
ELUSIVE BUGS, BOUNDED EXHAUSTIVE TESTING AND
INCOMPLETE ORACLES

W. E. Howden
CSE, University of California at San Diego, La Jolla, CA, 92093, U.S.A.

Keywords: Testing, elusive, bugs, oracles, necessary, sufficient, incomplete, BET, JUnit, Elusive Bug Hypothesis.

Abstract: Elusive bugs involve combinations of conditions that may not fit into any informal or intuitive testing
scheme. One way to attack them is with Bounded Exhaustive Testing, in which all combinations of inputs
for a bounded version of an application are tested. Studies of BET effectiveness for known bugs indicate
that it is a promising approach. Because of the numbers of tests that are involved, BET normally depends on
automated test generation and execution. This in turn requires the use of an automated oracle. In some
cases the construction of a complete automated oracle would require the development of a second version of
the application. This may be avoidable if incomplete oracles are used. Two classes of incomplete oracles
are identified: necessity and sufficiency oracles. Examples are given of experiments using a necessity and a
sufficiency oracle.

1 ELUSIVE BUGS

In black box testing, a program is tested over all its
functions and subfunctions. In (Howden, 1980) it
was observed that bugs are often closely associated
with semantically meaningful "functions" at some
level of the implementation, varying from the
statement level to the system application level. If all
of these functions are tested using standard black
box tests a defect appears to have a good chance of
being detected.

However, such "broad-based" functional testing
can fail to find bugs that occur due to the effects of
combinations of conditions. In standard black box
functional testing, it is suggested that tests include
"functionally relevant" input data combinations. But
sooner or later, it seems that a certain "elusive bug"
combination takes its toll. In some cases, the
combinations are functionally meaningful but belong
to a population of combinations that is too large for
all of them to be tested. In others, the combinations
are coincidental and attain a meaning only after the
fact because they are associated with a failure.

Even in the case where a combination of
conditions is coincidental, the following Elusive Bug
Hypothesis may hold:

 i) the conditions in a combination are always
 functionally meaningful even when the
 combination is not,

 ii) for a combination that is associated with
 failure, the failure occurs whenever that
 combination occurs.

The consequences of these two observations are
that it is possible to identify the conditions that cause
elusive bugs before they occur, and that relatively
simple sets of tests such as those generated by BET
have a good chance of being able to detect them.

2 BET (BOUNDED EXHAUSTIVE
TESTING)

It has been observed that defects that cause system
failures will often cause a failure in a small or
"bounded" version of the application. This BET
assumption lies behind a number of testing
techniques. For example, in all of the early work in
symbolic testing (e.g. Howden, 1977) the test tools
choose a bounded set of paths through a program for
evaluation. A standard approach was to limit testing
to paths that traversed loops at most once or twice.

The bounded testing approach was
systematically applied to unit testing of classes in
Java in (Cheon, 2002). In this case, a tool was
constructed that used seed data to construct all
method input combinations. An alternative
approach, with similar goals but with more complex

115
E. Howden W. (2008).
ELUSIVE BUGS, BOUNDED EXHAUSTIVE TESTING AND INCOMPLETE ORACLES.
In Proceedings of the Third International Conference on Software and Data Technologies - SE/GSDCA/MUSE, pages 115-121
DOI: 10.5220/0001868501150121
Copyright c© SciTePress

test generation capabilities, and with built-in
efficiency mechanisms, was described in (Boyapati,
2002). The origin of the phrase BET appears to be
in (Sullivan, 2004).

BET is not only associated with exhaustive
testing over a limited version of an application, but
with automatic testing. Even with the limitation to a
bounded version of an application, there are usually
many possible combinations of input data. It is
necessary to both generate tests and to evaluate
behaviour with an automatic tool. For many
applications, there is no simple way to automatically
validate test output. The problem was discussed in
(Weyuker, 1982) where it was suggested that the
best course may be to construct a second program,
possibly simplified and less efficient. This approach
was followed, for example, in (Memon, 2005).
Another solution may be to use an incomplete
oracle.

3 INCOMPLETE ORACLES

A test oracle is a means of determining if the test
output or behaviour of a program is correct. This
term appears to have been introduced in (Howden
W.E., 1978).

The use of an automated oracle is critical to the
success of BET. In cases where a completely
automated oracle is not possible, the use of an
"incomplete" oracle may be necessary. A complete
oracle C is a means of evaluating program
behaviour Y, such that for input X, C(X,Y) = Valid
if and only if the behaviour Y is correct for input X
and C(X,Y) = Invalid iff the behaviour is incorrect.
An incomplete oracle is based on relationships that
are either necessary or sufficient but not both.

3.1 Necessity Oracles

Necessity oracles can detect if behaviour is
incorrect, but cannot, in general, tell if behaviour is
correct. More formally, suppose that, for program P,
N(X,Y) is an oracle with the following property. If
N(X,Y) = Invalid, then the output Y produced by
program P for input X is invalid. Otherwise, if
N(X,Y) = Unknown, the output Y can be either valid
or invalid. A necessity oracle may be associated with
a base input/output relationship Nr(X,Y) which has
the property that Nr(X,Y) = False if and only if
N(X,Y) = Invalid.

The value ranges example described in
(Richardson, 1994) is an example of a necessity
oracle. With this kind of oracle it is possible to
determine if certain necessary properties of correct

output have occurred, even if it is not possible to
determine if the output is itself correct. Another
common kind of necessity oracle is a robustness
oracle. Such oracles simply look for system crashes
or unexpected exceptions (Miller, 2000). These are
necessary but not sufficient properties for correct
behaviour. Structural necessity oracles examine
necessary relationships between properties of the
structure of the input and output, such as data
structure sizes. If a file is incorrectly empty, or not
the right length, then a behaviour violation has been
observed.

For some applications, automated test data
generators can be written so that they produce test
case meta-data. An associated oracle may compare
test input metadata properties directly with output
properties. For example, suppose that a program is
supposed to merge two sorted files f and g to
produce a sorted file h. The test data generator may
return the file lengths lengthf and lengthg along with
the test files that it generates. A structural necessity
oracle could then evaluate the relationship lengthh =
lengthf + lengthg, where lengthh is the length of the
output file h.

3.2 Sufficiency Oracles

Sufficiency oracles can determine if behaviour is
correct some of the time, but not all of the time.
More formally, suppose that S(X,Y) is an oracle
with the following properties. If S(X,Y) returns
Valid, then Y is the correct output/behaviour for
input X. Otherwise, if S(X,Y) returns Unknown,
then the output could be valid or invalid. S(X,Y)
may be associated with a base relationship Sr(X,Y)
such that S(X,Y) = Valid iff Sr(X,Y) = True. S(X,Y)
returns Unknown for Sr(X,Y) = false.

In the case of the above file merge program, we
could construct the following simple sufficiency
oracle. Suppose that f and g are the input files and h
is the output file. Define S as follows:

 S((f,g),h) = Valid iff
((empty(f) and empty(g) and empty(h)) or

 (empty(f) and h = g) or
 (empty(g) and h = f)

In our research project, the concept of a
sufficiency oracle was developed to deal with the
testing of stateful interactive systems, which are
discussed further below.

ICSOFT 2008 - International Conference on Software and Data Technologies

116

3.3 Compound and Hybrid Oracles

Oracles can be joined together to make new oracles.
Assume that for a necessity oracle N(X,Y) there is
an underlying base relationship Nr(X,Y) such that

 N(X,Y) = Invalid iff Nr(X,Y) = False.

Alternatively, for a sufficiency oracle S(X,Y)
assume there is a sufficiency relationship Sr(X,Y)
such that:

 S(X,Y) = Valid iff Sr(X,Y) = True.

An oracle Q(X,Y) is more general than an oracle
M(X,Y) if the set of pairs (X,Y) for which Q(X,Y) is
defined (i.e. does not give the value Unknown)
includes the set of pairs for which M(X,Y) is
defined. M(X,Y) and Q(X,Y) are equally general if
the set of pairs for which they are defined is the
same.

Suppose that M(X,Y) and N(X,Y) are necessity
oracles, with base relationships Mr(X,Y) and
Nr(X,Y). Then we can use conjunction to form a
new necessity oracle Q(X,Y) with base relationship:

 Qr(X,Y) = Mr(X,Y) or Nr(X,Y).
The following simple observations can be made.

Observation: suppose that we construct the
conjunction Qr(X,Y) of the base relationships
Mr(X,Y) and Nr(X,Y) for two necessity oracles.
Then the oracle based on Qr(X,Y) will be at least as
general as each of the two contributing oracles. If
one contributing relationship does not imply the
other then the oracle based on Qr(X,Y) will be
more general than the contributing oracles.

Observation: suppose that we construct the
disjunction Qr(X,Y) of the base relationships
Rr(X,Y) and Sr(X,Y) for two sufficiency oracles
R(X,Y) and S(X,Y). Then the oracle based on
Qr(X,Y) will be at least as general as each of the two
contributing oracles. If one contributing relationship
does not imply the other then the oracle based on
Qr(X,Y) will be more general than the contributing
oracles.

The file merger example from Section 3.3
contains examples of sufficiency oracle disjunction.
Define Rr(X,Y) and Sr(X,Y) as follows:

 i) Rr(f,g),h) = True iff empty(f) and h = g
 ii) Sr(f,g),h) = True iff empty(g) and h = f

Rr() and Sr() can individually be used to
construct sufficiency oracles that return Valid when
one associated file is empty and the output consists
of the other file. The disjunction (Rr() or Sr()) can be
used to construct an oracle that is more general, i.e.
determines valid behaviour for a wider range of
inputs than the individual relationship oracles.

The above observations indicate that if we have
two necessity oracles we can get another oracle that
is at least as general as each individual oracle by
taking the conjunction of their base relationships. If
we have two sufficiency oracles we can construct an
oracle that is at least as general by taking the
disjunction of the base relationships.

Suppose that we have a necessity oracle
relationship Nr(X,Y) and a sufficiency oracle
relationship Sr(X,Y). Then we can combine them in
the hybrid oracle Q(X,Y) as follows:

 if (Sr(X,Y) = True) return Valid
 else if (Nr(X,Y) = False) return Invalid

 else return Unknown

This construct will be referred to as a Valid-first
hybrid. In the analysis of hybrid oracles, the issue of
consistency becomes relevant. A necessity
relationship Nr(X,Y) and a sufficiency relationship
Sr(X,Y) are consistent if for all (X,Y):

 i) Sr(X,Y) = Valid implies Nr(X,Y) =
 Undefined, and

 ii) Nr(X,Y) = Invalid implies (Sr(X,Y)
 = Undefined

Hybrid construction is understood to be carried
out using consistent contributing relationships. A
simple consequence of consistency is the following.

Observation Suppose that Sr(X,Y) and Nr(X,Y)
are (consistent) base relationships for a sufficiency
oracle S(X,Y) and a necessity oracle N(X,Y). Then
Sr(X,Y) implies Nr(X,Y), i.e. the set of pairs (X,Y)
for which Sr(X,Y) returns True is contained inside
the set of pairs for which Nr(X,Y) returns true.

Observation Suppose that Q(X,Y) is formed
using Valid-first hybrid construction from S(X,Y)
and N(X,Y). Suppose that S(X,Y) and N(X,Y) are
defined (i.e. do not return Undefined) for at least one
pair (X,Y). Then Q(X,Y) is more general than either
S(X,Y) or N(X,Y).

In joining together a necessity and a sufficiency
oracle, we might consider the following Invalid-first
construct.

 if (Nr(X,Y) = False) return Invalid
 else if (Sr(X,Y) = True) return Valid

 else return Unknown

It seems natural to ask which construct is
preferable. First consider the issue of generality.

Observation Suppose that N(X,Y) and S(X,Y)
are necessity and sufficiency oracles. Let QV(X,Y)
and QI(X,Y) be the hybrid oracles that are formed
using Valid-first and Invalid-first hybrid
construction. QV(X,Y) and QI(X,Y) are equally
general, i.e. they are defined/undefined for the same
sets of pairs (X,Y).

ELUSIVE BUGS, BOUNDED EXHAUSTIVE TESTING AND INCOMPLETE ORACLES

117

The two constructs are equally general, but
Valid-first may seem preferable because it first
attempts to return a conclusion of validity rather
than invalidity and validity is a stronger result.
However, as a consequence of base relationship
consistency, it is easy to show the following.

Observation Suppose that N(X,Y) and S(X,Y)
are necessity and sufficiency oracles. Let QV(X,Y)
and QI(X,Y) be the hybrid oracles that are formed
using Valid-first and Invalid-first hybrid
construction. Then QV(X,Y) and QI(X,Y) return
the same results for all pairs (X,Y).

In the case where two base relationships Nr()
(necessary) and Sr() (sufficiency) are logically
equivalent, i.e. Nr() = true iff Sr()= True, then the
oracle based on the relationships is a complete
hybrid oracle. Otherwise we have an incomplete
hybrid oracle, sometimes telling us when the
program is correct, sometimes telling us when it is
incorrect, and otherwise returning that validity or
invalidity is unknown.

More complex compound oracles can easily be
imagined, using a kind of oracle algebra.

A hybrid oracle might occur in situations where
we can easily determine the correct behaviour for
some kinds of inputs but only necessity for others.
Consider once again the merge file example. We
described a necessity oracle N((f,g),h) which returns
Invalid when the lengths of f, g and h do not match.
We also described a sufficiency oracle S((f,g),h) that
can determine correct behaviour in the special cases
where one or both of the input files is empty. These
two can be combined in the following hybrid oracle:

 if S((f,g),h) return Valid
 else if N((f,g),h) return Invalid
 else return Unknown.

The following section contains more detailed
examples of a necessity and a sufficiency oracle.

4 NECESSITY ORACLE
EXAMPLE

The program in this example takes input from a
transactions file. The records in this file are either
financial or non-financial. Each transaction contains
a key field that identifies an account number. The
records are sorted by this key. Each record is either
non-financial or financial. Financial records contain
a transaction amount. The program is supposed to
prepare an output item for each non-financial record.
In addition, the program is supposed to sum all the
financial records for each account, which is then
output to a financial data stream.

4.1 Account Break Bug

An account break occurs in an input record stream
when there is a change in the account number. The
program recognizes the occurrence of a break by
keeping track of the current account number and
detecting when this changes. The program has two
separate transaction processing flows: one for
financial data, and one for non-financial data. Along
the non-financial flow, the program incorrectly fails
to check for account breaks. Hence, if an account
record group containing at least one financial record
ends with a nonfinancial record, then the subtotal of
its financial records is not finalized and output, but
is used as part of the total for the following account
group.

This is an elusive bug in the following sense.
Each of the separate conditions involved in the
failure are semantically meaningful, but the
combination seems arbitrary and it is not obvious
that it would normally be tested for.

4.2 Automated Test Data Generation
and Validation Oracle

A sufficiency test oracle for this application could be
built from a small set of tests that were constructed
by hand. But if we wanted to test over larger
amounts of data, hoping to catch elusive untested
bugs, we would need both an automated test data
generator and an automated oracle.

Both complete and incomplete oracles were
investigated. A test data generator was built using
the BET testing variation of JUnit called BETUnit
(Howden, 2007). BETUnit facilitates the testing of
all combinations of input specified by one or more
BET-restricted domain generator classes. The test
data generator for this example was designed so that
it returned both test cases and test case meta-data.
Recall from the discussion above that test case meta-
data describes properties of a test case, which can be
determined by the generator while it is generating a
test case. Our test generator generated all sequences
of account groups having 0 to 3 groups, where a
group can have from 1 to 3 records. The primitive
data type fields in each record could have any value
in a small subset of possible values. Records could
be either financial or non-financial.

The test data generator was constructed to return
the following metadata: the number of account
groups, the number of records in each account
group, the total number of records, the total number
of financial and non-financial records, and the total
number of account groups with at least one financial
record.

ICSOFT 2008 - International Conference on Software and Data Technologies

118

There is a strong motivation to try and construct
a complete oracle. We investigated the approach in
which a simpler, second version of the program was
constructed to act as an oracle. In order to avoid the
danger of constructing a second program that had
the same defects as the first program, we used
metadata to build a program with "synchronous" as
opposed to "asynchronous" loop control. In the
synchronous approach, the number of times a loop is
supposed to iterate is known in advance. In the
asynchronous approach, the number of iterations is
not known in advance, but is determined by a
condition that arises during iteration. In this
example, the (asynchronous) application program
detects when the last record in an account group has
occurred by checking for a change in the account
numbers. In the synchronous oracle program, the
first kind of metadata listed above (the number of
account groups and the number of records in each
account group), was used to determine in advance
how many times the account group processing loop
was to be iterated.

We also investigated the use of a necessity
oracle. In this case, a structural necessity oracle was
designed that used the second class of metadata
described above. A test runner was designed to
examine the output generated by the program and to
determine the total number numFinanReports of
financial report outputs, and the total number
numNonFinanReports of financial report outputs. It
compares these with the test metadata
numFinanGroups, the number of groups with a
financial record, and numNonFinanRecords, the
number of non-financial records. More specifically,
the oracle component of the test runner checks to
see, for each completed test, if:

numFinanReports = numFinanGroups and
numNonFinanReports = numNonFinanRecords.

In this case the defect is easily discovered,
leading to the conclusion that for examples like this
necessity oracles are simpler, more effective, and
less costly than 2-version oracle programming.

5 SUFFICIENCY ORACLE
EXAMPLE

The sample program in this case is a very simple
dating system, constructed for the purposes of
experimentation with different testing methods. The
system has a GUI screen that allows users to log on,
ask for dates, and set their personal properties. An
administrator can add or delete dating members from
the system.

5.1 Delete Non-existent Member Bug

The program contained several "natural" (i.e. non-
seeded) bugs. In one, if the administrator attempts
to delete a member from the system who does not
exist, then an unexpected screen appears instead of
the expected "no such member" screen.
Furthermore, this bug does not occur if, in the
current session, the administrator has previously
deleted a user who is a member of the system. The
bug is elusive in that it only shows up under certain
specific kinds of combinations. Each element of the
combination is semantically meaningful in its own
right, and would probably be tested for, but the
combination seems somewhat arbitrary and not
corresponding to an expected kind of test.

5.2 Automated Test Data Generation
and Validation Oracle

A model-based strategy was used to build an
automated test data generator and oracle, both based
on a test model M. Each state in the test model M
corresponds to a screen image in which the user can
enter input and/or initiate a transition to the next
screen. Model states are associated with domain
generators that generate values that can be input in
that state. The transitions from a state S may lead to
one or more next states. Tests, whose length is less
than a predetermined BET-restricted path length k,
are generated by traversing paths in the model M.

If there are two or more next states after a state
S, then the transitions are labelled with transition
guards. A transition guard is a function of the state
of the program at S. In a conventional specifications
model, the guards g on the transitions from a state S
to next states are expected to be mutually exclusive
and complete. When they are interpreted as
sufficiency oracles, they need only be mutually
exclusive in the sense that not more than one
evaluates to True.

Suppose that the program P under test is
executed corresponding to a path p in the model,
correctly reaching a state S, and that W is a next
state that can be reached from S along a transition
with guard g. If the guard g evaluates to True then
W is the correct next state. If no guard on a
transition from S evaluates to True, then the next
correct state for this execution is not known. If
guard g on the transition to W evaluates to True, but
the program is observed to transition to a state other
than W, then the program's behaviour is incorrect.
Note that there may be other paths from the system's
initial state that correctly arrive at state S for which
the transition to W is correct, but for which the

ELUSIVE BUGS, BOUNDED EXHAUSTIVE TESTING AND INCOMPLETE ORACLES

119

guard evaluates to Unknown, since the guard is only
sufficient.

The reason why we might need to settle for
guards that are sufficient but not necessary is the
potential difficulty of computing the guard g. In
general, g will be a function of both the input
entered at S, and the inputs entered on the subpath p
that led up to S during an execution of P. The steps
on the path p leading up to S provide the context for
the computation step that occurs at S. If that step is
context free, then the guard will only depend on the
input entered at S. If the step is not context free g
will have to evaluate the effects of the inputs along
the path p leading to S. It cannot do this by simply
observing the state of P at S, since then we would be
using information about the state of P in order to
validate the behaviour of P, which is circular
reasoning. There are several possible approaches to
this problem.

For the guards in our test model M, we
constructed simple path pattern recognition routines
that could be used to define simple sufficiency
guards. These routines are capable of examining a
path p leading to a state S to see if a sufficient
pattern of steps has occurred.

For example, the state deleteMember in the
model M has a transition to a next state
noSuchMember. Assume that, during testing, the
program always starts out with an empty
membership data base. Examples of possible
sufficiency guards that could be used on the
transition include the following path patterns: (no
addMember), or (for each addMember(x) there is a
deleteMember(x)). If an execution path p arrives at
S = deleteMember, and one of these simple guards is
satisfied for p and the data entered at S, then we
know that for that execution the program should
transition to the model state noSuchMember. The
transition to a different next state constitutes
incorrect behaviour. There are more complex paths
to S that do not satisfy these simple patterns, for
which the correct next state is also noSuchMember,
and along which the program also fails. For these
tests we would not be able to determine failure using
the guard, since the guard for the transition to
noSuchMember would return Unknown, and not
True. But all we need is one path for which the
guard evaluates to True.

An alternative to the use of guard path patterns is
the "second program" approach. An oracle program
would be used to determine the correct program
states and transitions. This approach may be both
feasible and necessary for some applications, but it
seems that the path pattern approach will often be
simpler.

There are several ways to use test models. One
involves a test harness that traverses paths in the

model, keeping track of path coverage, while
simultaneously executing the program under test on
the input derived from the domain generators in the
model states occurring along a followed path. As it
follows a path, the traverser evaluates program
behaviour and checks guards to see if an observed
transition to an observed screen is valid.

The second way of using a test model is to have
a separate test specifications generator that traverses
the model, generating model paths that are then
handed off to a test harness that works with one path
at a time. In our testing tool we used this approach.
The model traverser generates a test specification in
the form of a FIT test table, which is handed off to a
FIT test runner (Mugridge, 2005). This was done
for several reasons. One was to make use of an
already existing FIT tool. The other was related to
the desirability of the basic approach to systems
testing that is followed in FIT. FIT uses test fixture
classes to map from easily readable FIT test tables to
the underlying application code that has to be
executed for the specified steps in the table. We
used similar test fixtures to map from the test model
to the steps that should appear in a FIT test table. A
more detailed description of this use of the FIT
testing strategy is contained in (Barzin, 2008).

6 CONCLUSIONS

The necessity/sufficiency framework, introduced in
this paper, was found to be useful way to
characterize both individual oracles and the
construction of more general oracles from less
general components. It has been used to analyze
both hybrid and non-hybrid oracles, such as the two
examples included here. The elusive bug hypothesis
(EBH), also introduced here, is consistent with our
analysis of elusive defects and establishes a basis for
further research into the elusive bug problem. The
BET hypothesis seems intuitively reasonable on its
own, but it is the EBH that may be one of the
principal reasons why BET is effective: limited tests
are adequate because they generally contain
instances of elusive bug combinations, and these
combinations cause a failure whenever they appear.
In the case of interactive programs, the combinations
of conditions causing a failure occur on short paths,
which are associated with simple sufficiency guards.

 The use of incomplete necessity and sufficiency
oracles in automated testing can be justified per se
because they will be least as effective as robustness
testing, which uses a kind of minimal necessity
oracle. The addition of more general sufficiency

ICSOFT 2008 - International Conference on Software and Data Technologies

120

oracles, or wider-based necessity oracles, can only
improve the effectiveness of automated testing
beyond the default robustness level.

Continuing research is investigating the
foundations for Elusive Bug and BET automated
testing, the algebra of incomplete oracles, and the
application of these ideas to additional classes of
programs.

REFERENCES

Barzin, R., Fukushima, S., Howden, W., Sharifi, S.,
SuperFIT Combinational Elusive Bug Detection,
Proceedings, COMPSAC 2008, IEEE, 2008.

Boyapati, C., Khurshid, S., Marinov, D., Korat:
Automated Testing Based on Java Predicates, Procs.
ISSTA, IEEE, 2002.

Cheon, Y., Leavens, G. A Simple and Practical Approach
to Unit Testing: The JML and the JUnit Way, In
ECOOP 2002 -- Object-Oriented Programming, 16th
European Conference, Malaga, Spain, June 2002,
Proceedings. Volume 2374 of Lecture Notes in
Computer Science, Springer-Verlag, 2002.

Howden, William E., Functional Program Testing, IEEE-
TSE, 6-2, 1980.

Howden, W.E. Introduction to the Theory of Testing, in
Software Testing and Validation Techniques, E.
Miller and William E. Howden, IEEE, 1978.

Howden, W.E., Rhyne, C., Test Frameworks for Elusive
Bug Testing, Proceedings ICSOFT 07, Barcelona,
2007.

Howden, William E., Symbolic Evaluation and the
DISSECT Symbolic Evaluation System, IEEE TSE,
SE-3, 4, July, 1977.

Memon A., Banerjee I., A. Ngarajan, A., What Test
Oracles Should I use for Effective GUI Testing? IEEE
TSE, 31-10, Oct 2005.

Miller, B., Forrester J.E., and Miller, B.P., An
 empirical study of the robustness of Windows NT
applications using random testing, Proc. 4th Usenix
Windows System Symposium, 2000.

Mugridge, R., Cunningham W., FIT for Developing
Software: Framework for Integrated Tests, Prentice
Hall, 2005.

Richardson, D.J., TAOS: Testing with analysis and oracle
support, ISSTA: Proceedings of the International
Symposium on Software Testing and Analysis, ACM,
1994.

Sullivan, K, J., Yang, J., Coppit, D., Khurshid, S.,
Jackson, D., Software Assurance by Bounded
Exhaustive Testing, Proc. ISSTA, 2004.

Weyuker, E.J. On testing non-testable programs, The
Computing Journal, 25-4, 1982.

ELUSIVE BUGS, BOUNDED EXHAUSTIVE TESTING AND INCOMPLETE ORACLES

121

