
MODELING OF SERVICE ORIENTED ARCHITECTURE
From Business Process to Service Realisation

Marek Rychlý and Petr Weiss
Faculty of Information Technology, Brno University of Technology, Czech Republic

Keywords: Service-Oriented Architecture, Business Process Model, Service Specification, Composite Services.

Abstract: This paper deals with modeling of Service-Oriented Architecture (SOA). SOA is an architectural style for
analysis, design, maintaining and integration of enterprise applications that are based on services. Services are
autonomous platform-independent entities that enable access to one or more capabilities, which are accessible
by provided interfaces. The goal of SOA is to align business and IT architectures. Hence, a new designed
service has to meet business requirements that are traditionally specified by a business process diagram. The
approach, presented in this paper, helps to bridge the semantic gap between business requirements and IT
architecture by using a method for transformation of business processes diagrams into services diagrams. In
particular, the method deals with process realisation based on services and it describes choreographing of
services towards fulfilling business goals.

1 INTRODUCTION

Service-Oriented Architecture is an architectural
style for aligning business and IT architectures. It is
a complex solution for analyses, design, maintaining
and integration of enterprise applications that
are based on services. Services are autonomous
platform-independent entities that enable access to
one or more capabilities, which are accessible by
provided interfaces. A new designed service has
to meet business requirements that are traditionally
specified by a Business Process Diagram (BPD).

This paper deals with modeling of business pro-
cess realisation. For this purpose, a method based
on service modeling is introduced. The aim of the
method is to transform business processes modeled
in the Business Process Modeling Notation (Object
Management Group, 2006a) into UML service dia-
grams. Those diagrams show how to choreograph ser-
vices to fulfil business goals. Furthermore, the trans-
formation method is designed considering fundamen-
tal SOA principles (Erl, 2005) such as loose coupling,
service independence, stateless and reusability. This
approach leads to easy extensibility of the proposed
method, e.g. by using business services templates
(Constantinides and Roussos, 2005), and allows link-
ing the services to underlaying component-based sys-

tems with support of formal specification (Rychlý,
2007).

The remainder of this paper is organised as fol-
lows. In Section 2, the exemplary business process
is introduced in more detail. The Section 3 describes
service specification according to the mentioned busi-
ness process. Section 4 focuses on some issues related
to modeling of composite services, such as passing
of data between services and holding states of ser-
vices that are participating in the choreography of
a composite service. Section 5 finishes transforma-
tion of the exemplary business process into a ser-
vice that provides requested business functionality.
Section 6 reviews main approaches that are relevant
to our subject and discuss advantages and disadvan-
tages of our approach compared with the reviewed
approaches. To conclude, Section 7 summarises the
presented approach, current results and outline the fu-
ture work.

2 BUSINESS PROCESS MODEL

It is evident that an input for the method of transfor-
mation of BPD into service diagrams is a business
process (BP). Figure 1 shows an exemplary “Pur-
chase Order” business process model (BPM). This

140
Rychlý M. and Weiss P. (2008).
MODELING OF SERVICE ORIENTED ARCHITECTURE - From Business Process to Service Realisation.
In Proceedings of the Third International Conference on Evaluation of Novel Approaches to Software Engineering, pages 140-146
DOI: 10.5220/0001765101400146
Copyright c© SciTePress



Figure 1: Business process model of the “Purchase Order” process.

example is adopted from (Object Management Group,
2006b).

As we can see the Figure 1, there are three
roles that are responsible for realisation of the
“Purchase Order” process: “Invoicing”, “Shipping”
and “Scheduling”. Processing starts by receiving a
purchase order message. Afterwards, the “Invoicing”
role calculates an initial price. This price is not
yet complete, because the total price depends on
where the products are produces and the amount of
the shipping cost. In parallel, the “Shipper” role
determines when the products will be available and
from what locations. After the shipping information
is known, the complete price can be evaluated.
At the same time, the process requests shipping
schedule from the “Scheduler” role. Finally, when
the complete price, shipping info and shipping
schedule are available, the invoice can be completed
and sent to the customer.

The next section describes the transformation of a
BP diagram into service diagrams (BPD2SD trans-
formation) in details.

3 MODEL TRANSFORMATION

According to (Arsanjani, 2004), the initial activity in
the development of a new SOA-based system is the

service identification. It consists of a combination
of top-down, bottom-up, and middle-out techniques
of domain decomposition of legacy systems, existing
asset analysis, and goal-service modeling. The result
of the service identification is a set of candidate ser-
vices. More details about service identification can be
found in (Inaganti and Behara, 2007). In the context
of service oriented design, the service identification is
a prerequisite for the BP2SD transformation. Since
this paper presents basics of the transformation and
uses a motivating example, the service identification
was omitted.

The BPD2SD transformation consists of two
basic steps. The first step is to identify which tasks
from the BPD represent service invocations and
therefore will be modeled as services in service
diagrams. This decision is closely associated
with the service identification and takes into
account such aspects as which service providers
provide which services, Quality of Service (QoS)
requirements, security issues, etc. (Arsanjani,
2004) Such an analysis is beyond the scope of
this paper. Here, we will assume that following
tasks (from Figure 1) were identified as service
invocations: “Initiate Price Calculation”, “Complete
Price Calculation”, “Request Shipping”, “Request
Production Scheduling” and “Send Shipping
Schedule”. These tasks will be modeled as business
services in the next step.

MODELING OF SERVICE ORIENTED ARCHITECTURE - From Business Process to Service Realisation

141



Figure 2: An overview of identified services, their interfaces
and connections.

The second step, the transformation process it-
self, is based on a technique, which is introduced in
(Amsden, 2005). The technique integrates business
process modeling and object modeling by providing
a Business Services Model (BSM) that is a mediator
between business requirements and an implementa-
tion. This paper proposes an extension of the above
mentioned technique and focuses more on service re-
alisation.

The Figure 2 shows an overview of iden-
tified services derived from the BPM (see
Figure 1). There are five primitive services:
InitPriceCalculation, CompletePriceCalculation,
RequestShipping, RequestProductionScheduling and
SendShippingSchedule and two composite services:
ProcessScheduling and ProcessPurchaseOrder.
Primitive services are derived according to service
invocation tasks, and are responsible for providing
functional capabilities defined by the task. The
convention used in this paper is to name a primitive
service the same as the related task. A composite
service is an access point to choreography of other
primitive or composite services.

In this case, the ProcessScheduling service repre-
sents the business process itself and choreographs the
rest of above mentioned services. The ProcessPur-
chaseOrder demonstrates principle of composite ser-
vices by choreographing RequestProductionSchedul-
ing and SendShippingSchedule. Behaviour of these
services is described later in the text.

Each service in Figure 2 is modeled as a stereotype
service, which extends the UML class component
(Object Management Group, 2005). This concept is
introduced in (Weiss and Zendulka, 2007). Every
service interacts with its environment via interfaces.
During an interaction, service can act two different
roles: service provider or service consumer. These
two roles are distinguished in the service model by

means of a port. The provider port of a service im-
plements interfaces that specify functional capabili-
ties provided to possible consumers of the service,
while the consumer port requires interfaces of defined
services to consume their functionality.

Each service provides at least one interface at
the consumer port (see Figure 2). Such an interface
involves service operations, which realise the
functional capability of the service. The parameters
of the service operations describe the format of
an incoming message. Details of all services
(denoted by stereotype service) including their
interfaces (stereotype interface) and relationships
are shown at Figure 3. The relationships between
services and interfaces are labelled by stereotype
use for interfaces of required services and by an
implementation relation for provided interfaces.

A service can be invoked in two modes:
synchronously and asynchronously. The mode,
which is used for a particular interaction, depends
on the format of incoming message that is sent
to the service (i.e. “a request”). For example, if
we want to use the InitPriceCalculation service in
synchronous mode, the message will contain only
basic service data (customerInfo and purchaseOrder).
For the asynchronous mode, it is necessary to add
the message identification information (replyToURL
and requestID) that is used to identify a destination
service for a reply to the asynchronous request.

4 COMPOSITE SERVICES

In our approach, we will prefer a flat model
to a hierarchical model of the service-oriented
architecture. It means that a composite service does
not enclose its “internal” services participating in
the choreography and does not delegate its interfaces
to them. It only represents a controller of these
services, i.e. the composite service communicates
with its neighbouring services at the same level of
hierarchy in the “producer-consumer” relationship
(see service ProcessScheduling in our example,
which can be viewed as a composite service
consisting of services RequestProductionScheduling
and SendShippingSchedule). The flat model provides
better reusability of services, because the context
of a service is defined only by its implemented (i.e.
provided) and required interfaces, not by its position
in the hierarchy. However, there are some problems
we must cope with, especially the issue of passing
of data between services that are participating in the
choreography of a composite service.

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

142



Figure 3: Specification of interfaces and implementations of all services and their relations.

MODELING OF SERVICE ORIENTED ARCHITECTURE - From Business Process to Service Realisation

143



The other characteristic feature of our approach
is the restriction on services’ interfaces to provide
only one functionality. Regardless, it is possible to
implement service with more interfaces (i.e. with
more functional capabilities), but the interfaces must
provide independent functionality. It means, services
are not allowed to hold any state information between
two independent incoming requests, in spite of which
interface the service was invoked on. Although
“stateless services” provide better reusability we
must cope with the issue of holding states of services
that are participating in the choreography in relation
with the state of the composite service (e.g. passing
of states between services InitiatePriceCalculation and
CompletePriceCalculation in our example).

The solution of both issues, the issue of passing of
data between services and the issue of holding states
of services that are participating in the choreography,
can be demonstrated on behaviour of the services
ProcessPurchaseOrder, InitiatePriceCalculation
and CompletePriceCalculation in our example (see
Figure 3). At first the ProcessPurchaseOrder
service requests the service InitiatePriceCalculation.
Consequently, the service InitiatePriceCalculation
prepares a price calculation (the initial calculation)
and stores it for later use, i.e. the service changes a
state of the price calculation process (see Figure 1)
implemented by the composite service ProcessPur-
chaseOrder. This state must be transformed into an
initial state of the service CompletePriceCalculation,
which is requested subsequently by the service
ProcessPurchaseOrder and which completes price
calculation based on the initial calculation. The
service ProcessPurchaseOrder forwards returning
data (encoded state) of the first service to the other
one. The merit of such design is independence of
requested services, although they share data and the
state.

5 THE SERVICE
ProcessPurchaseOrder

In previous sections, we have described specifications
of individual services that are participating in
the business process (see Figure 1). More
precisely, the services InitiatePriceCalculation,
CompletePriceCalculation, RequestShipping and
ProcessScheduling were described. This section
deals with composing those services into a single
service ProcessPurchaseOrder representing the
business process in its entirety. Specification of
the ProcessPurchaseOrder service has to include
description of its structure (i.e. an architecture of the

service) and its internal behaviour (i.e. collaboration
of involved services and the “orchestration” of the
ProcessPurchaseOrder service).

The architecture of the ProcessPurchaseOrder
service is described in Figure 3. The service provides
ProcessPurchaseOrder interface, which allows
synchronous and asynchronous calls of the service,
and auxiliary AsyncReply interface for accepting
replies to asynchronous calls from required services.
These required services are represented by their
interfaces InitiatePriceCalculation, CompletePriceCal-
culation, RequestShipping and ProcessScheduling.
Connection of the services is noticeable also in
Figure 2.

The behaviour of the ProcessPurchaseOrder
service is described in Figure 4. After receiving
a request from a Consumer, the service asyn-
chronously calls services InitiatePriceCalculation,
RequestShipping and ProcessScheduling. When
both InitiatePriceCalculation and RequestShipping
notify (via the AsyncReply interface, see Figure
2) they have finished processing the requests,
the CompletePriceCalculation service is called
asynchronously with the result received from
InitiatePriceCalculation.

While the CompletePriceCalculation is running,
ProcessPurchaseOrder computes the “Process
Schedule” internal process in parallel (see Figure
5). After CompletePriceCalculation notifies it had
finished the computation, the “Process Invoice”
internal process is being computed parallel to the
“Process Schedule” process. As soon as both internal
processes “Process Schedule” and “Process Invoice”
are done and ProcessScheduling service notifies
it is finished, ProcessPurchaseOrder finishes its
processing by sending a result (the invoice) back
to the consumer. The result is returned instantly if
the service has been called synchronously or it is
returned via the AsyncReply consumer’s providing
interface to the address, which has been included in
the asynchronous call.

6 DISCUSSION AND RELATED
WORK

The work presented in this paper has been influenced
by several different proposals. First of all, we
should mention UML profiles for SOA. (Amir and
Zeid, 2004) introduces a simple UML profile that
is intended to use for modeling of web services.
(Johnston, 2005) provides a well-defined profile for
modeling of service-oriented solutions. (Ortiz and
Hernández, 2006) shows how services and their

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

144



Figure 4: Behaviour of ProcessPurchaseOrder service as a
sequence of service calls.

extra-functional properties can be modeled by using
UML.

The ideas presented in those approaches are a
good starting point to model both the structural and

Figure 5: Behaviour of service ProcessPurchaseOrder in
the context of used services and internal processes.

the behavioural properties of services by means of
UML. However, modeling of services needs to take
into account some additional aspects. Primarily,
we have to know the connection between business
requirements and functional capabilities of modeled
services. (Murzek and Kramler, 2007) addresses this
as a problem of transformation between several BPM
languages. Particularly, ADONIS Standard Modeling
Language, Business Process Modeling Notation
(BPMN), Event-driven Process Chains and UML 2.0
Activity Diagrams are mentioned.

The relationship between BPMN and UML is
also introduced in (Amsden, 2005). The author de-
scribes a high-level mapping of a BPM to UML 2.0
BSM that represents service specification between
business clients and information technology imple-
menters. For the purpose of service modeling, the
BSM is too general. Hence, our approach follows the
one presented in (Amsden, 2005) while considering
SOA principles. It focuses especially on modeling of
process realisation and service choreography.

(Object Management Group, 2006b) proposes a
similar concept to our approach. However, that con-
cept contains a number of incorrectness that solves
our approach. First, one of the fundamental SOA
principles, the stateless of services, is ignored. Ser-
vices are designed in such a way that they store data
affecting their functionality between two single in-
coming requests. Our approach solves this problem
by using a composite service (the principle of using
of composite services is described in Section 4).

Next, only synchronous communication is sup-
posed in (Object Management Group, 2006b). We
suppose both the synchronous and asynchronous in-
voking of a service, in our approach. In which way

MODELING OF SERVICE ORIENTED ARCHITECTURE - From Business Process to Service Realisation

145



is the service invoked depends on the format of the
incoming request (see Section 3).

And finally, in our approach, service’s functional
capabilities can be easily extend by adding a new pro-
vided interface to the consumer port without affecting
the previous service specification.

7 CONCLUSIONS AND FUTURE
WORK

In this paper we outlined a method for modeling of
service oriented systems. The method defines how a
business process should be transformed into services
and how these services should collaborate to fulfil
business goals. Furthermore, we have proposed how
to model fundamental SOA principles by means of
UML, such as service stateless and reusability. Some
of those features are novel and have not been inte-
grated into the existing methods of modeling SOA.

The presented research is a part of a greater
project, which deals with modeling and formal
specification of SOA and underlaying component-
based systems. The approach, which is presented in
this paper, is aimed at the modeling of the top layer
of several layers. Those layers spread from business-
oriented abstraction (represented by a system’s
business process diagram) to implementation of
individual primitive components at the bottom level.

Future work is mainly related to integration of the
presented approach with formal component models.
The integration allows formal verification of a whole
modeled system (e.g. tracing of changes in a busi-
ness process model to the changes in components’
structure and behaviour related to known security is-
sues). Ongoing research includes also automation of
business process transformation into services by using
business service patterns.

ACKNOWLEDGEMENTS

This research has been supported by the Research
Plan No. MSM 0021630528 “Security-Oriented Re-
search in Information Technology”.

REFERENCES

Amir, R. and Zeid, A. (2004). A UML profile for ser-
vice oriented architectures. In Vlissides, J. M. and
Schmidt, D. C., editors, OOPSLA ’04: Compan-
ion to the 19th annual ACM SIGPLAN conference

on Object-oriented programming systems, languages,
and applications, pages 192–193. ACM.

Amsden, J. (2005). Business services modeling: Integrating
WebSphere business modeler and rational software
modeler. IBM developerWorks.

Arsanjani, A. (2004). Service-oriented modeling and archi-
tecture: How to identify, specify, and realize services
for your SOA. IBM developerWorks.

Constantinides, C. and Roussos, G. (2005). Service-
Oriented Software System Engineering: Challenges
and Practices, chapter Service Patterns for Enterprise
Information Systems, pages 201–225. IGI Global,
Hershey, PA, USA.

Erl, T. (2005). Service-Oriented Architecture: Concepts,
Technology, and Design. Prentice Hall PTR, Upper
Saddle River, NJ, USA.

Inaganti, S. and Behara, G. K. (2007). Service identifica-
tion: BPM and SOA handshake. BP Trends.

Johnston, S. (2005). UML 2.0 profile for software services.
IBM developerWorks.

Murzek, M. and Kramler, G. (2007). Business process
model transformation issues. In Proceedings of the
9th International Conference on Enterprise Informa-
tion System.

Object Management Group (2005). UML superstruc-
ture specification, version 2.0. OMG Document
formal/05-07-04, The Object Management Group.
Also available as ISO/IEC 19501:2005 standard.

Object Management Group (2006a). Business process mod-
eling notation (BPMN) specification. OMG Final
Adopted Specification dtc/06-02-01, The Object Man-
agement Group.

Object Management Group (2006b). UML profile and
metamodel for services (UPMS), request for proposal.
OMG Document soa/2006-09-09, The Object Man-
agement Group, 140 Kendrick Street, Building A
Suite 300, Needham, MA 02494, USA.

Ortiz, G. and Hernández, J. (2006). Toward UML profiles
for web services and their extra-functional properties.
In IEEE International Conference on Web Services
(ICWS’06), pages 889–892. IEEE Computer Society.

Rychlý, M. (2007). Component model with support of mo-
bile architectures. In Information Systems and Formal
Models, pages 55–62. Faculty of Philosophy and Sci-
ence in Opava, Silesian university in Opava.

Weiss, P. and Zendulka, J. (2007). Modeling of services
and service collaboration in UML 2.0. In Information
Systems and Formal Models, pages 29–36. Faculty of
Philosophy and Science in Opava, Silesian University
in Opava.

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

146


