TYPED ABSTRACTIONS FOR CLIENT-SERVICE
INTERACTIONS IN OSGI

Sven De Labey and Eric Steegmans
University of Leuven, Department of Computer Science, 200A, Celestijnenlaan, B-3000 Leuven, Belgium

Keywords: Service-Oriented Computing, OSGi, Object-Oriented Programming, Language Extension.

Abstract: The Open Services Gateway initiative (OSGi) is a successful attempt to bridge the gap between Java and
Service Oriented Computing. OSGi provides an LDAP-based query language for fine-tuning service retrieval
and offers an eventing mechanism that signals changes to a service’s lifecyle to all clients depending on that
service. Nonetheless, a number of challenges remain unsolved. OSGi’s service query language, for instance,

bypasses important compile-time guarantees on the syntactical correctness of queries and the language works

only for properties that never change during the lifetime of a service. What programmers need, however, is a
statically type-checked, robust query language that takes into account dynamically evolving, volatile service
characteristics. A second problem is that the lifecycle management system requires programmers to write a
considerable amount of boilerplate logic for reacting to service events. This obfuscates the business logic,

which in turn decreases code comprehension and increases the odds for introducings bugs when implementing
client-service interactions.

This paper evaluates OSGi as a platform for programming client-service interactions in Java. After focus-
ing on a number of shortcomings of OSGi’s integrated service query language and its lifecycle management
system, we propose a solution based on a programming language extension. After the conceptual definition
of these new language concepts, we show how they can be transformed to regular Java code without losing
interoperability with the OSGi standard.

1 INTRODUCTION on (OSGi, 2004). This is a key feature of OSGi
because service architectures are inherently dynamic
Object-Oriented programming languages such as Javaand volatile: services can be added, migrated, updated
are increasingly adopting the paradigm of Service- and removed, but at least, clients are given a chance
Oriented Computing (Papazoglou, 2003). One of to reactto these events.
the most popular SOA adopters is the Open Services OSGI is a successful attempt to bridge the gap
Gateway initiative (OSGi, 2006). OSGi technology between Object-Oriented Programming and Service-
provides a service-oriented, component-based envi-Oriented Computing, but at the same time, it still
ronment and offers standardized ways to manage theimposes a lot of responsibilities on the programmer
software lifecycle (Marples and Kriens, 2001). It sub- (Hall and Cervantes, 2004). Its integrated service
scribes to thepublish-find-bindmodel by providing query language, for instance, is very weak and by-
acentral service registryvhich is used by providers passes compile-time guarantees on the syntactic cor-
to publish their services along with relevant meta- rectness of a query. Also, the benefits of the lifecycle
data. Such registered services can then be retrievechotification system are overshadowed by the require-
by clients by means of an LDAP-based search mech-ment to write a considerable amount of boilerplate

anism. code, which bypasses compile-time guarantees in a
Next to providing functionality for dynamic ser- similar way.
vice registration and retrieval, OSGi also suppdsts In this paper, we evaluate the OSGi middleware as

namic reconfiguratiowf service architectures. Based a means for implementing client-service interactions
on an extension of the Event Listener pattern, the in Java-based service-oriented architectures. We iden-
OSGi middleware notifies service clients of impor- tify a number of problems and we show how these
tant lifecycle changes of the services they dependcan be solved by ServiceJ, our Java extension that

157

De Labey S. and Steegmans E. (2008).

TYPED ABSTRACTIONS FOR CLIENT-SERVICE INTERACTIONS IN OSGl.

In Proceedings of the Third International Conference on Evaluation of Novel Approaches to Software Engineering, pages 157-166
DOI: 10.5220/0001766701570166

Copyright © SciTePress

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

(1) increases the level of abstraction and (2) provides is accessed through a bundlbigndle contextwhich
compile-time guarantees on the correctness of serviceis configured by the OSGi runtime system on bundle
queries. Next, we show that code for dealing with activation. During registration, theervice objects
lifecycle changes can be transparently injected dur- added to the registry, along with the relevant metadata
ing the compilation from ServiceJ to Java, as such describing characteristics of that service. This meta-
freeing programmers from having to implement non- data is represented asdictionary containing key-

functional boilerplate code. value pairs.

This paper is structured as follows. Section 2 pro-
vides a comprehensive review of OSGi in the context ppm>25
of client-service interactions. Based on problems de- . icolor o> true; .
fined in that section, Section 3 proposes a Java exten]{ Office Service
sion, ServiceJ, that aims at solving the problems of | COmponent Registry

OSGi. The implementation of Serviceld is described

in Section 4. Related work is presented in Section 5

and we conclude in Section 6. Figure 1 shows how adfficeComponent registers a
PrinterService (hamedPl) along with a dictionary de-
scribing that the printer’s paper output expressed in

Figure 1: Service Registration in OSGi.

2 EVALUATION OF pages per minute equals 2% -> 25) and that it
provides color printing dol or -> true). Listing
CLIENT-SERVICE 1 shows how this registration process can be pro-
INTERACTIONS IN OSGI grammed in OSGi by interacting with the bundle’s

BundleContext(represented byontext).

OSGi is a dynamic module system for Java with built-
in support for dynamic reconfiguration of components
(called “bundles” in OSGi). Within the context of
this paper, the most interesting property of OSGi is
that it follows thepublish-find-bindmethodology of
Service-Oriented Computing. During the activation
of a bundle in an OSGi environment, the bundle gets
the opportunity (1) tgoublishits own services in the
registry and (2) tesearchthat registry for those ser-
vices on which the bundle itself depends. OSGi ex-
tends this dependency management mechanism by in- Listing 1: Registering services and metadata in OSGi.

clfu_dlng atn etvehntlng mehan'Sﬁ.‘at,n??f'eS Ibun:lesf Evaluation. Support for metadata is a major strength
orimportant changes to a Service's Ifecycle. An ol ¢ 45:; 5 it enables potential clients to fine-tune

fice component depegiding gifd pringsenvige, for in- their service selection strategy based on service-

stance, can create gyt listager hawnotifies .thespecific characteristics. One major drawback, how-
office component whenever a printer service is regis-

tered, modified. of unregistegdll ever, is that this query mechanism is poorly integrated

Thi) id fensi . ¢ with Java, as there are static guaranteesn the syn-
his section provides a comprenensive review of v, wica| correctness of the metadata. OSGi accepts
service interactions in OSGi. First, we explain and

) ; -~ wrongly typed key-value pairs such éspm -2) or
er:/a_luate hdow seSrV|c¢s (:Za;] b$hreg|ster3d al(_)t;'g V‘ath(ppm true) even though these pairs do not make
their metadata (Section 2.1). Then, we describe whatggnse * The Java compiler is unable to detect these
actions clients need to undertake before they can con-

h . Section 2.2). N | problems because metadata are added as strings.
sume these services (Section 2.2). Next, we evaluate’” "z cacond problem is that clients muatowthe

how clients are cqnfronted with lifecycle changes that names of the properties that were added during regis-
occur at the services they depend on (Section 2.3). Atration (such asppnt) as well as the domain of possi-

solution to the problems identified in this section is ble values for each property, but there is no standard-
proposed in further sections of this text. ized way to retrieve this information.

/l--1-- Specify metadata Properties
metadata = new Properties();
met adata. put (" ppm","25");
met adata. put ("color","true");
/l--2-- Register Service and Metadata
ServiceRegistration registration =
context.registerService(
PrinterServicelmpl.class.getName(),
printer,
met adat a);

[N
O © 0 N O U B~ W NP

2.1 Service Registration 2.2 Service Retrieval

A bundle uses the central service registry to register Most bundles are providers and consumers at the
the services it offers to other bundles. This registry same time. Next to registering services, then, they

158

TYPED ABSTRACTIONS FOR CLIENT-SERVICE INTERACTIONS IN OSGI

1|{//--1-- Retrieving Services in OSG

2| public PrinterService searchPrinterService(){

3 ServiceReference[] printerReferences;

4 try {

5 String serviceType = "(objectClass="+PrinterService.class.getName()+")";
6 String serviceFilter="(&" +serviceType+"(&(ppm>=25)(color=true)))";

7 references[] = context.getServiceReferences(null,serviceFilter);

8 context.addServicelListener(this, serviceFilter);

9 return (PrinterService) context.getService(references[0]);

10 }

11 catch(lnvalidSyntaxException ise){

12 return null; //exception is thrown when the query string contains errors
13 }

14|}

=
(&

/l--2-- Reacting to Service Lifecycle Changes in OSGi
public void serviceChanged(ServiceEvent event){
switch (event.getType()) {
case ServiceEvent. REGI STERED:
this.printer = (FirstService)context.getService(event.getServiceReference());
break;
case ServiceEvent. MODI Fl ED:
this.printer = (FirstService) context.getService(event. getServiceReference());
break;
case ServiceEvent. UNREGI STERI NG
[1...remove reference and try to find another one
break;

NN NN NN NDNDND PR PR
N o g bR WN PP O © N
—

N
<]
—

Listing 2: Retrieving OSGi services (top) and reacting targes to their lifecycle (bottom).

also need tdind services in order to successfully exe- The variables used in the LDAP quepp(andcolor)
cute their business operations. Service retrieval is car-refer to metadata entered by the service provider. The
ried out by sendini DAP-based queriet® the central ~ code required for carrying out such a service retrieval
OSGi service registry. A typicaervice quencon- is shown in the top part of Listing 2 (lines 1-13). First
tains two important pieces of information. First, the an LDAP-like query is specified, constraining the ser-
service types used to specify what kind of service is vice type (line 5) with the abovementioned Quality of
requested. The service registry needs this information Service requirements (line 6). Then, the query is ex-
to search forconformingservices. A query likeb- ecuted using the bundleBindleContext (line 7), and
jectClass=PrinterService.class, for instance, triggers aservice object is returned (line 9). AuvalidSyntax-

the service registry to return references to those ser-Exception may occur during this process (line 10-12)
vices that specifie@rinterService as one of their val- when the query contains syntax violations or typing
ues for theobjectClass property (i.e. the LDAP prop- errors.

erty representing the service type). Secondijter

can be defined to further fine-tune service retrieval. Evaluation. To evaluate the expressive power of this
These filters relate to the metadata that was attachedjuery mechanism, we consider three kindserfvice

to a service during registration, as discussed in Sec-propertiesin which service clients may be interested:

tion 2.1. (1) static, (2) dynamicand (3)derivedproperties:
.......] e Static Service PropertiesOSGi’'s LDAP-based
! P query mechanism is ideally suited for static prop-
mace | [e ve g g
component Registry with a PrinterService instance because this infor-
(&(ppm >= 25)(color=true)) mation is assumed not to change during the life-
Figure 2: Service retrieval in OSGi. time of the printer.
e Dynamic Service PropertiesProperties thatlo
Figure 2 shows how a color printer (depictedPas change when a service is operational, introduce

is requested that prints at least 25 pages per minute. major problems. The queue ofRainterService,

159

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

for instance, grows and shrinks as jobs arrive and is paramount that the depending bundle has a means
get processed. Obviously, these properties can-for tracking the lifecycle of those external services.
not be added during registration, so OSGi’s meta- In OSGi, an event-notification mechanism referred to
data system does not support them. Consequently,as the Whiteboard pattern (OSGi, 2004) is integrated
clients cannot impose constraints on dynamic ser- so as to allow service clients (i.e. depending bundles)
vice properties when searching for suitable ser- to track the lifecycle of those services on which they
vices. depend.

« Derived Service Properties third class of char- A bundle uses it8undleContext to addlisteners
acteristics comprises information that depends on that notify the bundle of any changes to a service’s
printing a file, for instance, may be calculated by the bundle may attach an LDAP-baseeent filterto
combining the file’s page count with the candidate this listener, similar to the queries that were used for
service’s cost for printing one page. But the OSGi Service retrieval. In that case, only changes to the life-

qguently, in their LDAP service queries, clients Signaled. An example is shown in Listing 2 on line 8.
cannot specify constraints on information that is This operation causes the bundle to be notified when-

derivedfrom the metadata of a service. ever a service satisfying tlserviceFilter constraint is

A related shortcoming is that service selec- registered, modified, or unregistered. The handling of
tion cannot b@ptimizedbased on service-specific these events are programmed in HeeviceChanged
characteristics. It is impossible, for instance, to Method (lines 16-29).
select thePrinterService with theminimalcost for

printing a given fl|e Indeed‘ninimizing COStEjS a Office [rrmemmemeseeeeees [6].

functionand the application of functions or qual- Component freesesenenann [1a]seeeneens ; !

ity metrics to a set of candidate services is cur- [))

rently not supported by OSGi. 51 3]
Next to shortcomings relating to dynamic and derived : : % [2]
properties, OSGi also lacks the benefits sfatically Event i
typed comprehensibleuery language (as shown on LISLENEr |qummmmmimssrssisnees /) S

g = A
lines 5-6 in Listing 2). Similar to the service regis- i (PPm>=25 [15]
tration process where syntactically incorrect metadata : -

could be added, it is possible to write inconsistent i..[jp}...s| BundleContext
or syntactically incorrect queries. These errors will
only be detected at runtime when the query is parsed. Figure 3: Lifecycle changes to OSGi services.

Programmers using LDAP-based queries must there-

fore expect to catch amvalidSyntaxException every Figure 3 shows a typical reaction to a lifecycle

time they want to retrieve services (cfr lines 11-13 change. On bundle activation, tkdéficeComponent

in Listing 2). This is in sharp contrast with regu- searches for BrinterService (1a)and asks it8undle-

lar method invocations, of which the Java compiler context to create anEventListener along with an

provides strong guarantees about their syntactical cor-| DAP event filter (1b—1c)such that thefficeCom-

rectness and the abscence of typing errors. ponent is informed of any changes to the lifecycle of
In summary, the OSGi query mechanism idya ~ thePrinterService. This service is unregistered unex-

namicallytyped query language that only deals with pectedly, causing annregistration evento be sent

staticservice characteristics. What we need, however, to all the interested event listend), one of which

is astaticallytyped query language that s able to deal eventually delivers it to thefficeComponent (3). The

with dynamic, volatileservice properties. latter now removes all references to this service. After
_ j a while, a secon@rinterService, P2, joins the SOA.
2.3 Service Lifecycle Management Assuming that this new service satisfies the LDAP fil-

ter of the event listener, thefficeComponent now re-
The primary challenge in OSGi environments is the ceives a notification through iBventListener (4—5).
handling of inter-bundle dependencies (OSGi, 2004). It reacts to this event by binding ips i nt er variable
Such dependencies occur when the successful executo P2, the newPrinterService (6).
tion of a business method in one bundle depends on
the existence and proper working of one or more ser- Evaluation. The first problem with this approach
vices published bytherbundles. In this situation, it is related to the limited expressive power of LDAP-

160

TYPED ABSTRACTIONS FOR CLIENT-SERVICE INTERACTIONS IN OSGI

basedevent filters These filters cannot prevent the client-service interactions in volatile service architec

client bundle from receivingpurious events An
example of such a spurious event is when multiple
Print er Servi ce instances satisfy the eventfilter that
was attached to the event listener. In that case, all
changes to the lifecycle of these services will be sig-
naled,even when the bundle does not depend on all
of these servicesIn other words, the bundle is no-
tified about events occurring at totally unrelated ser-
vices that happen to satisfy the bundle’s LDAP event
filter. Bundles are thus forced to check whether the
event source is identical to the service they depend on
beforereacting to an event notification; and failure to
do so (such as our sample in Listing 2) may lead to
erroneous runtime behaviour that is extremely hard to
debug.

A second disadvantage is the lack of separation of
concerns between business logic and technical, non-

tures:
e Typed Abstractions. Programmers must have the

same compile-time guarantees about the correct-
ness of service interactions as they have when pro-
gramming local object interactions. Among oth-
ers, this creates a need for a statically typed query
language.

Expressiveness. Service architectures are dy-
namic and volatile by nature. Therefore, a service
query language must be able to take into account
dynamicandderivedservice properties.

Transparency. The distributed nature of ser-
vices living in loosely coupled, unrelated bundles
makes it impossible for clients to be sure of the
availability of a service. It is paramount that such
volatility and availability problems are hidden for

programmers as much as possible, since failure to
do so obfuscates the business logic of the service-
oriented application. Changes to a service’s life-
cycle, as well as general availability problems and
other technical middleware issues must be trans-
parently dealt with by the programming model

functional code. OSGi forces programmers to write
a considerable amount of boilerplate code for build-
ing and registering event handlers, and this must be
done foreveryservice a bundle depends on. Ide-
ally, technical middleware interactions for handling
service registration, modification, and unregistration
are hidden for programmers, since dealing with these ~ and by its accompanying middleware.
non-functional concerns would firmly increase the In the next Section, we propose an extension to the
complexity of implementing the business logic. In Java programming model that integrates specialized
OSGi, however, these event notifications are mixed support for implementing client-service interactions.
with the business logic, and it is the responsibility of We show how these language concepts can be used
the programmer to react on any problem that may oc- for the implementation of OSGi applications, and we
cur when the client bundle interacts with an external compare them to the original OSGi concepts.

service.

Another problem that remains unsolved is what
should be done when a client bundle engageauth
tiple, consecutivénteractions with a remote service.
Clients receiving a service unregistration event in the
middle of such a client-service transaction, cannot
transparentlyestarttheir transaction by switching to

3 TYPED ABSTRACTIONS FOR
OSaGil

In this section, we show how the language concepts
an alternative service endpoint. Rather, the unregis- ntroduced by our Java extension (called ServiceJ) can
tration event would trigger a search for an alternative P& used as a statically checkable service query lan-
service, and the transaction would then continue as9u29e- We also show how the transformation from
if nothing happened. In other words, the first part Serviced to Javg alloyvs for the tran_sparent injection
of the transaction would be executed on the service Of code for dealing with lifecyle modification events

being unregistered, whereas the second part wouldSent by external services. The overall goal of this ex-

be executed on another, unrelated service. This lack€NSION is o exonerate programmers from having to
of support for bundling related client-service interac- 4@l With the technical issues introduced by Service-

tions into a client-service transaction thus violates im- Oriénted Computing, and to provide them with static

portant properties such asomicityandisolation guarantees on the correctness of their client-service
interactions. Section 3.1 shows how OSGi service

retrieval is improved by our extension. Then, Sec-
tion 3.2 shows how lifecycle changes such as service
modification and service unregistration are transpar-
In this paper, we focus on the realization of three ently handled. Finally, Section 3.3 shows how Ser-
important design goals concerning the definition of viceJ eases service registration in OSGi service archi-
a programming language suitable for implementing tectures.

Design Goals

161

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

3.1 Finding and Binding Services

ServiceJ introduces (1ype qualifiergo identify vari-
ables depending on services, and {2glarative op-
erationsfor fine-tuning the set of candidate services
that can be assigned to a variable that depends on
service. Both extensions are discussed below.

pool| PrinterService printer;
printer.print(myFile);

—~

Figure 4: The pool qualifier triggers transparent service
lookup based on the service typrifterService), and sup-
ports transparent service binding and service failover.

ServiceRegistry

Type Qualifiers. Serviced introduces type qualifiers

that were specified by means of the declaradive
derby operation, which is explained below.

Example. Figure 4 depicts how a reference to a
PrinterService is decorated with th@ool quali-
fier. It shows how the programmer is exonerated from

6}mplementing interactions with the OSGi middleware

in order to obtain service references. Indeed, pro-
grammers simply declare their service variable with
a pool qualifier and start invoking operations with-
out initializing it. Initialization is now the responsi-
bility of the ServiceJ middleware, which selects an
appropriate serviceP) before invoking thepri nt
operation. Shoul@?2 fail during this interaction, then
ServiceJ automatically injects another service into the
pool variable and reinvokes the operation.

Declarative Operations.Similar to the LDAP-based

query language provided by OSGi, ServiceJ incorpo-
rates specialized support for fine-tuning service se-
lection. In contrast with OSGi, however, these op-

to distinguish variables holding service references erations are now fully integrated within the program-
from variables pointing to local objects. This differ- ming languages in the form diclarative operations
entiation allows the ServiceJ-to-Java transformer to In ServiceJ, queries no longer refer to untyped meta-
inject additional operations for transparently dealing data, but instead, they directly relate to the opera-
with the typical challenges introduced by service ar- tions that are exported by the service’s interface. In
chitectures. Currently, two type qualifiers are defined: stead of using an untyped property such ppnf,
e Thepool Qualifier. This type qualifier is used for instance, queries in ServiceJ refer tpuablic in-

to indicate that a variable depends on a service spector methoduch asgetPagesPerMinute(), which

published by another bundle. A declaration such is exported by therinterService interface. This pro-

as ‘pool PrinterService printer” indicates that the Vides better compile-time guarantees on the syntacti-

bundle depends on RrinterService exported by

cal and conceptual correctness of queries. Currently,

some other bundle. The advantage of signaling two declarative operations are defined for fine-tuning
this information, is that the ServiceJ-to-Java trans- Service selection:

former caninject special middleware interactions
for initializing the variable. This exonerates pro-
grammers from interacting with the OSGi mid-
dleware so as to configure all their service de-
pendencies. Thpool qualifier causes the trans-
former (see Section 4 for details) to transpar-
ently inject operations for (1) service retrieval, (2)
non-deterministic service binding, and (3) service
failover. Because it installs a non-deterministic
service selection protocol, theool qualifier is
typically used when all type-conforming services
in the architecture are assumed toifiterchange-
able

e Thesequence Qualifier. Sometimes, certain ser-

vices are preferred above others based on service-

specific characteristics. In that casejetermin-
istic service selection procedure is required. The
sequence qualifier, which is asubqualifierof the
pool qualifier, is used to decorate variables de-

pending on external services that require a deter-

ministic selection strategy driven kyreferences

162

e Thewhere Operation This operation is used to
constraina set of candidate services according to
a number of business requirements and Quality
of Service constraints. Thus, thwere opera-
tion can be used to replace OSGi’s untyped query
language. The service query from Listing 2, for
instance, can be translated using ther e oper-
ation as follows:

pool PrinterService p
where p. get PPM)>=25 &&

p. supportsCol or();

This enables the compiler to provide more guar-
antees on the correctness of the query when com-
pared to the string-based LDAP queries of OSGi.
But thewher e operation is also more expressive
than basic LDAP expressions. Indeed, by using
operations published in the service interface, our
query language can take into account the most
up-to-date information of a service, thus allowing
programmers to impose constraints dynamic

TYPED ABSTRACTIONS FOR CLIENT-SERVICE INTERACTIONS IN OSGI

and derived service properties, whereas OSGi's candidate service@). This set is filtered, retaining
current query language can only take into account only those services that satisfy the constraint that was
static metadata information that was entered dur- specified by the user in @here clause. From this
ing service registration. An additional benefit is constrained set, a service is non-deterministically se-
that thewher e operation is combined with the lected, and therint operation is invoked on i3).

pool qualifier, implying that these constrained This unexpectedly returns an err@), triggering the
sets of candidate services still provide transparent ServiceJ middleware to transparently select another
service selection, injection and fail-over. services from the constrained pdb) before reinvok-

« Theorderby Operation This operation is used ing the operation on that new service endpoint.

to sort a set of candidate services according to
the preferences of a user. In tReinterService

example, a programmer can use the orderby
operation to select the printer that minimizes the
cost for printing a given file. Such a query can be

3.2 Transparent Lifecycle Management

In Section 2.3, we have shown that lifecycle manage-

implemented as follows:
sequence PrinterService p

orderby p.getCostFor(file);
p.print(nyFile);

ment is a tedious task: programmers have to write
code for the registration of event listeners that yield
spurious notifications due to the limited expressive-
ness of OSGi's LDAP-based event filtering expres-
sions. In Servicel, on the other hand, all events re-
lating to non-functional concerns such as service reg-

Note that this query necessitates the use of theistration, modification and unregistration are handled

sequence qualifier because deterministicser-

transparentlyby the middleware. Given a service in-

vice selection policy is requested. Detailed in- teraction such agrinter.print(myFile) in Figure 5, the
formation about the use of type qualifiers and ServiceJ middleware transparently searches for a ser-

their associated service selection strategies can bevice reference and injects it into tipeinter variable.
found in our previous paper (De Labey, S. and Notifications about changes to this service’s lifecycle

Steegmans, 2007).

Figure 5: Runtime view of constrained service set.

are handled by the middleware. Service unregistra-
tion, for instance, is handled by releasing the service
reference, and by looking for an alternative service

pool PrinterService p . . .
8| where p.geterm()>25 &s that satisfies the constraints that where imposed on
) p.supportsColor(); thepool by means ofiher e or orderby clauses.

p.print(myFile);

T
S il runtime system Service Sessions.One remaining challenge is the
5 P, execution of a complex business operation compris-
3 ing multiple interactionsbetween the client bundle
5} 2] (3] —s prirj(V] g p
E 2° . .
° 4] orrol e gn.d an gxternal service. qu conglstency reasons,
£ b P | A - it is crucial that the pool variable is bound to the
= 12 — S i A
SINNSYA @ [T] ¥ same servicdor the entire operation. This calls for
a coarser-grainedtransactional failover mechanism

that extends our basic failover strategy (as explained

in Section 3.1). ServiceJ supports these operations by
introducingsessioR. ..} blocks to combine related
Example. Figure 5 shows how declarative opera- service interactions intsession{De Labey, S. and
tions are combined with type qualifiers so as to cre- Steegmans, 2007). On entering a session block, the
ate a higher level of abstraction for the program- runtime injects a service into the pool variable as de-
mers of client-service interactions. At the level of scribedin Section 3.1. From then on, the pool variable
the source code, no references to physical servicesjs lockeduntil the session ends successfully, or until
nor any other interactions with the OSGi middleware the injected service becomes unreachable, e.g. due to
are found. The programmer only specifies the ser- service unregistration. In the latter case, the runtime
vice type PrinterService) along with the relevantcon- abortsthe current sessiomnlocksthe pool variable,
straints that must be satisfied by the service (as an ar-injects another pool member, and then restarts the
gument of thenher e operation). This is enough to entire session. By introducing these session-scoped
invoke thepri nt operation in Figure 5. locks on pool variables, ServiceJ allows developers to

The middleware, then, uses this information to think of a session as atomic, fault-tolerant interac-
query the OSGi service regist(§) to obtain a set of tion with an external service.

163

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

Example. Figure 6 shows an example ofsarvice renewed registrations are required to update the char-
sessionwith a PrinterService. First, the file to be acteristics of a service object, since the metadata is
printed is uploaded to the printer server, which re- fully integrated inside that service object. This is dif-
turns ani d identifying the print job. Then, the client ferentin OSGi, where an external dictionary contains
does some extra processing, and finally it invokes the the metadata information. Changes to a service ob-
print operation with thé d as an argument. Toillus- ject, then, must be reflected in the dictionary, and
trate the runtime behaviour of a client-service trans- this often requires unregistration and renewed regis-
action encapsulated in a session block, we assumetration, which both produce a large number of events.
that thePrinterService unregisters between these two
client-service interactions.

The runtime system first invokes tlipl oad op-
eration onP1 (1), which returns andld and then un- 4 IMPLEMENTATION
registers(2). Unregistration is signaled to the client
by means of arunregistration event This event is ~ We have specified a number of goals concerning
transparently handled by the runtime system, which the implementatiorof these new language concepts.
injects a new service into the pool variabl® and First, it is paramount that the resulting program is
then restarts the entire service session. Tjleoad OSGi-compliantThis is because OSGi provides sup-
operation is invoked on this new service, which re- portfor other technical challenges outside the domain
turns a new d (4), and eventually, theri nt opera- of ServiceJ, such as installing, resolving and activat-

tion is invoked orP2 with the correct d (5). ing bundles, as well as wiring bundles together and

managing these compositions. Second, we want to

| Session sequence PrinterService p reuse the standard Java compiler and the Java Virtual

3 2’2:;‘;?'gfzziﬂ;:;z;(mymle);]‘b"”d‘ﬁ’) Machine, which requires ServiceJ applications to be

8¢ string id = £s.upload(myFile); translated to OSGi-compliant Java applications as a
s| :égii‘(’igjunfegi“ers — rebind & restart session preprocessing stepThis section focuses on how this

} preprocessing step is realized.

- runtime system /]

Z§ £s.upload(myFile) et unregister |_ P, Pre—tran_sformation. Figure 7 shows how ServiceJ

g [af<send evdl 12 code(l) is read by a Iexgr and a parser so as to create

g o . a ServiceJ metamodel instancBuring this process,

= fs'P““t‘ld’_[‘.‘]‘feb’”d&’e”y Z :) the semantically poor nodes of the abstract syntax

= 5L tree that was created by the ServiceJ parser are trans-

Figure 6: Service sessions provide a basic transaction-mech formed to semantically rich instances of metamodel

anism for complex client-service interactions. classeq2). This metamodel instance, then, is fed to

the ServiceJ-to-Java transformer, which is responsi-

o . ble for transforming the ServiceJ metamodel instance

3.3 Publishing Services into an equivalent Java metamodel insta(g&)e

The main objective of the ServiceJ programming Transformation. The input of the transformation is
model is to provide an appropriate programming lan- a ServiceJ metamodel instance representing the Ser-
guage for implementing client-service interactions, viceJ application. This metamodel is an extension of
but this programming model is also beneficial $er- Jnome (van Dooren, M. et al., 2007), our Java meta-
vice providerssince service registration is simplified model. It introduces classes modeling the newly in-
as well. In stead of registering untyped metadata in troduced language concepts. Pool variables, for in
dictionaries that bypass important compile-time guar- stance, are modeled asv@mberVariable with an in-
antees, programmers may now implement inspector stance of th€ool metamodel class attached to it. Dur-
methods to describe service characteristics. Rathering the transformation of thisemberVariable, the
than adding key-value pairs likeppm 25), for in- transformer will detect the presence of this qualifier,
stance, programmers now implement operations suchand it will inject into the Java metamodel all neces-
asgetPagesPerMinute() that are exported by the ser- sary OSGi interactions for initializing the pool vari-
vice interface. The use of these inspector methods notable. Also, when a method is invoked on a pool vari-
only allows service queries to take into accoudt able the transformer will detect that the target of the
namicandderivedproperties (see Section 3.1), butit method invocation refers to an instance of thml

also solves the problem of managidganging char- metamodel class. Figure 7 shows what actions are un-
acteristicsof services. Indeed, no unregistrations or dertaken in this situation: the transformer injects spe-

164

TYPED ABSTRACTIONS FOR CLIENT-SERVICE INTERACTIONS IN OSGI

Service] Code conceptual view for programmers - Compiled
Java Code

10 e Sk

_@ yinstance of 3 transformation _@
Service) Service)-to-Java Java Java Code
Metamodel Instance Transformer Metamodel Instance

Service Discovery Service Fail-over Middl
e : Service Selection Service Transactions Iddieware
OSGi interactions Service Binding Service Volatility handling support
Service Invocation Service Monitoring

Figure 7: Transformation of ServiceJ code to compiled Jadec

cific OSGi interactions, such agrvice discovergnd that a property must have, whereas OSGi allows pro-
service selectionand also makes the code more ro- grammers to use operators such &5 dnd “>=" to
bust by injecting middleware support feervice fail- specifyrangesof values, rather than a single value.
overandservice transactiong). Moreover, Jini does not install an event notification
architecture, but instead relies onleasing system
Post-transformation. ~ After the equivalent Java instead. Clients retrieving a Jini service are given a
metamodel has been built by the Servicel-to-Javalease representing the time they are allowed to use the
transformer, a simple code writ¢s) transforms the service. Leases must be renewed temporarily, which
Java metamodel instance javafiles (6). These files also introduces a programming overhead.
can be compiled by the standard Java compiler, thus Cervantes and Hall observed that OSGi does not
finishing the compilation proce¢). provide any support for managing service dependen-
) o]] cies apart from the basic event notification system in
While the compilation of ServiceJ programs is an ex- (Hall and Cervantes, 2003) and (Cervantes and Hall,
tensive process, it is important to note that all this 2003). They propose to improve dependency manage-
is entirely shielded for developers. The transforma- ment based ofnstance descriptors Such instance
tion procedure is best seen as a black box consum-gescriptors are XML files describing how a bundle
ing ServiceJ source files and producing compiled Javagepends on external services. <Aequi res> tag is
_classg-s. Developer intervention is never required dur- jntroduced to specify theervice typethe cardinality
ing this process. of the dependency, and tlfiéer condition Program-
mers may also define tHgind and unbind methods
that should be called when a service is to be bound or
5 RELATED WORK unbound. One problem with this approach is that the
information to be specified isntyped even though it
Our language concepts most closely resemble thedirectly refers to public methods provided by the bun-
constructs that are introduced in object-oriented lan- dle. Also, the filter condition is now isolated in an
guages such as WebOz (Hadim and et al., 2000), XML file, but it is still an LDAP-based query string,
WebL (Kistler and Marais, 1998), and XL (Florescu which lacks support for dynamic and derived service
et al., 2003) to enable service failover. But those con- properties. Moreover, instance descriptors create a
cepts rely on hardwired service references, so they fail strong dependency between a Java file and an XML
to capture thevolatility of services in an OSGi archi- file, and they divide important decisions concerning
tecture, and they cannot support dynamic service dis-the business logic between these two files.
covery. These languages also lack support for defin- Our approach of introducing type qualifiers and
ing constraints and selection policies, whereas our ex-qualifier inference is based on the approach followed
tension integrates that support by means of declarativein Javari (Tschantz and Ernst, 2005). We have
operations. proven the type soundness of this language extension
Jini (Sun, 2005) is a close competitor to OSGi, in a way similar to the Java extension presented in
since it also attempts to bring Service-Oriented Com- (Pratikakis et al., 2004). For more information about
puting to the world of object-oriented programming the formal development of ServiceJ, we refer to (De
(Huang and Walker, 2003). One drawback of Jiniwith Labey, S. et al., 2006) and (De Labey, S. and Steeg-
respect to OSGi, is that Jini's query mechanism is mans, 2007).
much weaker than OSGi’s LDAP-based queries. Jini
relies onentry objectsrepresenting thexactvalue

165

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

6 CONLUSIONS & FUTURE Computing in Distributed Oz. I€onference on Par-
WORK allel and Distributed Processing Techniques and Appl.

Hall, R. and Cervantes, H. (2003). Gravity: support-

. e e ing dynamically available services in client-side ap-
The Open Services Gateway Initiative is a success- plications. SIGSOFT Software Engineering Nates

ful attempt to bridge the gap between object-oriented 28(5):379-382.

programming and serwce-or_lented computmg,.but & Hall, R. and Cervantes, H. (2004). Challenges in building
number of challenges remain unsolved. In this pa- service-oriented applications for OSGL.ommunica-
per, we have focused on problems stemming from the tions Magazine, IEEF42(5):144-149.

limited expressiveness, comprehensibility and static yang, v. and Walker, D. (2003). Extensions to Web Ser-

guarantees that the OSGi's LDAP-based query lan- vice Techniques for Integrating Jini into a Service-

guage provides. We have also shown that the lifecy- Oriented Architecture for the Grid. IRroceedings of

cle management system requires too much program- the International Conference on Computational Sci-

mer intervention and that it too often signals spurious ence

events. Kistler, T. and Marais, H. (1998). WebL - A Programming
To solve these problems, we propose an integra- Language for the Web. Ith Intl. Conference on the

tion of ServiceJ language concepts into the OSGi World Wide W?b ’
programming model. Firstype qualifiersallow the Marp\'/‘j:;/ a-it?eﬂglgrfgisﬁtrééﬁg%% Ozgfv?e?ﬂirl‘zég‘ggfngate'
Servu_:eJ-to—Java transformer to inject ad_d|t|on_al in- munications Magazin@9(12).
structions for transparently handling service failures) \ dered h
and lifecycle changes. Secondeclarative opera- ~ OSCl (2004). Listrierag jeonsidere arm-
tionsallow programmersto fine-tune service selection i e whitghoare pattern. n
ol pf g Thrd | Www.0sgi.org/documents/ostgichnology/
in a type-safe way. Third, programmers can demar- 4 . L -

. . - . . OSGi (2006).Open Services Gateway Initiative Specifica-
cate_ client-service transactions usisggssion blocks_ tion v4.0.1 — http://www.osgi.org
leaving the complex management of such transactions

entirely to the ServiceJ middleware. Papazoglou, M. (2003). Service Oriented Computing: Con-

cepts, Characteristics and Directions.Aroceedings

Future Work. A proper event-notification system of the 4th International Conference on Web Informa-
should also support the notification dfinctional tion Systems Engineering

events These are events that directly relate to the Pratikakis, P., Spacco, J., and Hicks, M. (2004). Transpar-
business logic of an application (e.g. an event sig- ent Proxies for Java Futures. ®OPSLA '04: Pro-

naling that a file is successfully printed). We plan to ceedings of the 19th annual ACM SIGPLAN confer-
ence on Object-oriented programming, systems, lan-

extend ServiceJ's programming _mode] so as to inte- guages, and applicationpages 206-223, New York,
grate language support for working with this second NY, USA. ACM.

class of events. Sun (2005). The Jini Architecture Specification and API
Archive — http://www.jini.org

Tschantz, M. S. and Ernst, M. D. (2005). Javari: Adding
REFERENCES reference immutability to Java. |@bject-Oriented
Programming Systems, Languages, and Applications

Cervantes, H. and Hall, R. (2003). Automating Service De- &OSC')AESLA 2005) pages 211-230, San Diego, CA,

pendency Management in a Service-Oriented Compo- .

nent Model. InProceedings of the 6th Workshop on Vvan Dooren, M., Vanderkimpen, K., and De Labey, S.
Foundations of Software Engineering and Component (2007). The Jnome and Chameleon Metamodels for
Based Software Engineeringages 379-382. oopP

De Labey, S. and Steegmans, E. (2007). ServiceJ. A Type
System Extension for Programming Web Service In-
teractions. InProceedings of the Fifth International
Conference on Web Services (ICWSQ07)

De Labey, S., van Dooren, M., and Steegmans, E. (2006).
ServiceJ: Service-Oriented Programming in Java.
Technical Report KULeuven, CW451, June 2006.

Florescu, D., Gruenhagen, A., and Kossmann, D. (2003).
XL: A Platform for Web Services. Ifroceedings of
the First Conference on Innovative Data Systems Re-
search

Hadim, M. and et al. (2000). Service Combinators for Web

166

