
MASSIVE PARALLEL NETWORKS OF EVOLUTIONARY
PROCESSORS AS NP-PROBLEM SOLVERS
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Universidad Politécnica de Madrid, Crta. de Valencia km. 7, 28031 Madrid, Spain

Keywords: Natural Computing, Networks of Evolutionary Processors, Symbolic Systems.

Abstract: This paper presents a new connectionist model that might be used to solve NP-problems. Most well known
numeric models are Neural Networks that are able to approximate any function or classify any pattern set
provided numeric information is injected into the net. Concerning symbolic information new research area
has been developed, inspired by George Paun, called Membrane Systems. A step forward, in a similar Neural
Network architecture, was done to obtain Networks of Evolutionary Processors (NEP). A NEP is a set of
processors connected by a graph, each processor only deals with symbolic information using rules. In short,
objects in processors can evolve and pass through processors until a stable configuration is reach. Despite their
simplicity, we show how the latter networks might be used for solving an NP-complete problem, namely the
3-colorability problem, in linear time and linear resources (nodes, symbols, rules).

1 INTRODUCTION

Natural sciences, and especially biology, represents a
rich source of modeling paradigms. Well-defined ar-
eas of artificial intelligence (genetic algorithms, neu-
ral networks), mathematics, and theoretical computer
science (L systems, DNA computing) are massively
influenced by the behavior of various biological en-
tities and phenomena. In the last decades or so,
new emerging fields of so-called ”natural comput-
ing” (Zandron, 2002; Paun, 2002; Ciobanu et al.,
2005) identify new (unconventional) computational
paradigms in different forms. There are attempts
to define and investigate new mathematical or theo-
retical models inspired by nature (Robinson, 1992),
as well as investigations into defining programming
paradigms that implement computational approaches
suggested by biochemical phenomena. Especially
since Adleman’s experiment (Adleman, 1994), these
investigations received a new perspective. One hopes
that global system-level behavior may be translated
into interactions of a myriad of components with sim-
ple behavior and limited computing and communica-
tion capabilities that are able to express and solve, via
various optimizations, complex problems otherwise
hard to approach.

The origin of networks of evolutionary processors
is a basic architecture for parallel and distributed sym-

bolic processing, related to the Connection Machine
(Hillis, 1985) as well as the Logic Flow paradigm
(Errico and Jesshope, 1994), which consists of sev-
eral processors, each of them being placed in a node
of a virtual complete graph, which are able to han-
dle data associated with the respective node. All the
nodes send simultaneously their data and the receiv-
ing nodes handle also simultaneously all the arriv-
ing messages, according to some strategies, see, e.g.,
(Fahlman et al., 1983; Hillis, 1985).

2 MASSIVE PARALLEL NEPS

LetV an alphabet over a set of symbols. A stringx of
lengthm belonging to an alphabetV is the sequence
of symbolsa1a2 · · ·am where the symbolai ∈V for all
1 ≤ i ≤ m. The set of all strings that belong toV is
denoted byV∗ and the empty string is denoted byε.

A network of evolutionary processors(Castel-
lanos et al., 2001; Castellanos et al., 2003) of sizen
(NEP for short) is a constructΣ = {V,N0,N1, · · · ,Nn},
whereV is an alphabet and processorsNi are con-
nected within a graph.

A processor is defined byNi = {Mi ,Ai ,PIi ,POi}
is thei-th evolutionary processor of the network. The
parameters of every processor are:
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• Mi is a finite set of evolution rules of one of the
following forms only (basic rules)

– a→ b, a,b∈V (substitution rules),
– a→ ε, a∈V (deletion rules),
– ε → a, a∈V (insertion rules),

More clearly, the set of evolution rules of any pro-
cessor contains either substitution or deletion or
insertion rules. Context information can be added
to Mi in the following way (directional context
rules):

– ac → bc, a,b ∈ V,c ∈ V∗ (left substitution
rules),

– ca → cb, a,b ∈ V,c ∈ V∗ (right substitution
rules),

– ab→ a, b∈V,a∈V∗ (right deletion rules),
– ba→ a, b∈V,a∈V∗ (left deletion rules),
– a→ ab, b∈V,a∈V∗ (right insertion rules),
– a→ ba, b∈V,a∈V∗ (left insertion rules),

Or even a more general and non directional con-
text can be expressed inMi (context rules):

– dac → dbc, a,b ∈ V,c,d ∈ V∗ (substitution
rules),

– abc→ ac, b∈V,a,c∈V∗ (deletion rules),
– ac→ abc, b∈V,a,c∈V∗ (insertion rules),

• Ai is a finite set of strings overV. The setAi is
the set of initial strings in thei-th node. Actu-
ally, in what follows, we consider that each string
appearing in a node of the net at any step has an
arbitrarily large number of copies in that node, so
that we shall identify multisets by their supports.

• PIi andPOi are subsets ofV representing the in-
put and output filter respectively. These filters
are defined by membership condition, namely a
string w ∈ V∗ can pass the input filter (the out-
put filter) if ∀x ∈ PIi,w = axb wherea,b ∈ V∗

(∀x∈ POi ,w = axbwherea,b∈V∗).
We writeρi(w) = true, if w can pass the input fil-
ter of the node processori andρi(w) = f alse, oth-
erwise. We writeτi(w) = true, if w can pass the
output filter of the node processori andτi(w) =
f alse, otherwise.

A NEP with some of these rules is denoted by
NEPb (basic rules),NEPd (directional rules) and
NEPc (contex rules).

By a configuration of an NEP as above we mean
an n-tupleC = (L0,L1, · · · ,Ln), with Li ⊆ V∗ for all
0 ≤ i ≤ 6. A configuration represents the sets of
strings (remember that each string appears in an ar-
bitrarily large number of copies) which are present in
any node at a given moment; clearly the initial con-
figuration of the network isC0 = (A1,A2, · · · ,An).

2.1 Dynamics of MPNEP

A configuration can change either by an evolutionary
step or by a communicating step. Computation steps
can be defined in a controlled way, that is, first an evo-
lutionary step and then a communicating step; or in
a parallel way, that is, evolution and communication
take place at the same time.

When changing by an evolutionary step, each
componentLi of the configuration is changed in ac-
cordance with the evolutionary rules associated with
the nodei. Formally, we say that the configuration
C1 = (L1,L2, · · · .,Ln) directly changes for the config-
urationC2 = (L′

1,L
′
2, · · · ,L

′
n) by an evolutionary step,

written as

C1 ⇒C2

if L′
i is the set of strings obtained by applying the

rules ofRi to the strings inLi as follows:

• If the same substitiution rule may replace different
occurrences of the same symbol within a string,
all these occurrences must be replaced within dif-
ferent copies of that string. The result is the mul-
tiset in which every string that can be obtained ap-
pears in an arbitrarily large number of copies.

• Unlike their common use, deletion and insertion
rules are applied only to the end of the string.
Thus, a deletion rulea → ε can be applied only
to a string which ends bya, saywa, leading to the
stringw, and an insertion ruleε → a applied to a
stringx consists of adding the symbola to the end
of x, obtainingxa. If context rules are used, that
is ab→ a or abc→ ac then the deletion point is
defined by context informationb or ac.

• If more than one rule, no matter its type, applies
to a string, all of them must be used for different
copies of that string.

More precisely, since an arbitrarily large number
of copies of each string is available in every node, af-
ter a evolutionary step in each node one gets an arbi-
trarily large number of copies of any string which can
be obtained by using any rule in the set of evolution
rules associated with that node. By definition,ifLi is
empty for some 0≤ i ≤ 6, thenL′

i is empty as well.
When changing by a communication step, each

node processor sends all copies of the strings it has
which are able to pass its output filter to all the other
node processors and receives all copies of the strings
sent by any node processor providing that they can
pass its input filter.

Formally, we say that the configurationC1 =
(L1,L2, · · · ,Ln) directly changes for the configuration
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C2 = (L′
1,L

′
2, · · · ,L

′
n) by a communication step, writ-

ten as
C1 ⊢C2

if for every 0≤ i ≤ n,

L′
i = Li \ {w∈ Li |τi(w) = true}∪

n⋃

j=0, j 6=i

{x∈ L j |τ j (x) = true∧ρi(x) = true}

A parallel computation step among two configura-
tionsC1 andC2, represented byC1 |= C2, if the appli-
cation of the evolutionary and communication steps
in parallel, that is,

C1 |= C2 = (C1 ⊢C2)||(C1 ⇒C2)

Let Γ = (V,N1,N2, · · · ,Nn) be anNEP. By a par-
allel computation inΓ we mean a sequence of config-
urationsC0,C1,C2, · · · , whereC0 is the initial config-
uration andCi |=Ci+1 for all i ≥ 0. MPNEPis aNEP
with parallel computation –MPNEPis aNEPp –.

If the sequence is finite, we have a finite computa-
tion. The result of any finite computation is collected
in a designated node called the output node. If one
considers the output node of the network as being the
nodeN0, and ifC0,C1, · · · ,Ct is a computation, then
the set of strings existing in the nodeN0 at the last
step – the 0-th component ofCt – is the result of this
computation. The time complexity of the above com-
putation is the number of steps, that ist.

2.2 MPNEP vs. NEP

Let Γ = (V,N1,N2, · · · ,Nn) be anNEPc. By a con-
trolled computation inΓ we mean a sequence of con-
figurationsC0,C1,C2, · · · , whereC0 is the initial con-
figuration andC2i ⇒ C2i+1 andC2i+1 ⊢ C2i+2 for all
i ≥ 0.

Theorem 2.1. Problems solved using a NEPcX can
be solved using a MPNEP= NEPpX, where X=
{b,d,c}.

Proof. Given a processorNi = {Ai ,Ri ,PIi,POi} be-
longing to aNEPcX it is possible to transform it on
a processorN′

i = {Ai ,R′
i ,PIi ,PO′

i} that behaves in a
same way within aMPNEP= NEPpX in the follow-
ing way:

• Given a ruler ik ∈Ri with the notationA→B, with
1≤ k≤ p, each ruler ′ik ∈R′

i has the formA→BXik

• Given the ouput filterPOi , PO′
i = POi

⋃p
k=1 Xip

With these new setsR′
i andPO′

i the parallel com-
putation of a NEP behaves in the same way that a con-
trolled computation sinceτ(w) = f alseuntil all rules
are applied.

Theorem 2.2. Problems solved using a NEPXb can
be solved using a NEPXd and problems solved using
a NEPXd can be solved using a NEPXc, where X=
{p,c}.

Proof. It is obvious thatabc→ adcwherea,(c= ε)∈
V∗ is similar toab→ adandab→ adwhere(a= ε)∈
V∗ is similar tob→ d.

3 COMPUTATIONAL
COMPLETENESS

Since MPNEPs with finite filters can generate regular
languages only, we shall consider in the sequel MP-
NEPs having infinite regular languages as filters.

Theorem 3.1. Each recursively enumerable lan-
guage can be generated by a complete MPNEP of size
5.

Proof. Let G = (N,T,S,P) be an arbitrary phrase-
structure grammar in the Kuroda normal form,
namelyP contains only rules of the following forms:

A→ a,A→ BC,AB→CD,A→ ε

whereA,B,C,D are nonterminals anda is a terminal.
We assume that the rulesA → BC andAB→ CD of
P are labelled in a one-to-one manner by the labels
r1, r2, · · · , rn. We shall refer to the rules of the form
A → a,A→ ε,A → BC, y AB→ CD as rules of type
0,1,2, and 3, respectively. We construct the following
NEP of size 5 having a complete underlying graph:

Γ = (N∪T ∪V ∪{X},N0,N1,N2,N3,N4,K5)

whereV = {r i , pi ,qi ,si ,ti |1≤ i ≤ n} and

N0 = ( /0, /0,T∗
,(N∪T ∪V ∪{X})∗(N∪V ∪{X})

(N∪T ∪V ∪{X})∗)

N1 = (M1,{S},(N∪T)∗∪ (N∪T)∗

{r iqi |1≤ i ≤ n}(N∪T)∗

(N∪T)∗({r i ,si pi ,tiqi |1≤ i ≤ n}∪{X})

(N∪T)∗∪T∗)

with M1 = {A→ X|A→ ε ∈ P}

∪{A→ a|A→ a∈ P}∪

{A→ r i , r i → ti |r i : A→ BC∈ P}∪

{A→ si ,B→ pi |r i : AB→CD∈ P}
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N2 = ({ε → qi |r i : A→ BC}, /0,

(N∪T)∗{r i |1≤ i ≤ n}(N∪T)∗,

(N∪T ∪V)∗)

N3 = (M3, /0,(N∪T)∗{si pi ,tiqi |1≤ i ≤ n}

(N∪T)∗,(N∪T)∗)

with M3 = {ti → B,qi →C|r i : A→ BC∈ P}∪

{si →C, pi → D|r i : AB→CD∈ P}

N4 = ({X → ε}, /0,(N∪T)∗{X}(N∪T)∗,(N∪T)∗)

Taking into account this NEP configuration, a MP-
NEP can be defined according to theorem 2.1.

• Given a ruler ik ∈Ri with the notationA→B, with
1≤ k≤ p, each ruler ′ik ∈R′

i has the formA→BXik

• Given the ouput filterPOi , PO′
i = POi

⋃p
k=1 Xip

This MPNEP behaves in the same way that a NEP
and therefore each recursively enumerable language
can be generated.

4 3-COLORABILITY PROBLEM

Theorem 4.1. The ”3-colorability problem” can be
solved in O(m+n) time by a MPNEP of size4m+1,
where n is the number of vertices and m is the number
of edges of the input graph.

Proof. Let G = ({1,2, · · · ,n},{e1,e2, · · · ,em}) a
graph an assume thatet = {kt , lt},1≤ kt ≤ lt ≤ n,1≤
t ≤ m. We consider the alphabetU = V ∪V ′∪T ∪A,
whereV = {b, r,g}, T = {a1,a2, · · · ,an}, and A =
{Â1, Â2, · · · , Ân}.

We construct the following processors of a mas-
sive parallel NEP.

• A generator processor:

N0 = {{a1a2 · · ·an},

{ai → bÂi,ai → rÂi ,ai → gÂi|1≤ i ≤ n},

/0,{Âi |1≤ i ≤ n}}

This processor generates all possible color com-
binations, solutions or not, to the problem. And it
sends those strings to next processors.

• For each edge in the graphet = {kt , lt}, we have 4
filtering processors (wherei = {kt , lt}):

Ne1
t

= { /0,{gÂi → g′ai , rÂi → r ′ai},

{Âi},{g′, r ′}}

Ne2
t

= { /0,{gÂi → g′ai,bÂi → b′ai},

{Âi},{g′,b′}}

Ne3
t

= { /0,{bÂi → b′ai, rÂi → r ′ai},

{Âi},{b′, r ′}}

Ne4
t

= { /0,{r ′ai → rÂi ,g
′ai → gÂi ,b

′ai → bÂi},

{ai},{Âi}}

It is clear to see that we can build aMPNEP
with previous nodes in such a way thatN0 generates
all possible colored strings and then apply processors
Ne1

t
,Ne2

t
,Ne3

t
,Ne4

t
to filter such strings for edgeet . Re-

peating such filtering process with the rest of edges
gives a valid solution to the given problem.

A MPNEP with the above architecture can solve
the3-colorability problemof n cities withmedges.

For the firstn steps, that are evolution ones when
nothing is actually communicated, the strings will re-
main in N0 until no letter inT appears in them any-
more. When this process is finished, the obtained
strings encode all possible ways of coloring the ver-
tices, satisfying or not the requirements of the prob-
lem. After this, 1 step is needed to communicate all
possible solutions to next processors. Now, for each
edgeet , MPNEP keeps only those strings which en-
codes a col- orability satisfying the condition for the
two vertices ofet . This is done by means of the nodes
Ne1

t
,Ne2

t
,Ne3

t
, finally Ne4

t
in 12 steps. As one can see,

the overall time of a computation is 12m+n+1. We
finish the proof by mentioning that the total number of
rules is 18m+3n+1. In conclusion, all parameters of
the network are ofO(m+n) size.

5 FINAL REMARKS

The concept of network of evolutionary processors
is based on mechanisms inspired from cell biology.
A variation of these networks called massive paral-
lel of network of evolutionary processors is also stud-
ied. These networks consists of nodes which are very
simple processors and are able to perform rules oper-
ations. These nodes are endowed with a filter which
are defined by regular sets. Evolution and commu-
nication is done in a parallel way which seem to be
close to the possibilities of biological implementation
rather than NEPs since bio-operation, chemical reac-
tions, mutations etc. happen in a parallel way since
there is no inherent synchronization among them.

A new dynamic ofNEP has been introduced in
this paper. It has been proof that any givenNEPcan
be model with an equivalentMPNEP, see theorem
2.1, and therefore the inherent computational com-
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pleteness ofNEP can be incorporated inMPNEP.
This massive parallel way of operation is closer to bi-
ological operations than classicalNEP.

The3-colorability problemhas been solved using
a software tool that simulates aMPNEPaccording to
theorem 4.1. This soft tool can be use to check other
useful theorems (Castellanos et al., 2001) inNEP re-
search area.

This paper has proposed a new dynamic ofNEP
with a high parallel and non-deterministic behavior,
and therefore all research aboutNEP can be trans-
lated intoMPNEP. For instance,MPNEP can be
modified according to (Diaz et al., 2007) in order to
move filters towards edges. Each edge is viewed as
a two-way channel such that input and output filters
coincide. Thus, the possibility of controlling the com-
putation in such networks seems to be diminished. In
spite of this these networks are still computationally
complete (Castellanos et al., 2006). Also, another
rules can be implemented inMPNEP to extend this
computing model. In (Manea et al., 2007) one re-
places the point mutations associated with each node
by the missing operation mentioned above, that of
splicing. This new processor is called splicing proces-
sor. This computing model, called accepting network
of splicing processors (shortly ANSP), is similar to
some extent to the test tube distributed systems based
on splicing.
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