRAMMING IN SOFTWARE ENGINEERING EMPIRICAL DATA MODELLING.
In Proceedings of the Third International Conference on Software and Data Technologies - PL/DPS/KE, pages 295-300
DOI: 10.5220/0001871302950300
Copyright c© SciTePress

The software project effort estimation involves the
definition of resources, the management of the
development activities and the calculation of the
estimation risk (Lum et al., 2003). There are four
types of effort estimation: historical analogy,
experts’ decision, use of models and rules-of-thumb.
Historical analogy is used when there are similar
data available from the past and it involves
comparison, using measures or data that has been
observed in previous software works. Experts’
decision describes the estimates produced by a
human expert based on what he has experienced
from past projects. Use of models is estimating by
mathematical or parametric cost models (which are
derived usually statistically). Finally, rules-of-thumb
are used for effort estimation, usually in the form of
very simple mathematical equations. A data-mining
task is therefore a historical analogy approach.
Depending on the problem encountered, various data
can be recorded for use. Two such domains are
described in Table 1 and Table 2. On the other hand,
aiming to enhance software quality and the resources
allocation, various approaches of software code
assessment have been developed, such as the static
code metrics. These mostly come from the research
of (McCabe, 1976) and (Halstead, 1977). McCabe’s
metrics are the cyclomatic complexity, the essential
complexity, the design complexity and the number of
lines of code. Cyclomatic complexity, v(G), counts
the number of linearly independent paths:

v(G) = e – n +2 (1)

where G is the module's flow-graph, e are the
arcs in the flow-graph, and n are the nodes. The
essential complexity, ev(G), measures the potential
shrink of the flow-graph:

ev(G)= v(G) – m (2)

where m are the sub-flow-graphs of G that are
D-structured primes (Fenton and Pfleeger 1977).
Design complexity, iv(G), is the cyclomatic
complexity of a module's reduced flow-graph
(McCabe, 1976). Lines of code are counted based on
to McCabe's conventions. Halstead’s measures are
classified into three groups: base measures, derived
measures and measures related to lines of code.
Table 4 summarizes the aforementioned measures.
Other frameworks are often adopted for defect
prediction, regarding special needs of a project, such
as the Quality Improvement Paradigm (QIP) (Basili
et al., 1994), in order to apply a systematic quality
assurance, by reusing the experience. This
framework involves software measurement and
analysis from carefully designed experiments. The

metrics selected from such an approach, are shown
in Table 3. Genetic programming - GP (Koza, 1992)
is an advance to the genetic algorithms paradigm.
This paradigm enables symbolic regression, i.e. the
search for complex solutions in the form of
mathematical formulas. Further research extended
this concept to calculate any kind of boolean or
programming expression. Although widely used
during the last two decades, the GP has only recently
been applied into software engineering tasks, such as
the evaluation of software project managers
(Boetticher et al., 2006). In order to improve the
search and expression ability, the function set that
composes a GP desired solution is often traced with
the aid of a grammar. Here, we apply grammar-
guided search for the two defect prediction tasks
(e.g. classification problems), using a context-free
grammar for the production of if-then hierarchical
rules (Tsakonas and Dounias, 2002).

3 SYSTEM DESIGN

3.1 Domain Description

The following detailed description of the datasets
aims to denote the high variance in their
composition (in terms of the features used), which
could assist in generalising on the performance of
our system. Regarding effort estimation, we first
address the Desharnais domain. This is consisted of
Canadian software house data for commercial
projects (Desharnais, 1989). It contains 81 records.
Table 1 summarizes the variables’ descriptions.

Table 1: Desharnais data feature description.

Variable Explanation
TEM Team experience (in years)
MNG Manager experience (in years)
YER Year end
LEN Length
TRN System’s basic transactions
ENT # entities in the system’s data model
PTA Adjusted points
ENV Envergure
PTN Non-adjusted points
LAN Language
Person-months Effort in months (regression target)

The NASA93 dataset consists of 93 NASA projects
from different centres for projects taken place
between 1971-1987. This software comes from the
aerospace domain. There are 17 attributes that are all
numeric: 15 attributes are the effort multipliers, one

ICSOFT 2008 - International Conference on Software and Data Technologies

296

is the Lines-of-Code (LOC) and one attribute is the
actual development effort. The LOC variable has
been estimated directly or computed beforehand,
using function point analysis (Dreger 1989).

Table 2: NASA93 data description.

Variable Explanation
rely Required software reliability
data Data base size
cplx Process complexity
time Time constraint for CPU
stor Main memory constraint
virt Machine volatility
turn Turnaround time
acap Analysts capability
aexp Application experience
pcap Programmers capability
vexp Virtual machine experience
lexp Language experience
modp Modern programming practices
tool Use of software tools
sced Schedule constraint
ln(KSLOC) Software size lines-of-code
ln(months) Effort in months (regression target)

Table 3: Datatrieve data description – measurements
according to QIP.

Variable Explanation
LOC60 Number of LOC of module m in version 6.0
LOC61 Number of LOC of module m in version

6.1.
aLOC LOC added to module m in v.6.1
dLOC LOC deleted from module m in v.6.0
DBLK Number of different blocks module m

between versions 6.0 and 6.1
MRAT Rate of modification of module m, equals to

(a) /(60 a)LOC dLOC LOC LOC+ +
MKNW Team's knowledge on module m
rLOC LOC of module m in v.6.0 reused in v.6.1
Class 0 for non-faulty modules, 1 for the rest

The task is to tune a new cost model, for a given
background knowledge. Table 2 describes the
dataset features. The Datatrieve data set follows the
QIP approach and it contains 130 records (Morasca
and Ruhe, 2000). This data is from the Datatrieve
product, which was undergoing both adaptive and
corrective maintenance. The objective of the data
analysis is to examine whether it was possible to
predict the faulty modules based on a set of
measures that have been collected on the project.
Table 3 summarizes the descriptions of the
calculated features. The JM1 domain is consisted of
10,885 records that contain measurements from

NASA’s C modules of a real time predictive ground
system that uses simulations to generate predictions.

Table 4: NASA JM1 data description – McCabe and
Halsted metrics.

Variable Explanation
mu1 number of unique operators
mu2 number of unique operands
N1 total occurrences of operators
N2 total occurrences of operands
N N = N1 + N2 (length)
mu mu = mu1 + mu2 (vocabulary)
P P = V = N log2(mu) (volume)
V* V* = (2 + mu2') log2(2 + mu2')
L L = V * / N (program length)
D D = 1 / L (difficulty)
L’ L’= 1 / D
I I = L’ V’ (intelligence)
E E = V / L (effort to write program)
T T = E / 18
lco Halstead count of lines of code
lcm Halstead count of lines of comments
lcb Halstead count of blank lines
lcc Halstead count of LOC and comments
brc Branch count of the flow-graph
LOC McCabe's lines of code
v(G) v(G) = e – n +2
ev(G) ev(G)= v(G) – m
iv(G) iv(G)=v(G), module's reduced flow-graph
class binary, whether the case had defects or not

This data has been publicly available by NASA’s
Metrics Data Program (MDP) (http://mdp.
ivv.nasa.gov/). It has 22 input features and one
binary output, whether the case had defects or not.
Table 4 summarizes the feature descriptions. All
these data are publicly available from the PROMISE
reporitory (http:// promise.site.uottawa.
ca/SERepository/).

3.2 System Setup

We normalized each data set linearly (i.e. using the
min-max transformation) in the range [-1,1], in order
to improve the search process. The genetic
programming parameters are shown in Table 5. We
applied 10-fold cross validation, having each time a
10% of the data outside of the training procedure, to
be checked as test set. A validation set is used to
avoid overfitting to the training set. In order to
promote a solution that carries a higher value in the
training set, the candidate should either also have a
higher value in the validation set or the absolute
difference between validation fitness and training

APPLICATION OF GENETIC PROGRAMMING IN SOFTWARE ENGINEERING EMPIRICAL DATA MODELLING

297

fitness score should be smaller, the latter being a
property empirically driven during our experiments,
found to increase generalization strength. For the
regression problems (effort estimation), as fitness
measure we have used the mean magnitude relative
error, MMRE, (eq. 3):

1

0

ˆ100=
n

i i

i i

y yMMRE
n y

−

=

−∑ (3)

Due to critics on using a single measure for
evaluating models (Foss et al., 2003), as well as for
comparison reasons, the measures (4)-(6) are also
calculated:

() ()
1 1

2 2

0 0

ˆ= /
n n

i i i i
i i

RRSE y y y y
− −

= =

− −∑ ∑ (4)

1 1

0 0

ˆ= /
n n

i i i i
i i

RAE y y y y
− −

= =

− −∑ ∑ (5)

1

0

ˆ
1 100PRED()= 100
0

i in

i
i

y y rif
r y

n
otherwise

−

=

⎧⎪ −⎪ ≤⎪⎪⎨⎪⎪⎪⎪⎩

∑ (6)

In all above equations, iy : actual value of case i, ˆiy

: estimated value of case i, iy : mean value of test set
cases, n : number of cases in test set, r : value
(range) for which the PRED function is calculated,
usually being equal to 25 or 30. For the
classification problems (defect prediction) we
selected the fitness function as follows. When the
system classifies a case, the following situations
may happen (Koza, 1992): tp: true positive, fp: false
positive, tn: true negative and, fn: false negative,
according to. Taking in respect these outcomes, we
used the following measure as fitness function
(Berlanga et al. 2005):

support= tp tnpd TNRate
tp fn tn fp

⋅ = ⋅
+ +

 (7)

As other measures have been proposed in
literature (Menzies et al. 2007), they are also
calculated in our experiments; these are the
precision, the pf (probability of failure) and the
accuracy:

tpprec
fp tp

=
+

 (8)

fppf
tn fp

=
+

 (9)

tp tnaccuracy
tp tn fp fn

+
=

+ + +
 (10)

Table 5: Genetic programming parameter setup.

Parameter Value
Population 9,000 individuals

GP
implementation

Steady-state GP (regression
problems)
Steady-state grammar-guided GP
(classification problems)

Selection Tournament of 6 with elitist strategy
Training 10-fold cross validation
Crossover/
Mutation/ Copy

Adaptive (Tsakonas and Dounias,
2007)

Maximum size 650 nodes
Maximum
generations 200

4 RESULTS AND DISCUSSION

In order to allow direct comparison between the
proposed system and the past work, we selected to
report our results, for each dataset, using the
measures that past literature has adopted. Addressing
the effort estimation task, we first examine the
Desharnais domain. In Table 6, the results from our
10-fold validation are presented together with test
results from WEKA’s (http://
www.cs.waikato.ac.nz/~ml/weka/) linear
regression system (10-fold validation) and the best
model from the work in (Shepperd and Schofield,
1997). The latter, previous work results are the only
ones found in literature, concerning this data set. As
it can be seen, our system maintains the highest
values in all compared accuracy measures. The
following simple solution was derived in fold #1, it
uses the adjusted points and the number of entities,
and it achieved 100% PRED(25).

() () ()0.1
N N N

personhours PTA ENT= − ⋅ (11)

where () N
⋅ denotes that the normalized

values of the corresponding variables are used.

Table 6: Results comparison for the Desharnais effort
estimation domain.

 RRSE RAE MMRE Pred(25)
WEKA L-R 67.7 64.99 n/a n/a
Shepperd n/a n/a 64 42
This work 67.15 62.01 31.32 77.78

The next domain to examine in regard of effort
estimation is the NASA93 data set. This problem has
only been addressed in (Menzies et al., 2006). Table
7 compares our 10-fold validation results to the best
of the models reported in that work. As it can be

ICSOFT 2008 - International Conference on Software and Data Technologies

298

seen, our model has the highest Pred(30) and a
competitive MMRE, whilst the standard deviation
remains the smallest.

Table 7: Results comparison for the NASA93 effort
estimation domain.

 Pred(30) MMRE
mean

%
sd%

nasa93:center.2 83 22 38
nasa93:project.Y 78 22 20
nasa93:fg.g 65 32 39
This work 85.78 23.25 17.31

The following small solution that was derived in

fold #2, uses only one feature (apart KSLOC), and it
achieved 100% PRED(25).

()() ()() ()ln ln 0.2
NN N

months KSLOC cplx= + ⋅ (12)

where ()
N

⋅ is the symbol for the normalized
values of the corresponding variables, as previously.

Regarding the defect prediction task, we first
address the Datatrieve problem. The only past
research where this data is examined is in (Morasca
and Ruhe, 2000), using logistic regression and rough
sets (leave-one-out cross validation). We have
included the same measures for comparison reasons.
Table 8 presents analytic results of our model. Table
9 compares the three systems in terms of
classification accuracy, precision and recall. As it
can be seen, our system outperformed the previous
two in terms of accuracy. Our GP system has shown
more balanced results than the past models, since it
achieves high precision rate and good recall rate
whilst having the higher overall accuracy of all three
systems.

Table 8: Results in Datatrieve problem.

GP Predicted
non-

faulty

Predicted
faulty

Total

Actual
non-faulty

90.0% 3.8% 93.8%

Actual faulty 1.5% 4.6% 6.2%
Total 91.5% 8.5% 100%

One derived GP solution is shown in Figure 1, in
prefix notation. This is the #1 fold best solution and
it achieved 100% accuracy in the test set. As it can
be seen, all the available features from Table 3 -
except LOC60- are used for making the
classification. In this formula, CLS0 corresponds to

non-faulty class and CLS1 to the faulty one.

Table 9: Results comparison for the Datatrieve defect
prediction domain.

Precision Recall
(pd)

Accuracy

Logistic
Regression

90.6% 21.3% 70.8%

Rough sets 50.0% 70.6% 93.8%
This work 75.0% 54.5% 94.6%

IF> MKNW 0.76 (IF< aLOC -0.45 (IF<
LOC61 -0.35 CLS0 CLS1) CLS1) (IF= dLOC
1.05 (IF> LOC61 0.53 CLS0 (IF< CLS1 -
0.12 CLS1 (IF= DBLK 1.06 CLS0 (IF= MRAT
0.29 CLS0 CLS0)))) CLS0))

Figure 1: Hierarchical rule tree for the Datatrieve domain.

The next defect prediction domain to address is
the NASA JM1 data set. This problem has been
addressed previously only in (Menzies et al., 2004).
Table 10 compares the 10-fold validation mean, with
these literature results. As it can be seen, our system
outperformed the previous model regarding pd
(probability of detection).

Table 10: Results comparison for the NASA JM1 defect
prediction domain.

 pd pf Precision Accuracy
Menzies et
al.

25 18 n/a n/a

This work 64.2 32.01 32.53 67.26

The solution in Figure 2, presented here in prefix
notation, derived during fold #10, and it has pd equal
to 66.67%, pf equal to 32.2%, precision 33.1% and
accuracy 67.58%. Here too in this formula, CLS0
corresponds to non-faulty class and CLS1 to the
faulty one. For the rest variables in this expression,
the reader is referred to Table 4.

5 CONCLUSIONS

This work presented the application of the genetic
programming for software engineering data analysis.
The problems addressed were selected in respect of
the data availability and the potential of applying
historical analogy estimation. The genetic
programming system incorporated recent advances
in respect of the operator rates and the use of the
validation set. Two tasks were designated aiming to
contribute in software cost control and software

APPLICATION OF GENETIC PROGRAMMING IN SOFTWARE ENGINEERING EMPIRICAL DATA MODELLING

299

quality. The first task was to produce effort
estimators using GP symbolic regression. The
second task was to produce classification rules using
grammar-guided GP for if-then rules. For each
problem, two available datasets were examined. In
the regression task of effort estimation, the system
produced short and comprehensible mathematical
expressions that outperformed previous models. In
the classification task of defect prediction, the
system produced the best-so-far or otherwise
competitive results, while succeeding in deriving
small hierarchical rule trees. Although the system
has been proved capable of producing highly
accurate and meaningful results for each case, this
success is only domain dependent, e.g. it seems that
due to the different dataset compositions, there is no
ability to drive overall conclusions on each of the
two tasks (effort estimation, defect prediction).
Further research involves the application of other
computational intelligent approach in these domains,
such as neuro-fuzzy rule-based systems, as well as
the application of genetic programming into other
related software engineering issues.

(IF= (% D 0.35) 0.01 CLS1 (IF> I -0.84
(IF> I -0.84 (IF> LOC -0.98 CLS1 CLS0)
(IF> LOC -0.98 CLS1 CLS0)) (IF> I -0.85
CLS1 (IF< LBL -0.98 (IF> L -0.53 CLS0
(IF> EVG -0.83 CLS1 (IF= (% D 0.35)
0.01 CLS1 (IF> I -0.84 (IF> I -0.84
(IF> LOC -0.98 CLS1 CLS0) (IF> LOC -
0.98 CLS1 CLS0)) (IF> I -0.85 CLS1 (IF<
IVG 0.06 (IF> I -0.80 (IF> I -0.83 CLS1
(IF= (% D 0.36) 0.01 CLS1 (IF> I -0.85
CLS1 (IF> LOC -0.98 CLS1 CLS0)))) (IF>
L -0.53 CLS0 (IF> I -0.87 CLS1 (IF> I -
0.85 CLS1 (IF> TON -0.82 CLS1 (IF> LOC
-0.98 CLS1 CLS0)))))) CLS1))))))
CLS1))))

Figure 2: Hierarchical rule tree for the NASA JM1
domain.

REFERENCES

Basili V.R., Caldiera G., and Rombach H.D., 1994,
Experience Factory, in Marciniak, J.J., Ed.,
Encyclopedia of Software Engineering, Vol. 1, pp.
469-476, John Wiley & Sons.

Berlanga F.J., del Jesus M.J., Herrera F., 2005, Learning
compact fuzzy rule-based classification systems with
genetic programming, in EUSFLAT05, 4th Conf. of the
European Society for Fuzzy Logic and Technology,
Barcelona, pp. 1027-1032.

Boehm B., 1981, Software Engineering Economics,
Prentice-Hall.

Boetticher, G., Lokhandwala, N., James C. Helm, 2006,
Understanding the Human Estimator, in 2nd Int’l
Predictive Models in Soft. Eng.Workshop,
Philadelphia, PA, Sep. 2006.

Desharnais J.M., Analyse statistique de la productivite des
projets informatique a partie de la technique des point
des fonction, 1989, MSc thesis, Univ. of Montreal.

Dreger J., 1989, Function Point Analysis, Englewood
Cliffs, NJ, Prentice Hall.

Fenton N.E., and Pfleeger S., 1997, Software Metrics: A
Rigorous and Practical Approach, Thompson Press.

Foss T.,Stensrud E., Kitchenham B., Myrtveit I., 2003, A
Simulation Study of the Model Evaluation Criterion
MMRE, IEEE Trans. on Soft. Eng., 29:11, Nov. 2003.

Halstead M., 1977, Elements of Software Science,
Elsevier.

Koza J.R., 1992, Genetic Programming: On the
Programming of Computers by Means of Natural
Selection, Cambridge, MA, MIT Press.

Lum K., Bramble M., Hihn J., Hackney J., Khorrami M.
and Monson E., 2003, Handbook of Software Cost
Estimation, Jet Propulsion Laboratory, Pasadena, CA,
USA.

McCabe T., 1976, A Complexity Measure, IEEE Trans.
Software Eng.,2:4, pp. 308-320.

Menzies T., DiStefano J., Orrego A., and Chapman R.,
2004, Assessing Predictors of Software Defects, in
Proc. PSM-2004, Workshop in Predictive Software
Models, Chicago, IL.

Menzies T, Chen Z., Hihn J., and Lum K., 2006, Selecting
Best Practices for Effort Estimation, IEEE Trans.
Software Eng. 32:11, Nov 2006.

Menzies T., Dekhtyar A., Distefano J., Greenwald J.,
2007, Problems with Precision: A Response to
"Comments on; Data Mining Static Code Attributes to
Learn Defect Predictors, IEEE Trans. on Soft. Eng.,
33: 9, Sept. 2007 pp. 637 - 640.

Morasca S., and Ruhe G., 2000, A hybrid approach to
analyze empirical software engineering data and its
application to predict module fault-proneness in
maintenance, J. of Systems and Software, 53:3, Sep.
2000, pp. 225 – 237, Elsevier

Shepperd M. J., and Schofield C.,1997, Estimating
software project effort using analogies, IEEE Trans.
on Soft. Eng., 23, pp. 736-743.

Tsakonas A., Dounias G., Hierarchical Classification
Trees Using Type-Constrained Genetic Programming,
in Proc. of 1st Intl. IEEE Symposium in Intelligent
Systems, Varna, Bulgaria, 2002.

Tsakonas A., and Dounias G., Evolving Neural-Symbolic
Systems Guided by Adaptive Training Schemes:
Applications in Finance, App. Art. Intell., 21:7, 2007,
pp. 681-706.

ICSOFT 2008 - International Conference on Software and Data Technologies

300

