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Abstract: Elusive bugs involve combinations of conditions that may not fit into any informal or intuitive testing 
scheme.  One way to attack them is with Bounded Exhaustive Testing, in which all combinations of inputs 
for a bounded version of an application are tested.  Studies of BET effectiveness for known bugs indicate 
that it is a promising approach. Because of the numbers of tests that are involved, BET normally depends on 
automated test generation and execution.  This in turn requires the use of an automated oracle.  In some 
cases the construction of a complete automated oracle would require the development of a second version of 
the application.  This may be avoidable if incomplete oracles are used.  Two classes of incomplete oracles 
are identified: necessity and sufficiency oracles.  Examples are given of experiments using a necessity and a 
sufficiency oracle. 

1 ELUSIVE BUGS 

In black box testing, a program is tested over all its 
functions and subfunctions. In (Howden, 1980) it 
was observed that bugs are often closely associated 
with semantically meaningful "functions" at some 
level of the implementation, varying from the 
statement level to the system application level.  If all 
of these functions are tested using standard black 
box tests a defect appears to have a good chance of 
being detected. 

However, such "broad-based" functional testing 
can fail to find bugs that occur due to the effects of 
combinations of conditions.  In standard black box 
functional testing, it is suggested that tests include 
"functionally relevant" input data combinations.  But 
sooner or later, it seems that a certain "elusive bug" 
combination takes its toll.  In some cases, the 
combinations are functionally meaningful but belong 
to a population of combinations that is too large for 
all of them to be tested.  In others, the combinations 
are coincidental and attain a meaning only after the 
fact because they are associated with a failure. 

Even in the case where a combination of 
conditions is coincidental, the following Elusive Bug 
Hypothesis may hold:  

 i) the conditions in a combination are always 
 functionally meaningful even when the 
 combination is not,  

 ii) for a combination that is associated with 
 failure, the failure occurs whenever that 
 combination occurs.    

The consequences of these two observations are 
that it is possible to identify the conditions that cause 
elusive bugs before they occur, and that relatively 
simple sets of tests such as those generated by BET 
have a good chance of being able to detect them. 

2 BET (BOUNDED EXHAUSTIVE 
TESTING) 

It has been observed that defects that cause system 
failures will often cause a failure in a small or 
"bounded" version of the application.  This BET 
assumption lies behind a number of testing 
techniques. For example, in all of the early work in 
symbolic testing (e.g. Howden, 1977) the test tools 
choose a bounded set of paths through a program for 
evaluation.  A standard approach was to limit testing 
to paths that traversed loops at most once or twice. 

The bounded testing approach was 
systematically applied to unit testing of classes in 
Java in (Cheon, 2002).  In this case, a tool was 
constructed that used seed data to construct all 
method input combinations.  An alternative 
approach, with similar goals but with more complex 
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test generation capabilities, and with built-in 
efficiency mechanisms, was described in (Boyapati, 
2002).  The origin of the phrase BET appears to be 
in (Sullivan, 2004).   

BET is not only associated with exhaustive 
testing over a limited version of an application, but 
with automatic testing.  Even with the limitation to a 
bounded version of an application, there are usually 
many possible combinations of input data.   It is 
necessary to both generate tests and to evaluate 
behaviour with an automatic tool.  For many 
applications, there is no simple way to automatically 
validate test output.  The problem was discussed in 
(Weyuker, 1982) where it was suggested that the 
best course may be to construct a second program, 
possibly simplified and less efficient. This approach 
was followed, for example, in (Memon, 2005). 
Another solution may be to use an incomplete 
oracle. 

3 INCOMPLETE ORACLES 

A test oracle is a means of determining if the test 
output or behaviour of a program is correct.  This 
term appears to have been introduced in (Howden 
W.E., 1978). 

The use of an automated oracle is critical to the 
success of BET.  In cases where a completely 
automated oracle is not possible, the use of an 
"incomplete" oracle may be necessary.  A complete 
oracle C is a means of evaluating program 
behaviour Y, such that for input X, C(X,Y) = Valid 
if and only if the behaviour Y is correct for input X 
and C(X,Y) = Invalid iff the behaviour is incorrect.  
An incomplete oracle is based on relationships that 
are either necessary or sufficient but not both.   

3.1 Necessity Oracles 

Necessity oracles can detect if behaviour is 
incorrect, but cannot, in general, tell if behaviour is 
correct.  More formally, suppose that, for program P, 
N(X,Y) is an oracle with the following property.  If 
N(X,Y) = Invalid, then the output Y produced by 
program P for input X is invalid.  Otherwise, if 
N(X,Y) = Unknown, the output Y can be either valid 
or invalid. A necessity oracle may be associated with 
a base input/output relationship Nr(X,Y) which has 
the property that Nr(X,Y) = False if and only if 
N(X,Y) = Invalid. 

The value ranges example described in 
(Richardson, 1994) is an example of a necessity 
oracle.  With this kind of oracle it is possible to 
determine if certain necessary properties of correct 

output have occurred, even if it is not possible to 
determine if the output is itself correct.  Another 
common kind of necessity oracle is a robustness 
oracle.  Such oracles simply look for system crashes 
or unexpected exceptions (Miller, 2000).  These are 
necessary but not sufficient properties for correct 
behaviour.  Structural necessity oracles examine 
necessary relationships between properties of the 
structure of the input and output, such as data 
structure sizes.  If a file is incorrectly empty, or not 
the right length, then a behaviour violation has been 
observed. 

For some applications, automated test data 
generators can be written so that they produce test 
case meta-data.  An associated oracle may compare 
test input metadata properties directly with output 
properties.  For example, suppose that a program is 
supposed to merge two sorted files f and g to 
produce a sorted file h.  The test data generator may 
return the file lengths lengthf and lengthg along with 
the test files that it generates.  A structural necessity 
oracle could then evaluate the relationship lengthh = 
lengthf + lengthg, where lengthh is the length of the 
output file h. 

3.2 Sufficiency Oracles 

Sufficiency oracles can determine if behaviour is 
correct some of the time, but not all of the time.  
More formally, suppose that S(X,Y) is an oracle 
with the following properties.  If S(X,Y) returns 
Valid, then Y is the correct output/behaviour for 
input X.  Otherwise, if S(X,Y) returns Unknown, 
then the output could be valid or invalid.  S(X,Y) 
may be associated with a base relationship Sr(X,Y) 
such that S(X,Y) = Valid iff Sr(X,Y) = True.  S(X,Y) 
returns Unknown for Sr(X,Y) = false. 

In the case of the above file merge program, we 
could construct the following simple sufficiency 
oracle.  Suppose that f and g are the input files and h 
is the output file.  Define S as follows: 

 S((f,g),h) = Valid iff  
((empty(f) and empty(g) and empty(h)) or  

 (empty(f) and h = g)  or   
 (empty(g) and h = f) 

In our research project, the concept of a 
sufficiency oracle was developed to deal with the 
testing of stateful interactive systems, which are 
discussed further below. 
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3.3 Compound and Hybrid Oracles 

Oracles can be joined together to make new oracles.  
Assume that for a necessity oracle N(X,Y) there is 
an underlying base relationship Nr(X,Y) such that  

  N(X,Y) = Invalid iff Nr(X,Y) = False. 

Alternatively, for a sufficiency oracle S(X,Y) 
assume there is a sufficiency relationship Sr(X,Y) 
such that: 

 S(X,Y) = Valid iff Sr(X,Y) = True. 

An oracle Q(X,Y) is more general than an oracle 
M(X,Y) if the set of pairs (X,Y) for which Q(X,Y) is 
defined (i.e. does not give the value Unknown) 
includes the set of pairs for which M(X,Y) is 
defined.  M(X,Y) and Q(X,Y) are equally general if 
the set of pairs for which they are defined is the 
same.  

Suppose that M(X,Y) and N(X,Y) are necessity 
oracles, with base relationships Mr(X,Y) and 
Nr(X,Y).  Then we can use conjunction to form a 
new necessity oracle Q(X,Y) with base relationship: 

  Qr(X,Y) = Mr(X,Y) or Nr(X,Y). 
The following simple observations can be made. 

Observation: suppose that we construct the 
conjunction Qr(X,Y) of the base relationships 
Mr(X,Y) and Nr(X,Y) for two necessity oracles. 
Then the oracle based on Qr(X,Y) will be at least as 
general as each of the two contributing oracles.  If 
one contributing relationship does not imply the 
other then the oracle based on Qr(X,Y)   will be 
more general than the contributing oracles. 

Observation: suppose that we construct the 
disjunction Qr(X,Y) of the base relationships 
Rr(X,Y) and Sr(X,Y) for two sufficiency oracles 
R(X,Y) and S(X,Y). Then the oracle based on 
Qr(X,Y) will be at least as general as each of the two 
contributing oracles.  If one contributing relationship 
does not imply the other then the oracle based on 
Qr(X,Y)   will be more general than the contributing 
oracles. 

The file merger example from Section 3.3 
contains examples of sufficiency oracle disjunction. 
Define Rr(X,Y) and Sr(X,Y) as follows: 

 i) Rr(f,g),h) = True iff empty(f) and h = g 
 ii) Sr(f,g),h) = True iff empty(g) and h = f 

Rr() and Sr() can individually be used to 
construct sufficiency oracles that return Valid when 
one associated file is empty and the output consists 
of the other file.  The disjunction (Rr() or Sr()) can be 
used to construct an oracle that is more general, i.e. 
determines valid behaviour for a wider range of 
inputs than the individual relationship oracles. 

The above observations indicate that if we have 
two necessity oracles we can get another oracle that 
is at least as general as each individual oracle by 
taking the conjunction of their base relationships.  If 
we have two sufficiency oracles we can construct an 
oracle that is at least as general by taking the 
disjunction of the base relationships.  

Suppose that we have a necessity oracle 
relationship Nr(X,Y) and a sufficiency oracle 
relationship Sr(X,Y).  Then we can combine them in 
the hybrid oracle Q(X,Y) as follows: 

 if (Sr(X,Y) = True) return Valid 
 else if (Nr(X,Y) = False) return Invalid   

 else return Unknown 

This construct will be referred to as a Valid-first 
hybrid. In the analysis of hybrid oracles, the issue of 
consistency becomes relevant. A necessity 
relationship Nr(X,Y) and a sufficiency relationship 
Sr(X,Y) are consistent if for all (X,Y): 

 i) Sr(X,Y) = Valid implies  Nr(X,Y) =   
 Undefined, and 

 ii) Nr(X,Y) = Invalid implies (Sr(X,Y)   
 =  Undefined 

Hybrid construction is understood to be carried 
out using consistent contributing relationships. A 
simple consequence of consistency is the following. 

Observation Suppose that Sr(X,Y) and Nr(X,Y) 
are (consistent) base relationships for a sufficiency 
oracle S(X,Y) and a necessity oracle N(X,Y).  Then 
Sr(X,Y) implies Nr(X,Y), i.e. the set of pairs (X,Y) 
for which Sr(X,Y) returns True is contained inside 
the set of pairs for which Nr(X,Y) returns true. 

Observation Suppose that Q(X,Y) is formed 
using Valid-first hybrid construction from S(X,Y) 
and N(X,Y).  Suppose that S(X,Y) and N(X,Y) are 
defined (i.e. do not return Undefined) for at least one 
pair (X,Y). Then Q(X,Y) is more general than either 
S(X,Y) or N(X,Y). 

In joining together a necessity and a sufficiency 
oracle, we might consider the following Invalid-first 
construct. 

 if (Nr(X,Y) = False) return Invalid 
  else if (Sr(X,Y) = True) return Valid   

 else return Unknown 

It seems natural to ask which construct is 
preferable.  First consider the issue of generality. 

Observation Suppose that N(X,Y) and S(X,Y) 
are necessity and sufficiency oracles.  Let QV(X,Y) 
and QI(X,Y) be the hybrid oracles that are formed 
using Valid-first and Invalid-first hybrid 
construction.  QV(X,Y) and QI(X,Y) are equally 
general, i.e. they are defined/undefined for the same 
sets of pairs (X,Y). 
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The two constructs are equally general, but 
Valid-first may seem preferable because it first 
attempts to return a conclusion of validity rather 
than invalidity and validity is a stronger result.  
However, as a consequence of base relationship 
consistency, it is easy to show the following. 

Observation Suppose that N(X,Y) and S(X,Y) 
are necessity and sufficiency oracles.  Let QV(X,Y) 
and QI(X,Y) be the hybrid oracles that are formed 
using Valid-first and Invalid-first hybrid 
construction.  Then QV(X,Y) and QI(X,Y) return 
the same results for all pairs (X,Y).  

In the case where two base relationships Nr() 
(necessary) and Sr() (sufficiency) are logically 
equivalent, i.e. Nr() = true iff Sr()= True, then the 
oracle based on the relationships is a complete 
hybrid oracle.  Otherwise we have an incomplete 
hybrid oracle, sometimes telling us when the 
program is correct, sometimes telling us when it is 
incorrect, and otherwise returning that validity or 
invalidity is unknown. 

More complex compound oracles can easily be 
imagined, using a kind of oracle algebra.  

A hybrid oracle might occur in situations where 
we can easily determine the correct behaviour for 
some kinds of inputs but only necessity for others.  
Consider once again the merge file example.  We 
described a necessity oracle N((f,g),h) which returns 
Invalid when the lengths of f, g and h do not match.  
We also described a sufficiency oracle S((f,g),h) that 
can determine correct behaviour in the special cases 
where one or both of the input files is empty.  These 
two can be combined in the following hybrid oracle:  

 if S((f,g),h) return Valid 
  else if N((f,g),h) return Invalid 
   else return Unknown. 

The following section contains more detailed 
examples of a necessity and a sufficiency oracle. 

4 NECESSITY ORACLE 
EXAMPLE 

The program in this example takes input from a 
transactions file.  The records in this file are either 
financial or non-financial.  Each transaction contains 
a key field that identifies an account number.  The 
records are sorted by this key.  Each record is either 
non-financial or financial.  Financial records contain 
a transaction amount. The program is supposed to 
prepare an output item for each non-financial record.  
In addition, the program is supposed to sum all the 
financial records for each account, which is then 
output to a financial data stream. 

4.1 Account Break Bug 

An account break occurs in an input record stream 
when there is a change in the account number.  The 
program recognizes the occurrence of a break by 
keeping track of the current account number and 
detecting when this changes.  The program has two 
separate transaction processing flows: one for 
financial data, and one for non-financial data.  Along 
the non-financial flow, the program incorrectly fails 
to check for account breaks.  Hence, if an account 
record group containing at least one financial record 
ends with a nonfinancial record, then the subtotal of 
its financial records is not finalized and output, but 
is used as part of the total for the following account 
group.   

This is an elusive bug in the following sense.  
Each of the separate conditions involved in the 
failure are semantically meaningful, but the 
combination seems arbitrary and it is not obvious 
that it would normally be tested for. 

4.2 Automated Test Data Generation 
and Validation Oracle 

A sufficiency test oracle for this application could be 
built from a small set of tests that were constructed 
by hand.  But if we wanted to test over larger 
amounts of data, hoping to catch elusive untested 
bugs, we would need both an automated test data 
generator and an automated oracle.  

Both complete and incomplete oracles were 
investigated.  A test data generator was built using 
the BET testing variation of JUnit called BETUnit 
(Howden, 2007). BETUnit facilitates the testing of 
all combinations of input specified by one or more 
BET-restricted domain generator classes.  The test 
data generator for this example was designed so that 
it returned both test cases and test case meta-data.  
Recall from the discussion above that test case meta-
data describes properties of a test case, which can be 
determined by the generator while it is generating a 
test case.  Our test generator generated all sequences 
of account groups having 0 to 3 groups, where a 
group can have from 1 to 3 records.  The primitive 
data type fields in each record could have any value 
in a small subset of possible values.  Records could 
be either financial or non-financial. 

The test data generator was constructed to return 
the following metadata: the number of account 
groups, the number of records in each account 
group, the total number of records, the total number 
of financial and non-financial records, and the total 
number of account groups with at least one financial 
record. 
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There is a strong motivation to try and construct 
a complete oracle.  We investigated the approach in 
which a simpler, second version of the program was 
constructed to act as an oracle.  In order to avoid the 
danger of constructing a second program that had 
the same defects as the first program, we used 
metadata to build a program with "synchronous" as 
opposed to "asynchronous" loop control.  In the 
synchronous approach, the number of times a loop is 
supposed to iterate is known in advance. In the 
asynchronous approach, the number of iterations is 
not known in advance, but is determined by a 
condition that arises during iteration.  In this 
example, the (asynchronous) application program 
detects when the last record in an account group has 
occurred by checking for a change in the account 
numbers.  In the synchronous oracle program, the 
first kind of metadata listed above (the number of 
account groups and the number of records in each 
account group), was used to determine in advance 
how many times the account group processing loop 
was to be iterated.   

We also investigated the use of a necessity 
oracle.  In this case, a structural necessity oracle was 
designed that used the second class of metadata 
described above.  A test runner was designed to 
examine the output generated by the program and to 
determine the total number numFinanReports of 
financial report outputs, and the total number 
numNonFinanReports of financial report outputs.  It 
compares these with the test metadata 
numFinanGroups, the number of groups with a 
financial record, and numNonFinanRecords, the 
number of non-financial records.  More specifically, 
the oracle component of the test runner checks to 
see, for each completed test, if: 

numFinanReports = numFinanGroups  and 
numNonFinanReports = numNonFinanRecords. 

In this case the defect is easily discovered, 
leading to the conclusion that for examples like this 
necessity oracles are simpler, more effective, and 
less costly than 2-version oracle programming.  

5 SUFFICIENCY ORACLE 
EXAMPLE 

The sample program in this case is a very simple 
dating system, constructed for the purposes of 
experimentation with different testing methods.  The 
system has a GUI screen that allows users to log on, 
ask for dates, and set their personal properties.  An 
administrator can add or delete dating members from 
the system. 

5.1 Delete Non-existent Member Bug 

The program contained several "natural" (i.e. non-
seeded) bugs.  In one, if the administrator attempts 
to delete a member from the system who does not 
exist, then an unexpected screen appears instead of 
the expected "no such member" screen.  
Furthermore, this bug does not occur if, in the 
current session, the administrator has previously 
deleted a user who is a member of the system.  The 
bug is elusive in that it only shows up under certain 
specific kinds of combinations.  Each element of the 
combination is semantically meaningful in its own 
right, and would probably be tested for, but the 
combination seems somewhat arbitrary and not 
corresponding to an expected kind of test. 

5.2 Automated Test Data Generation 
and Validation Oracle 

A model-based strategy was used to build an 
automated test data generator and oracle, both based 
on a test model M.  Each state in the test model M 
corresponds to a screen image in which the user can 
enter input and/or initiate a transition to the next 
screen.    Model states are associated with domain 
generators that generate values that can be input in 
that state.  The transitions from a state S may lead to 
one or more next states.  Tests, whose length is less 
than a predetermined BET-restricted path length k, 
are generated by traversing paths in the model M. 

If there are two or more next states after a state 
S, then the transitions are labelled with transition 
guards. A transition guard is a function of the state 
of the program at S. In a conventional specifications 
model, the guards g on the transitions from a state S 
to next states are expected to be mutually exclusive 
and complete.  When they are interpreted as 
sufficiency oracles, they need only be mutually 
exclusive in the sense that not more than one 
evaluates to True. 

Suppose that the program P under test is 
executed corresponding to a path p in the model, 
correctly reaching a state S, and that W is a next 
state that can be reached from S along a transition 
with guard g.  If the guard g evaluates to True then 
W is the correct next state.  If no guard on a 
transition from S evaluates to True, then the next 
correct state for this execution is not known.  If 
guard g on the transition to W evaluates to True, but 
the program is observed to transition to a state other 
than W, then the program's behaviour is incorrect.  
Note that there may be other paths from the system's 
initial state that  correctly arrive at state S for which 
the transition to W is correct, but for which the 
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guard evaluates to Unknown, since the guard is only 
sufficient. 

The reason why we might need to settle for 
guards that are sufficient but not necessary is the 
potential difficulty of computing the guard g.  In 
general, g will be a function of both the input 
entered at S, and the inputs entered on the subpath p 
that led up to S during an execution of P.  The steps 
on the path p leading up to S provide the context for 
the computation step that occurs at S.  If that step is 
context free, then the guard will only depend on the 
input entered at S.  If the step is not context free g 
will have to evaluate the effects of the inputs along 
the path p leading to S.  It cannot do this by simply 
observing the state of P at S, since then we would be 
using information about the state of P in order to 
validate the behaviour of P, which is circular 
reasoning.  There are several possible approaches to 
this problem. 

For the guards in our test model M, we 
constructed simple path pattern recognition routines 
that could be used to define simple sufficiency 
guards. These routines are capable of examining a 
path p leading to a state S to see if a sufficient 
pattern of steps has occurred.   

For example, the state deleteMember in the 
model M has a transition to a next state 
noSuchMember. Assume that, during testing, the 
program always starts out with an empty 
membership data base. Examples of possible 
sufficiency guards that could be used on the 
transition include the following path patterns: (no 
addMember), or (for each addMember(x) there is a 
deleteMember(x)).  If an execution path p arrives at 
S = deleteMember, and one of these simple guards is 
satisfied for p and the data entered at S, then we 
know that for that execution the program should 
transition to the model state noSuchMember.  The 
transition to a different next state constitutes 
incorrect behaviour. There are more complex paths 
to S that do not satisfy these simple patterns, for 
which the correct next state is also noSuchMember, 
and along which the program also fails.  For these 
tests we would not be able to determine failure using 
the guard, since the guard for the transition to 
noSuchMember would return Unknown, and not 
True.  But all we need is one path for which the 
guard evaluates to True.   

An alternative to the use of guard path patterns is 
the "second program" approach.  An oracle program 
would be used to determine the correct program 
states and transitions.  This approach may be both 
feasible and necessary for some applications, but it 
seems that the path pattern approach will often be 
simpler. 

There are several ways to use test models. One 
involves a test harness that traverses paths in the 

model, keeping track of path coverage, while 
simultaneously executing the program under test on 
the input derived from the domain generators in the 
model states occurring along a followed path.  As it 
follows a path, the traverser evaluates program 
behaviour and checks guards to see if an observed 
transition to an observed screen is valid.   

The second way of using a test model is to have 
a separate test specifications generator that traverses 
the model, generating model paths that are then 
handed off to a test harness that works with one path 
at a time.  In our testing tool we used this approach.  
The model traverser generates a test specification in 
the form of a FIT test table, which is handed off to a 
FIT test runner (Mugridge, 2005).  This was done 
for several reasons.  One was to make use of an 
already existing FIT tool.  The other was related to 
the desirability of the basic approach to systems 
testing that is followed in FIT.  FIT uses test fixture 
classes to map from easily readable FIT test tables to 
the underlying application code that has to be 
executed for the specified steps in the table.  We 
used similar test fixtures to map from the test model 
to the steps that should appear in a FIT test table.  A 
more detailed description of this use of the FIT 
testing strategy is contained in (Barzin, 2008). 

6 CONCLUSIONS 

The necessity/sufficiency framework, introduced in 
this paper, was found to be useful way to 
characterize both individual oracles and the 
construction of more general oracles from less 
general components.  It has been used to analyze 
both hybrid and non-hybrid oracles, such as the two 
examples included here. The elusive bug hypothesis 
(EBH), also introduced here, is consistent with our 
analysis of elusive defects and establishes a basis for 
further research into the elusive bug problem.  The 
BET hypothesis seems intuitively reasonable on its 
own, but it is the EBH that may be one of the 
principal reasons why BET is effective: limited tests 
are adequate because they generally contain 
instances of elusive bug combinations, and these 
combinations cause a failure whenever they appear.   
In the case of interactive programs, the combinations 
of conditions causing a failure occur on short paths, 
which are associated with simple sufficiency guards. 

 The use of incomplete necessity and sufficiency 
oracles in automated testing can be justified per se 
because they will be least as effective as robustness 
testing, which uses a kind of minimal necessity 
oracle.  The addition of more general sufficiency 
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oracles, or wider-based necessity oracles, can only 
improve the effectiveness of automated testing 
beyond the default robustness level. 

Continuing research is investigating the 
foundations for Elusive Bug and BET automated 
testing, the algebra of incomplete oracles, and the 
application of these ideas to additional classes of 
programs.  
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