
PROCESS-CENTRIC ENTERPRISE MODELING & 
MANAGEMENT (ProCEM®) 

Erich Ortner 
Development of Application Systems, Technische Universität Darmstadt, Hochschulstr. 1, Darmstadt, Germany 

Keywords: Enterprise Modeling, Language-Critical Development of Application Systems. 

Abstract: The shortage of skilled IT-staff as well as the technological possibilities offered by Service-oriented 
Architectures (SOA) and Web 2.0 applications, leads us to the following consequences: working processes, 
job engineering and labor organization are going to be modeled and therefore made digital in the sense of 
IT-support. This goes along with modeling working processes being independent from the individual 
employee in areas to be rationalized resp. not to be staffed by qualified specialists. Hence, there will be a 
worldwide net based selection of those who are able and skilled to fulfill modeled work like e.g. “handling a 
damage event” or “creating an optimized data structure for master data” by means of the Unified Modeling 
Language (UML) in the most effective and efficient way. An enterprise will therefore neutrally manage its 
modelled work processes (HB-services) and IT-services (application programs) taking place as computer 
supported work equipment in any working process being located anywhere in the world without assigning it 
first to a specific performer (natural or artificial actors). By doing so it is possible to control and 
dynamically execute working processes globally based on the division of labor, and on a data base 
supported administration of “bills of activities” (work plans) by means of the World Wide Web. All that 
requires new and dynamic – in the sense of component based – job descriptions and other work equipment 
exceeding today’s established skill and task management by far. 

1 INTRODUCTION 

According to Aristotle (384-322 BC), Architectonics 
refers to the art and science of building, while the 
term architecture denotes the structure. In civil 
engineering, the proportion of “art” within the 
structuring activity is usually drawn upon to 
distinguish an architect (emphasis on art) from an 
engineer (emphasis on methodology). 

For vendors and users of information 
technology, the term service-oriented architecture 
(SOA) has been an issue for about many years. 
Organization-centric Requirements Engineering (on 
a constructivistic basis) with reference to Applied 
Computer Science was proposed for the first time in 
1980 (Wedekind & Ortner 1980). The following 
observations are important to this concept today: 

 Organizational processes, which, to some 
extent, offer a free choice (e.g. specific 
knowledge gained from experience) to the 
acting persons in particular steps of an 
occurrence, are principally to be distinguished 
from the inherently different algorithmic 

computer processes (software and hardware). 
Therefore, organizational processes ought to be 
specified further by language-critical 
organization theory (Lehmann 1999). 

 Ubiquitous (= found everywhere) computer 
technology leads to the fact that presently 
almost any object (thing or occurrence) can be a 
medium in this technology. 

 Common languages, (e.g. “ontologies”, 
conceptual schema, ortho-languages) whether 
spoken by people or used in technology, always 
serve as a means for integration. This includes, 
to some extent, the integration of heterogeneous 
elements in a system or architecture. 

 Today, the object-language/meta-language 
diefference in application systems – the 
showpiece of system informatics – is firmly 
established within the overall architecture by 
means of repositories. For example, repositories 
are used to enable and facilitate the 
management of component-based solutions. 

89
Ortner E. (2008).
PROCESS-CENTRIC ENTERPRISE MODELING & MANAGEMENT (ProCEM R© ).
In Proceedings of the Third International Conference on Evaluation of Novel Approaches to Software Engineering, pages 89-98
DOI: 10.5220/0001763300890098
Copyright c© SciTePress



 
 In the field of constructive languages and 

consequently in research methods of various 
application fields, there has been considerable 
progress in the past few years ascribed to the 
Unified Modeling Language (UML), whose 
development is still ongoing. 

  There are predominantly three factors, which 
have instigated the necessity to start organizing 
work globally. These are: The fact that 
Enterprise Organization Theory is a part of 
Applied Computer Science, the comprehensive 
concept of application systems as service-
oriented architectures, and the development of 
new technologies on the internet (Web 2.0), for 
example interactive applications (Nussbaum et 
al. 2007). It is essential to approach this 
organizational task from the position of 
dynamically organized enterprise networks that 
interact globally. 

 

In the following, we will describe how the 
ProCEM® method (Process-Centric Enterprise 
Modeling & Management) meets the above-
mentioned requirements, taking into consideration 
the human needs. The basis for our description is the 
experience gained from accompanying the project 
“Best Process Architecture”, a contribution to the 
BITKOM college competition 2007, the seminar 
“SOA in Accountancy” held in the summer term of 
the same year, and the lecture organization-centric 

“Development of Application : Systems”, which is an 
ongoing lecture at TU Darmstadt as of 1996. 

The progression of software engineering to 
enterprise engineering in the last thirty years as well 
as the reversionary methodological development of a 
complete application system can be conceived as a 
basis for ProCEM®. Figure 1 depicts this “historical 
versus methodological” basis. 

 

 

2 ORGANIZATION-CENTRIC 
DEVELOPMENT OF 
APPLICATION SYSTEMS 

The iterative orchestration of application systems 
(see figure 2) is one particular feature of service-
oriented architectures in the following aspects: 

Enterprise Engineering

(Embedded) System Engineering

Software Engineering

+ Processes & Humans

+ Hardware & Technology CarrierM
et

ho
do

lo
gy H

istory

Enterprise Engineering

(Embedded) System Engineering

Software Engineering

+ Processes & Humans

+ Hardware & Technology CarrierM
et

ho
do

lo
gy H

istory

Figure 2: Historical versus methodological development of 
application systems. 

Figure 1: Iteration paths of orchestration: processes - technology - man. 

: Organization
centric

: Information Technology
centric

(Work) Process Reconstruction
(BPMN, Use Cases)

Rekonstruktion
der (Arbeits-)Prozesse
(BPMN, Use Cases)

Process Improvement
(Simulation, Optimization, etc.)

Service Discovery
(e.g. permanent or transient resp.

Internal or External Services)

Service Schema as Product
(e.g. Service Provider)Provide

Select

Provide

Select

Work Plan as Product
(Human capital
management)

: Human centric

Optimized
Process
Organization

Dynamic
Organization
Structure

Supporting
Information
TechnologyLegend:

: Organization
centric

: Information Technology
centric

(Work) Process Reconstruction
(BPMN, Use Cases)

Rekonstruktion
der (Arbeits-)Prozesse
(BPMN, Use Cases)

Process Improvement
(Simulation, Optimization, etc.)

Service Discovery
(e.g. permanent or transient resp.

Internal or External Services)

Service Schema as Product
(e.g. Service Provider)Provide

Select

Provide

Select

Work Plan as Product
(Human capital
management)

: Human centric

Optimized
Process
Organization

Dynamic
Organization
Structure

Supporting
Information
TechnologyLegend:

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

90



 

 optimized work processes, 
 ideal assignment of employees, and 
 dynamic use of information technology using 

services. 
 

Services, or more precisely service schemas, are 
application software that implements work 
procedures. They are developed on the basis of 
components and specified as algorithms. 

Rather than having oboes, violins or triangles at 
ones disposal, the orchestration of application 
systems (see figure 2) makes use of human beings, 
organizational structures and technology. Whereby 
anyone who specifies e.g. organizational processes 
in the same way as computer processes and does not 
distinguish between human-related symbol 
processing and computer-based symbol processing 
(Oberweis & Broy 2007), is not suitable for the 
development of organization-centric application 
systems. Such a person lacks the interdisciplinary 
knowledge taught by some of the forward-looking 
chairs of Applied Computing and Application 
Systems at universities worldwide today. 

3 INTERDISCIPLINARY 
LANGUAGE-CRITICAL 
SPECIFICATION OF IT-USE 

Which skills and what kind of knowledge do 
developers, i.e. “business architects,” “application 
developers,” “solution architects,” and so on, need 
for organization-centric application development in 
order to successfully participate in projects of this 
kind or even execute such a project on their own? In 
his book “Der Flug der Eule” (The flight of the owl), 
Mittelstraß (1989) gives us an answer that is as 
clearly defined as it is simple: 
 
“Anyone […] who has not studied interdisciplinary 
cannot perform interdisciplinary research.” 
 

The acquisition of interdisciplinary schemas and 
the understanding of them is a prerequisite for 
interdisciplinarity. Anyone who has only studied 
how to apply something will not be able to develop 
organization-centric application systems. The 
following is a simple example that illustrates the 
profound understanding of the development process. 
The example reconstructs a data schema in Applied 
Computer Science. 

Schematize the following sentence in object-
language, 
 

a) “Smith is a customer who is willing to pay.” 

by means of computer sciences, specifically the 
meta-language “relational model”: 
 

b) “Relation Name (key attribute(s); non-key 
attributes)” 

 
in an interdisciplinary way, i.e. by  different 
disciplines simultaneously. In order to accomplish 
this, a developer must not solely understand the 
sentence in object-language a) with respect to its 
business-driven generalization (schematization, 
norm), but additionally, the user must have agreed 
on the norm derived from it. In our example, this 
would mean that a society (language community) 
tolerates the following object-language norm: 
 

a’) “If we identify a person as a customer, we are 
allowed to characterize the customer more 
closely by the attribute ‘payment behavior’.” 

 
Furthermore, it is necessary to realize or 

understand that the “relational model” is merely a 
different grammar (meta-schema) for representing 
the standardized (schematized) object-language 
“content”. It is our goal to maintain customer data 
efficiently on the computer. Through modeling, we 
achieve the significant result of our interdisciplinary 
schematization: 
 

b’) “Customer (name; payment behavior)”. 
 

Interdisciplinary schematization (modeling) is 
one of the core tasks in Applied Computer Science 
such as Business Informatics. For the acquisition of 
interdisciplinary knowledge, e.g. in university 
courses of study, there is even a so-called 
“methodical order” (see figure 1). We can formulate 
it as follows, whereby the figures in brackets 
indicate the “sequence”, i.e., the methodical order. 
Today specified processes are means for ends. 
 

Computer Science: form (4) follows 
function (3) 

Business Informatics: applications (3) 
follow processes (2) 

Business and Social 
Sciences: 

 
means (2) follow ends (1) 

Theoretically, the methodical order, or course 
can be avoided. However, in practice, it is 
recommended to adhere to it. It is most advisable to 
“put on the socks before putting on the shoes”, 
although, at least in theory, it may be possible to  

PROCESS-CENTRIC ENTERPRISE MODELING & MANAGEMENT (ProCEM®)

91



consider the reversed order. The problem in some of 
the programs of study in Computing Sciences is that 
interdisciplinary knowledge is not taught – even at 
the recently appointed German superior universities, 
an apparent lack in IT-architects has lead to the fact 
that students in bachelor programs of study merely 
concern themselves with pure computer sciences, i.e. 
(3) and (4). For those students who have not entered 
a practical profession by then, the Masters program 
of study will “ensure that they are acquainted with 
matters of Applied Computer Science” (Oberweis & 
Broy 2007). Well, it is conceivable that disciplines 
become extinct! 

3.1 Organization Modeling 

For successful organization modeling (Enterprise 
Engineering) – especially with respect to 
optimization – differentiation is vitally important.  

Figure 3 illustrates the possibilities regarding 
work processes and structures. 

The capability to differentiate clearly is critical 
to the ability to optimize. This is important for the 
object-language level, the application field, as well 
as for the meta-language level, the diagram language 
field. On both levels, the point is the reconstruction 
of connector words (e.g. to do) and topic words (e.g. 
to work). On the meta-language level, the developer 
gets to know the modeling method in greater detail. 
On the object-language level, the grammar of the 
modeling language plays a vital role. In the latter 

case, the organizational expert knowledge of the 
relevant application domain must be represented in a 
structured way. 

Modeling (topic words of the application field) 
and structuring (connector words of the modeling 
language) are different but they supplement each 
other as complementary parts. 

Even before the object-oriented system design 
diagram languages have proved to be suitable 
modeling languages for the organization of a 
company’s structures and processes. Use cases for 
example are especially useful for the structural 
aspect (see figure 4), while the Business Process 
Modeling Notation (BPMN) is suited ideally for the 
procedural aspect (see figure 5). 
 

+

+8.1 IE collects goods from production
and checks identity

+

+8.2 IE checks quality

8.3 IE sorts goods

8.4 IE reports change in stock to IM

Employee of
Finished goods
inventory (IE)

Production

Inventory
Management (IM)

8. Finished goods inventory

+

+

+

+8.1 IE collects goods from production
and checks identity

+

+

+

+8.2 IE checks quality

8.3 IE sorts goods

8.4 IE reports change in stock to IM

Employee of
Finished goods
inventory (IE)

Production

Inventory
Management (IM)

8. Finished goods inventory

 
Figure 4: Use case diagram of finished goods inventory. 

(Work) Processes

(Work) Structure

Process

Architecture

Movement

Inventory

Means for Work
- software
- knowledge
- device

(Whereby?)

Work Input
- basic material
- operating supply

item
- data
(What from?)

Work Output
- product
- service schema

(Wherefore?)

Performer
- man
- machine
- interaction

(Who?)

Workplace
- any
- fixed

(Where?)

(What?)
Operation

(When?)
Work Sequence

(How?)
Work Procedure

Work Object
- physical
- intellectual

(Whereof?)

(Work) Processes

(Work) Structure

Process

Architecture

Movement

Inventory

Means for Work
- software
- knowledge
- device

(Whereby?)

Work Input
- basic material
- operating supply

item
- data
(What from?)

Work Output
- product
- service schema

(Wherefore?)

Performer
- man
- machine
- interaction

(Who?)

Workplace
- any
- fixed

(Where?)

(What?)
Operation

(When?)
Work Sequence

(How?)
Work Procedure

Work Object
- physical
- intellectual

(Whereof?)

Figure 3: Differentiated work organization.

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

92



 

Detailed descriptions of modeling languages can be 
found in various case collections (Cockburn 2001) 
or OMG manuals. However, anyone who later, in 
the system design, intends to specify the flow of 
work processes in greater detail is well advised to 
distinguish the aspects like “operations”, “work 
procedures” and “sequence of work” or “workflows” 
orthogonally. The same applies to the organization 
structure and aspects such as “workplace”, 
“vacancy”, “employee” or “work material” (see 
figure 3). The optimization can now be considered 
sensibly and from different angles (aspects). 
 

account stock changes

report stock changesstock FGcheck qualityreceive FG and
check identity

Incoming
Finished goods (FG)

G
ea

rI
nc

.

G
oo

ds
in

ve
nt

or
y

In
ve

nt
or

y 
m

an
ag

em
en

t

account stock changes

report stock changesstock FGcheck qualityreceive FG and
check identity

Incoming
Finished goods (FG)

G
ea

rI
nc

.

G
oo

ds
in

ve
nt

or
y

In
ve

nt
or

y 
m

an
ag

em
en

t

 
Figure 5: BPMN diagram of incoming finished goods. 

3.2 Method-Neutral Knowledge 
Reconstruction 

The method-neutral knowledge reconstruction 
(Ortner 1997) is primarily communicative and 
hardly any diagram representations are used. 

In order to get a first picture of the important 
tasks, which are performed in close cooperation with 
the users, we classify them roughly in the following 
three parts: 

 Collection of propositions that are relevant for 
development by talking to the users. 

 Clarification and reconstruction of the expert 
terminology that has been used. 

 Establishment of a common enterprise expert 
language. 

 

The collection of propositions relevant to the 
development can be done by using a model, as 
shown in figure 6.  
 

 

The model is intended to aid the collection and 
to ensure that all potential types of results for the 
system design have been scrutinized in consideration 
of their underlying expert knowledge. The following 
list contains several propositions that can be 
assigned to the above fields (see figure 6): 

a) An account has an account number. 
b) An account is opened. 
c) Opening an account results in an opening 

balance. 
d) The total of all debit line items must be the 

same as the total of all credit line items in 
double entry accounting. 

e) A (personal) account is assigned to a business 
partner. 

f) Shipment of goods is related to posting 
business transactions. 

g) At the end of an accounting period, all of the 
accounts are closed, their values are entered in 
a profit and loss account and ultimately 
gathered in the balance. 

 

In the clarification and reconstruction of the 
identified expert terminology the following 
“defects” are discussed and examined thoroughly 
with the future users or the company’s experts. 

Checking synonyms 
Check for words with the same meaning 
(extension and intension) that can be 
interchanged. 

e.g.: MEMBER and ASSOCIATE have the 
same meaning for DATEV. 
(DATEV is a computer center and software house for 
the German-speaking tax profession where the author 
worked as executive manager in software development 
for seven years.) 

Eliminating homonyms 
Check for words that are written or 
pronounced in the same way but have a 
different meaning. 

e.g.: STALK, which can mean either part of 
a plant or to follow someone around 

Identifying equipollences 
Different names are used for the same objects 
(extension) from different perspectives 
(intension). 

e.g.: Goods or merchandise of a company is 
referred to as STOCK from a quantitative 
perspective and INVENTORY ACCOUNT 
from a value perspective. 

Clarifying vagueness 
As there is no clear delimitation (definition) of 
the terms in regard to their content (intension), 

Object

INTERNAL

EXTERNAL

STRUCTURE

PROCESSThing
oriented

Occurence
oriented

a) b) c)

Constraints
d)

e) f) g)

Object

INTERNAL

EXTERNAL

STRUCTURE

PROCESSThing
oriented

Occurence
oriented

a) b) c)

Constraints
d)

e) f) g)

Figure 6: Classification schema for propositions.

PROCESS-CENTRIC ENTERPRISE MODELING & MANAGEMENT (ProCEM®)

93



 

it may not be clear which objects belong to 
each term (scope, extension) 

e.g.: Does RESIDENCE, the place where a 
CONSULTANT works, belong to the term 
CHAMBERS for DATEV or not?  

Replacing wrong designators 
Discrepancies between the actual meaning of 
a word and the meaning assumed at first 
(intension and extension) 

e.g.: For DATEV, the CONSULTANT 
NUMBER does not define the function of a 
tax CONSULTANT, but it defines the 
USER RIGHTS a tax CONSULTANT has 
within DATEV. 

 

This clarification results in further propositions 
relevant for development. Their relevance for the 
result types (system design) can be examined with 
the help of a classification schema (see figure 6). 
Work on building a common expert language for a 
company, which is aimed at integrating all of a 
company’s knowledge resources, can be organized 
in different ways. 

1. With the help of a repository, a kind of 
glossary will be created and administered. 
This glossary will contain all the terms that 
are important for an organization (language 
community), and should be designed for 
internal and external use. 

2. A much more complex way, in comparison to 
(1.), of representing a company’s knowledge 
is with an encyclopedia. The encyclopedia 
amounts to a conceptual schema for data but 
will go substantially further in respect to 
terminological coherences. This approach will 
distinguish inward and outward knowledge, 
which will be administered in a repository as 
an enterprise knowledge base. 

3. The enterprise expert language is a rational 
interim language that is implemented on a 
meta-meta language level in the repository 
(Ortner 1999). It is used for integrating and 
translating other languages used in a company. 
For users, it is not necessary to know the 
interim language itself. 

 

Currently, the three variants discussed above can be 
found in industry worldwide. Vendor-independent 
research is done in the field of SOA under the 
catchword Enterprise Application Integration (EAI). 
Furthermore, companies like Oracle look into 
Application Integration Architecture (AIA) and offer 
products such as Fusion. Other vendors offer 
products like WebSphere (IBM) or NetWeaver 
(SAP) for the integration task. 

3.3 Generally Object-oriented System 
Design 

After the development-relevant knowledge (see 
figure 6) has been reconstructed neutral to specific 
methods and technology (e.g. according to Ortner 
1997), and integrated into the overall knowledge 
base of an enterprise using common language, then, 
in the system design, this knowledge is transformed 
into the result types of an object-oriented solution to 
the task. Figure 7 shows an object-oriented system 
design according to Schienmann (1997) that has 
been extended for the design of service-oriented 
architectures of an enterprise. 

When we speak of entirely object-oriented 
development of application systems, the 
enlightening step is the introduction of objects from 
computing sciences as grammatical objects. 
Grammatical objects are target points of language 
actions (e.g. writing, speaking, thinking) in a 
sentence, whereby they can also be replaced by 
pronouns in the sentence (e.g. one, he, him, this 
one). At school we have learned to speak of direct 
and indirect objects, genitive objects and various 
prepositional objects.  

In contradiction to what many computer 
scientists still believe, when modeling and 
programming in computer science we do not 
concern ourselves with concrete or “ontological 
objects” suc h as this chair, that apple or my laptop.  
When speaking of objects “informatically” (i.e. 
modeling and programming), it is of particular 
importance that abstract types such as “class” in a 
repository or the term “invoice” in an application, 
are to be thought of as target points. The concrete, 
“ontological objects” are usually found in the 
application fields. 

Computer science is the science where students 
learn how to talk constructively about language 
(grammatical) objects, or more precisely, about 
abstract objects. Needless to say, we can still start 
from the concrete objects of the application fields in 
“Requirements Engineering” and when introducing 

Service
Application 
(Procedure Part)

Result
Type

Inventory Procedure Process

Internal

External

Conceptual
Schema

Organization

Service
Application
(Data Part) Participation

Restrictions of

Work
Occurences

Figure 7: Extended object-oriented enterprise design.

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

94



 

the implemented solution, we can refer back to the 
users’ concrete (ontological) objects. 

The object-oriented approach in the development 
of application systems goes back to Platon. Platon 
classifies objects from the perspective of human 
beings and their languages into things (nouns, proper 
names) and actions, which can also be considered 
occurrences (verbs). If we transfer this classification 
to operating with data on a computer, the object-
orientation (resp. its object) will be classified into 
the fields of data orientation (things) and procedure 
orientation (occurrences). This classification shows 
why object-orientation is universal. It encompasses 
data orientation (data classes) as well as procedure 
orientation (procedural classes). 

Based on the results of organization modeling 
(enterprise engineering) and (embedded) system 
design (see figure 1), the results from figure 7 are 
modeled (software engineering) in the following 
methodical order: 

1. Process Modeling: 
 BPMN diagrams (from organization 

modeling) 
 State machine diagrams 
 Activity diagrams 
 ... 
 Constraints (e.g. in Object Constraint 

Language (OCL)) 
2. Participation Modeling: 

 Use cases (from organization modeling) 
 Sequence diagrams 
 Job descriptions (in the sense of structural 

organization) 
 ... 
 Constraints (e.g. organizational standards 

such as signature regulations) 
3. Procedure Modeling: 

 Class diagrams (data classes and procedural 
classes) 

 State machine diagrams 
 Activity diagrams 
 ... 
 Constraints (e.g. plausibility checks at data 

entry   in   service-oriented   applications) 
4. Inventory Modeling: 

 Object type diagrams (for the conceptual 
schema) 

 Dataflow diagrams (for specification of data 
that are exchanged) 

 External schemas (extended as data classes) 
 ... 
 Constraints (e.g. semantic integrity rules 

for DBMS-enforced integrity) 
 

Enterprise Engineering and the reconstruction of 
development-relevant expert knowledge from the 
application fields are highly communicative 
processes. Here, users and developers communicate 
very “intensively” (in great detail and clearly) with 
each other. Diagram languages play a minor role in 
this context. In contrast, the (entirely) object-
oriented design of a SOA with diagram languages 
must be performed in an already highly 
"significative" way. This means that the terms of the 
object language and the meta-language (e.g. 
”invoice” as an object-language terminus and 
“procedural class” as a meta-language terminus) 
should be displayed as independent as possible from 
their use in the judgment-context. The focus is   on 
disclosing the types (software, concepts) that shall 
be implemented later. Diagrams are ideally suited 
for this purpose. 

The diagram languages for procedure modeling 
are of course very similar to the diagram languages 
for process modeling. Procedure modeling 
comprises of the process parts (algorithms), which 
run as service-oriented applications while a process 
is being executed, as well as of those process parts, 
which can be specified in less detail since they 
involve human work (e.g. following work plans). 

The order (1.-4.) chosen here serves merely as a 
recommendation. The modeling process is an 
iterative process, as every well-educated developer 
will know from practical projects (see figure 2). 

4 CONCRETION IN THE LARGE 

Organization-centric development of application 
systems has been derived from data-centric 
(Wedekind & Ortner 1980) development. The 
development paradigm “applications follow 
processes”, which is valid in today’s service-
oriented architectures, complements, but does not 
replace the data-centric approach. Therefore, SOA 
stands for a new paradigm, not a shift in paradigm. 
The data-centric approach remains as important as 
ever, but due to the triumphant progress of object-
orientation and component-based development, it is 
integrated in the overall architecture and work 
processes in a more “intelligent” way (Platon was 
right!). In addition to data processing, work 
organization (enterprise engineering) has become a 
subject in applied computer science (software 
engineering). 

Figure 8 illustrates an enterprise that is organized 
as an application system in a process-centric way, 

PROCESS-CENTRIC ENTERPRISE MODELING & MANAGEMENT (ProCEM®)

95



 

considering the expert field (domain) and the logical 
structure (architecture). 

Machine Desktop Mobile Device
Person

Participants

Processes

Services

Resources

receive error
message

evaluate error
message

inspect error
message

maintain document solution …

…

Error Report
Service

Error Reports System 
Reports

Error Correction
Service

Service Plans Skills

…
…

Conceptual Schema

Customer
Products

Systems
Employees Work Plans

Business Participants Tier

Work Processes Tier

Data Resources Tier

Business Services Tier

-BPT-

-WPT-

-BST-

-DRT-

Machine Desktop Mobile Device
Person

Participants

Processes

Services

Resources

receive error
message

evaluate error
message

inspect error
message

maintain document solution …

…

Error Report
Service

Error Reports System 
Reports

Error Correction
Service

Service Plans Skills

…
…

Conceptual Schema

Customer
Products

Systems
Employees Work Plans

Business Participants Tier

Work Processes Tier

Data Resources Tier

Business Services Tier

-BPT-

-WPT-

-BST-

-DRT-  
Figure 8: 4-Tier-Architecture of an enterprise (SOA). 

Figure 9 shows an enterprise represented in an 
entirely object-oriented way. On the right, 
implementation aspects can be found; the right side 
lists the specific details of the information 
technology available for implementation today. We 
are therefore only talking about a “concretion in the 
large”. “IT and solution architects”, “integration 
developers” and “deployment managers” must be 
able to deliver this concretion for the enterprises 
(domains) that use information technology 
(Jablonski et al. 2004). 

Communication
Class

Application-Server

DB-Server

Web-Server

Client

EJB and 
J2EE, etc.

EJB, WSXL, 
Apache, etc.

4.

3.

2.

1.

PC‘s, control devices, various instruments

Presentation Class

Procedural
Classes

Data 
Classes

Conceptual Schema 
Class

(Object-)
Relational DBMS

HTML, 
Java(Script), 

Ajax, etc.

Communication
Class

Application-Server

DB-Server

Web-Server

Client

EJB and 
J2EE, etc.

EJB, WSXL, 
Apache, etc.

4.

3.

2.

1.

PC‘s, control devices, various instruments

Presentation Class

Procedural
Classes

Data 
Classes

Conceptual Schema 
Class

(Object-)
Relational DBMS

HTML, 
Java(Script), 

Ajax, etc.

 
Figure 9: Entirely object oriented concretion of SOA. 

“Code development”, which is of course also 
important, in particular from the point of view of the 
“service and solution testers” on site, is currently 
done in so-called “low-wage countries” by well-
trained people (near and offshoring). In 
complementation to a “concretion in the large”, we 
are now talking about a “concretion in the small.” 

5 DYNAMIC SUPPORT AND 
OPTIMIZATION OF WORK 
PROCESSES 

For the dynamic management of application systems 
(see figure 8), it is necessary to create and use a 

meta-information system whose most important part 
is the repository system (Ortner 1999) as for 
example described by (Berbner et al. 2007). In 
accordance to the much-noted work “The Quest for 
Resilience” by Hamel and Välikangas (2003), future 
enterprise networks will be implemented as elastic 
ecosystems (Corallo et al. 2007) built from 
components of different categories. These systems 
must be assembled in the best possible way, thereby 
facilitating the systems to respond, possibly even 
self-actingly, to changing situations. 

The ever changing job design (e.g. due to 
product changes) and work organization is crucial to 
this approach. This is done considering 

a) the aspects: optimized processes, best possible 
employee assignment and dynamic IT-support 
(e.g. IT-services), as well as 

b)  the fact that some of the jobs that are part of 
these processes, are performed by employees 
who come from everywhere, or respectively, 
the jobs are done where personnel is available 
at low cost. 

Assignment-neutral Organized
Schema Base 

(IT-Services and HB-Services)

Heterogeneity of Hardware,
Operating Systems and

Applications

Frequently changing
(Business/Work) Processes

including Outsourcing and Offshoring

Variable Number of „Actors“
(natural or artificial)

Large-scale Distributed
Systems (e.g. Internet)

IT: Information Technology

Work Plans

HB: Human based

Accounting Schema Reporting Schema

Assignment-neutral Organized
Schema Base 

(IT-Services and HB-Services)

Heterogeneity of Hardware,
Operating Systems and

Applications

Frequently changing
(Business/Work) Processes

including Outsourcing and Offshoring

Variable Number of „Actors“
(natural or artificial)

Large-scale Distributed
Systems (e.g. Internet)

IT: Information Technology

Work Plans

HB: Human based

Accounting Schema Reporting Schema

 
Figure 10: Labor as a product. 

In this regard, organizing potential assignments 
for employees in work plans and establishing a 
global work base (see figure 10) is exceedingly 
relevant. Such a database allows neutral 
(assignment-free) storage and maintenance. It could 
contain the IT-services (data and program schemas) 
that are used anywhere in the world as program-
technological means (to work plans) for work in 
those processes. This way, an enterprise’s IT-
department organizes and controls the company’s 
work processes worldwide in division of labor and 
dynamically using the Internet. 

The protruding innovation of SOA is the 
extension of the concept of application systems by 
work and organizational processes of enterprises. 
This makes organization theory as it is found in 
Business and Social Sciences, the Engineering 
disciplines or in Enterprise Engineering an 

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

96



 

“integral”, that is an interdisciplinary part, of 
Applied Computer Science. And this in a way that 
has not been seen in previous years. 

Concepts and institutions like the German 
REFA-Association for Work Design or Methods-
Time-Measurement (MTM) founded in 1924 (These 
are systems for time allotment that have been used in 
Sweden as of 1950, in Switzerland since 1957 and in 
Germany since 1960) suddenly constitute a field of 
activity and provide IT-businesses and enterprises 
worldwide with the knowledge that information and 
computing scientists possess. Due to Ubiquitous 
Computing, however, this also affects the courses of 
study of Enterprise Engineering, Business and Social 
Sciences, Mechanical Engineering, Electrical 
Engineering or Civil Engineering, as all of them are 
concerned with work science and process 
organization. 

The following is a list of typical issues in 
optimization as they were recently elaborated by a 
student team of the TU Darmstadt at the Bitkom 
competition “Best Process Architecture” (Ghani et 
al. 2007). 
 

 Parallelization: Operations that are independent 
of each other must run in parallel and thereby 
shorten the overall process duration. 

 Optimization of single processes: In addition, 
we must analyze each process individually to 
make improvements. 

 Integration: Existing systems are integrated 
seamlessly in the new architecture so that the 
available resources can be used efficiently and 
effectively. 

 Elimination of information deficits: The 
interfaces between operations are analyzed 
thoroughly so that the expected input or output 
will be found at the right time in the right 
place. 

 Reorganization or sequence optimization: 
Process analysis takes into account an increase 
in efficiency due to reorganization of the order 
of single operations. 

 Outsourcing: It is considered an alternative to 
outsource single processes, especially 
maintenance activities at the customer’s site, 
to external service providers. 

 Integration: It is necessary to systematically 
analyze the overall process for operations that 
belong together and can therefore be 
considered a unit. 

 Elimination: During process analysis those 
operations must be eliminated that are useless 
or do not contribute beneficially to the process 
result. 

 Acceleration: Specific measures for shortening 
the overall process duration are vital, but not 
at the expense of quality and cost. 

 Introduction of additional test steps: To ensure 
higher quality, it is useful to integrate 
additional steps for checking the process. 

 

From the perspective of an employee, there are three 
possibilities to be considered when setting out to 
optimize work processes using IT: 

 

 to reduce people’s workload through 
automation (resource:  “software”) 

 to support human work as for example using 
interactive applications (resources: “software” 
and “knowledge”), or 

 to improve people’s work qualifications 
(resource: “knowledge”) 

 

Industrialization and automation were so 
successful in the previous decades that it is very 
advisable to revert our efforts with respect to the 
listing above. With globalization in mind as well as 
taking into consideration our worldwide division of 
labor, we should “invest much more in education 
and as little as possible in further automation 
efforts.” Technological progress cannot be stopped, 
but a world which is becoming increasingly 
compact, can only cope with progress, if it is flanked 
by human education. 

6 OUTLOOK 

In Applied Computer Science, from a global 
standpoint, service-oriented architectures constitute 
a new paradigm, but do not result in a paradigm 
shift. Managing data and managing processes are 
complementary and lead to entirely new job 
descriptions. In the expert languages of globally 
interacting IT-enterprises these new professions are 
called: 
 

 IT-Architect 
 Business Analyst 
 Application Developer 
 Service and Solution Tester 
 Software Developer 
 Deployment Manager 
 Integration Developer 
 Solution Architect 
 Code Developer 
 etc. 

 

Nevertheless, people, who perform these jobs 
throughout the world, have the least say in who 
performs which kind of work when and where. 

PROCESS-CENTRIC ENTERPRISE MODELING & MANAGEMENT (ProCEM®)

97



 

There is nothing more important for our survival 
than that the humanities take up the challenge to 
newly enter in a process of enlightenment. Logic, 
Mathematics, Linguistics and Computer Science, for 
example, are studies of the humanities. “Normative 
Logic and Ethics” (Lorenzen 1984) as well as their 
advancement to an “Encyclopedia Philosophy and 
Philosophy of Science” (Mittelstraß 1996) provide 
us with the necessary fundamental education and 
terminology, in the sense of a Universal Literacy, to 
fulfill this task. 

Therefore, we appeal for constructive computer 
sciences (Mittelstraß 1996) to become basic 
education for all citizens. As a matter of course, this 
basic education should be graded and differentiated 
into interdisciplinary (rather universities) and 
infradisciplinary (rather schools) knowledge. 

The root of the matter is teaching a disciplined use 
of language. 

Anyone who is a democrat and who is interested 
in participating in remodeling our pluralistic 
democracies into republics with a “plurality-
tolerating form of life” (Lorenzen 1994) all over the 
world is well-advised to try this in a language-
critical way. This form of life is characterized by the 
fact that it teaches people how they can think 
correctly instead of teaching them what they should 
think. – Parlemus! 

REFERENCES 

Berbner, R. et al., 2007. Management of Service-oriented 
Architecture (SoA)-based Application Systems. In 
Enterprise Modelling and Information Systems 
Architectures, vol. 2, No. 1, pp. 14-25. 

Cockburn, A., 2001. Writing Effective Use Cases, 
Addison-Wesley, Boston, MA. 

Corallo, A., Passiante, G. & Prencipe, A., 2007. Digital 
Business Ecosystems, Edward Elgar Publishing, 
Cheltenham. 

Ghani, H. et al., 2007. Concept for the BITKOM 
University Challenge 2007 “Best Process 
Architecture”. http://www.bitkom.org. 

Grollius, T., Lonthoff, J. & Ortner, E., 2007. 
Softwareindustrialisierung durch Komponenten-
orientierung und Arbeitsteilung. In HMD-Praxis der 
Wirtschaftsinformatik, vol. 256, pp. 37-45. 

Hamel, G. & Välikangas, L., 2003. The Quest for 
Resilience. In Harvard Business Review, Sept. 2003. 

Jablonski, S., Petrov, I., Meiler, Ch. & Mayer, U.. Guide 
to Web Application and Platform Architectures. 
Springer Verlag. Berlin. 

Lehmann, F.R., 1999. Fachlicher Entwurf von Workflow-
Management-Anwendungen, B.G. Teubner Verlagsge-
sellschaft, Stuttgart, Leipzig. 

Lorenzen, P., 1984. Normative Logic and Ethics, B.I.-
Wissenschaftsverlag, Zurich, 2nd annottated edn. 

Lorenzen, P., 1994. Konstruktivismus. Journal for 
General Philosophy of Science, vol. 25, no. 1, pp. 125-
133. 

Mittelstraß, J., 1989. Der Flug der Eule – Von der 
Vernunft der Wissenschaft und der Aufgabe der 
Philosophie, Suhrkamp Verlag, Frankfurt. 

Mittelstraß, J. (ed.), 1996. Enzyklopädie Philosophie und 
Wissenschaftstheorie, J.B. Metzler Verlag, vol. 1 
(1980), vol. 2 (1984), vol. 3 (1995), vol. 4 (1996), 
Stuttgart, Weimar. 

Nussbaum, D., Ortner, E., Scheele, S. & Sternhuber, S., 
2007. Discussion of the Interaction Concept focusing 
on Application Systems. In Proceedings of the IEEE 
International Conference on Web Intelligence 2007. In 
press. 

Oberweis, A. & Broy, M., 2007: Informatiker disputieren 
über Anwendungsnähe der Disziplinen. In Computer 
Zeitung, no. 29, Monday, 16.07.2007. 

Ortner, E., 1997. Methodenneutraler Fachentwurf – Zu 
den Grundlagen einer anwendungsorientierten 
Informatik, B.G. Teubner Verlagsgesellschaft, 
Stuttgart, Leipzig. 

Ortner, E., 1999. Repository Systeme, Teil 1: 
Mehrstufigkeit und Entwicklungsumgebung, 
Repository Systeme, Teil 2: Aufbau und Betrieb eines 
Entwicklungsrepositoriums. In Informatik-Spektrum, 
vol. 22, no. 4, pp. 235-251 resp. vol. 22, no. 9, pp. 
351-363. 

Schienmann, B., 1997. Objektorientierter Fachentwurf – 
Ein terminologiebasierter Ansatz für die Konstruktion 
von Anwendungssystemen. B.G. Teubner Verlags-
gesellschaft, Stuttgart, Leipzig. 

Wedekind, H. & Ortner, E., 1980. Systematisches 
Konstruieren von Datenbankanwendungen – Zur 
Methodologie der Angewandten Informatik, Carl 
Hanser Verlag, Munich. 

 

ENASE 2008 - International Conference on Evaluation of Novel Approaches to Software Engineering

98


