
TOWARDS A SEMI-AUTOMATIC TRANSFORMATION
PROCESS IN MDA

Architecture and Methodology

Slimane Hammoudi1, Wajih Alouini2 and Denivaldo Lopes3
1Ecole Supèrieure d’Electronique de l’Ouest(ESEO), 49009 Angers Cedex 01, France

2ISIG, Institut Supérieur d’Informatique et de Gestion, University of Kairouan, Tunisia

3Federal University of Maranhão (UFMA), CCET – DEE, São Luís - MA, Brazil

Keywords: Model Driven Architecture, Transformation Language, Mapping Metamodel, Matching Metamodel, Semi-
Automatic Transformation, Transformation Architecture and Transformation Methodology.

Abstract: Recently, Model Driven Engineering (MDE) approaches have been proposed for supporting the
development, maintenance and evolution of software systems. Model driven architecture (MDA) from
OMG (Object Management Group), “Software Factories” from Microsoft and the Eclipse Modelling
Framework (EMF) from IBM are among the most representative MDE approaches. Nowadays, it is well
recognized that model transformations are at the heart of these approaches and represent as a consequence
one of the most important operations in MDE. However, despite the multitude of model transformation
languages proposals emerging from university and industry, these transformations are often created
manually. In this paper we propose in the first part an extended architecture that aims to semi-automate the
process of transformation in the context of MDA. This architecture introduces mapping and matching as
first class entities in the transformation process, represented by models and metamodels. In the second part,
our architecture is enforced by a methodology which details the different steps leading to a semi-automatic
transformation process. Finally, a classification of these different steps according to two main criteria is
presented: how the steps are achieved (manual/automatic), and who is responsible for their achievement
(expert, designer or software).

1 INTRODUCTION

The main motivation behind MDE (Bézivin, 2006)
is to transfer the focus of work from programming to
modeling by treating models as first class entities
and consequently the primary artifacts of
development. One of the most important aspects of
the MDE approach is the explicit specification of
business logic through Platform Independent Models
(PIMs) and the flexibility to implement them on
different target platforms via Platform Specific
Models (PSMs). A specific platform can be any
technology that supports the execution of these
models, either directly or after translation to code.
The PIM reflects the functionalities, the structure
and the behavior of a system. The PSM is more
implementation-oriented and corresponds to a first
phase, binding of a given PIM to a given execution

platform. In this context, designers and developers
have to focus on modeling the problem domain and
not on programming one possible (platform-specific)
solution. There are nowadays several approaches
based on MDE principles, the most well known
being MDA (OMG, 2007) by OMG or “Software
factories” by Microsoft (Dominguez, 2006). In the
literature, several issues around MDE have been
studied and subject of intensive research, e.g.
modeling languages (Bézivin, 2004-1), model
transformation languages (Jouault, 2006) (Bézivin,
2003) (OMG, 2005), mapping between metamodels
(Hammoudi, 2005-2) (Lopes, 2005-1), and design
methodologies (Almeida, 2006). Among these
issues, model transformation languages occupy a
central place and allow to define how a set of
elements from a source model are analyzed and
transformed into a set of elements of a target model.

416
Hammoudi S., Alouini W. and Lopes D. (2008).
TOWARDS A SEMI-AUTOMATIC TRANSFORMATION PROCESS IN MDA - Architecture and Methodology.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 416-425
DOI: 10.5220/0001720104160425
Copyright c© SciTePress

However, these transformations are created
manually, often a fastidious and error-prone task,
and therefore an expensive process. These
transformations consist of creating a set of rules
involving, and in the same time merging mapping
and transformation techniques between two
metamodels. A semi-automation of the
transformation process leads to a real challenge
allowing many advantages: It enhances significantly
the development time of transformation and
decreases the errors that may occur in a manual
definition of transformations. In (Hammoudi, 2005-
1) (Lopes, 2005-2), we have initiated a first attempt
towards this semi-automation. We have introduced
an approach separating mapping specification from
transformation definition, and have implemented
this approach in a tool called MMT (Mapping
Modeling Tool). In this first approach, a mapping
specification was created manually to define the
relationships between metamodels (i.e. equivalent
metamodel elements), while transformation
definition was generated automatically and
contained the operational description of the
transformation rules between models. In this paper,
we propose to push the semi-automation process one
step further by using matching techniques (Kappel,
2007) (Lopes, 2006-1, 2006-2), to provide semi-
automatic mappings between two metamodels. The
produced mappings could be adapted and validated
by an expert for the automatic generation of a
transformation model, as a set of transformation
rules. In this paper, we present an extended
architecture of the transformation process in the
context of MDA. This architecture introduces the
matching and mapping components as two other
important operations in the transformation process.
Based on this architecture, a methodology presents
the different steps of the semi-automatic
transformation process.
This paper is organized as follows: section 2
introduces the MDE/MDA approach and presents its
most common scenario of transformation in MDA.
Section 3 presents an extended architecture for a
semi-automatic transformation process and discusses
the matching and mapping metamodels as two
important components in this process. Section 4
presents the methodology which in the first part,
starts with two metamodels source and target, and
details the different steps for generating
transformation rules semi-automatically.
The second part of this methodology consists of
applying the transformation rules to a PIM model to
generate an equivalent PSM on a given specific
platform. Section 5 reviews the main steps of the

transformation process according to two main
criteria: how the steps are achieved and who is
responsible for their achievement. Finally, section 6
concludes our work and presents some final remarks
and future perspectives.

2 MDE: OVERVIEW AND
TRANSFORMATION PROCESS

At the beginning of this century, software
engineering needs to handle software systems that
are becoming larger and more complex than before.
Object-oriented and component technology seem
insufficient to provide satisfactory solutions to
support the development and maintenance of these
systems. To adapt to this new context, software
engineering has applied an old paradigm, i.e.
models, but with a new approach, i.e. Model Driven
Engineering. In this new global trend called Model
Driven Engineering, MDA is a particular variant.

2.1 Model Driven Architecture (MDA)

MDA is based on standards from the OMG; it
proposes an architecture with four layers (OMG,
2001): metametamodel, metamodel, model and
information (i.e. an implementation of its model).
Figure 1a presents the basic Metamodeling
architecture of MDA with the relationships between
different levels of models. In this approach,
everything is a model or a model element. In level
M0, a real system is representedBy a model in level
M1, and a model in level M1 conformsTo a
metamodel in level M2. These two important
relationships of MDA are discussed in (Bézivin,
2005).

Figure 1a: Architecture with four Meta-layers.

TOWARDS A SEMI-AUTOMATIC TRANSFORMATION PROCESS IN MDA - Architecture and Methodology

417

In level M3, a metametamodel is a well-formed
specification for creating metamodels such as the
Meta Object Facility (MOF), a standard from the
OMG. In level M2, a metamodel is a well-formed
specification for creating models. In level M1, a
model is a well-formed specification for creating
software artifacts. In level M0, an operational
example of a model is the final representation of a
software system.

According to this architecture, we can state the
existence of few metametamodels such as MOF and
Ecore (Budinsky, 2003; Eclipse, 2004), several
metamodels such as UML, UEML (UEML, 2003)
and EDOC (OMG, 2003), more models describing
real life applications such as a travel agency, and
finally infinite information such as the
implementation of this travel agency model using
Java or C#. This organization is well known in
programming languages where a self-representation
of EBNF notation could be obtained easily in some
lines. This notation allows defining infinity of well-
formed grammars. A given grammar, e.g. the
grammar of the C language, allows defining the
infinity of syntactically correct C program. Several
different executions could be realized from a C
program. Besides the MDA architecture with four
layers, figure 1.b illustrates the primary idea around
the development of software systems using MDA.
This figure involves two kinds of transformation
(represented by arrows): model to model
transformation and model to code transformation.

Figure 1b: MDA: Primary Idea.

The development is based on the separation of
concerns (e.g. business and technical concerns),
which are afterwards transformed between them. So,
business concerns are represented using Platform-
Independent Model (PIM), and technical concerns are

represented using Platform-Specific Model (PSM).
According to figure 1.b, PIM (e.g. a UML business
model) is transformed into PSM (e.g. based on Web
Services), which could be refined in other PSMs (e.g.
based on Java and JWSDP1), until exported as code,
configuration files, and so on. Analyzing each type of
model, we can deduce that a PIM and PSM have a
different life cycle. PIMs are more stable over time
while PSMs are subject to frequent modification. So,
this approach preserves the business’s logic (i.e.
PIMs) against the changes or evolutions of
technologies (i.e. PSMs).

2.2 Model Transformation in MDA

It is well recognized today that model transformation
is one of the most important operations in MDA.
The following definition of model transformation
largely shared in the community is provided in
(Kleppe, 2003): “A Transformation is the automatic
generation of a target model from a source model,
according to a transformation definition. A
transformation definition is a set of transformation
rules that together describe how a model in the
source language can be transformed into a model in
the target language. A transformation rule is a
description of how one or more constructs in the
source language can be transformed into one or
more constructs in the target language”.

The working group on model transformation of the
Dagstuhl seminar (Bézivin, 2004-2) suggests that
this should be generalized, in that a model
transformation should also be possible with multiple
source models and/or multiple target models. In our
discussions here we are concerned with a
transformation that takes a platform-independent
model and transforms it in to a platform-specific
model. In the context of the basic four levels
Metamodeling architecture of MDA, various
scenarios of model-to-model transformation have
been identified. Figure 2 presents the most common
scenario of these transformations, which is
compatible with the MOF2.0/QVT standard (OMG,
2005). Each element presented in Figure 2 plays an
important role in MDA. In our approach, MOF is the
well-established metametamodel used to create
metamodels. Transformation rules specify how to
generate a target model (i.e. PSM) from a source
model (i.e. PIM). To transform a given model into
another model, the transformation rules map the

1 Java Web Service Development Pack.

ICEIS 2008 - International Conference on Enterprise Information Systems

418

source into the target metamodel. The
transformation rules are based on the transformation
language, such as the standard QVT.

Figure 2: Model Transformation in MDA: from PIMs to
PSMs (Lopes, 2005-1; Jouault, 2006)

The transformation engine takes the source model,
executes the transformation rules, and produces the
target model as output. Using a unique formalism
(e.g. MOF) to express all metamodels is very
important because this allows the expression of
different sorts of relationship between models based
on separate metamodels. Transformations are one
important example of such a relationship, but there
are also others (Bézivin, 2005) like model weaving,
model merging, model difference, metamodel
alignment, etc. Thus, given ma(s)/Ma and mb(s)/Mb,
where ma is a model of a system s created using the
metamodel Ma, and mb is a model of the same
system s created using the metamodel Mb, then a
transformation can be defined as follow:

ma(s)/Ma → mb(s)/Mb.

When Ma and Mb conform to the same
metametamodel (e.g. MOF), the transformation may
be expressed in a transformation language such as
QVT. There are a number of general challenges in
the definition of a language for model
transformation. Some of these challenges are that it
must be expressive and provide complete
automation, be unambiguous, and Turing complete
for it to be generally applicable. The recent
standardization effort by OMG (OMG, 2007) and
many industrial and academic efforts in this area
will allow advancement on these challenges.

Before introducing our architecture for a semi-
automatic transformation process, we would like to
recall the two main problems concerning the main
scenario of the MDA transformation process
illustrated by figure 2 and that have motivated our
current work:
- The first problem concerns the creation of

“transformation rules” between metamodels which,
as mentioned in the introduction, are often created
manually, generally a fastidious and error-prone
task, and therefore expensive process.

- The second problem concerns the specification of
these “transformation rules”, which merge together
techniques of mappings and transformations
without explicit distinction between them. That is
to say, the specification of correspondences
between elements of two metamodels and the
transformation between them are grouped in the
same component at the same level.
As we have already discussed in (Hammoudi,
2005-1), an explicit distinction between techniques
of mapping and transformation could be very
helpful in the whole MDA process of
transformation. Moreover, the separation between
the mappings and transformations parts is a first
step towards a semi-automatic process, since
mappings could be automatically generated by a
matching process.

3 AN ARCHITECTURE FOR THE
TRANSFORMATION PROCESS

Figure 3 illustrates our proposal of an extended
architecture for the transformation process in MDA,
allowing a semi-automatic generation of
transformation rules and the semi-automatic
generation of a target model from a source model.
The three main operations of our approach are:
Matching, Mapping and Transformation.
All the components linked to these operations, and
their relationships, are presented in figure 3 based on
the four level MDA metamodeling architecture.

The matching operation is the process that
produces the mappings between two metamodels.
Generally, this task implies a search of equivalent or
similar elements between two metamodels. In the
database domain, this task is called schema
matching. In our context, a matching model
(Matching M) takes two metamodels designed by
source and target (representing respectively a PIM
and a PSM metamodel), and produces a mapping
model (Mapping M).

conformsTo

conformsTo

conformsTo
from

exec

conformsTo

conformsTo

conformsTo

MOF

Transformation
rule

Source
metamodel

E i

Target
metamodel

output input Transfo.
Engine

Source
model

Target
model

Transformation Language

to P
S
M

P
I
M

TOWARDS A SEMI-AUTOMATIC TRANSFORMATION PROCESS IN MDA - Architecture and Methodology

419

Figure 3: Architecture for a semi-automatic transformation process in MDA.

The matching model conforms to a metamodel of
matching (Matching MM) which implements
techniques that consist of finding semantically
equivalent modeling concepts between two
metamodels. Thus, different kinds of relationships
between metamodel elements are discovered using
the metamodel of matching. The relationships
between metamodel elements are saved in a
mapping model which conforms to a mapping
metamodel (Mapping MM). This metamodel defines
the different kinds of links (relationships) that could
be generated by the matching model. Each kind of
link corresponds to one transformation pattern
specified in the transformation model described
hereafter. Given that no generic matching solution
exists for different metamodels and application
domains, it is recommended to give the human
expert the possibility to check the obtained
mappings, and, if necessary, update or adapt it. This
is the only step in the whole process, in which the
expert intervenes to complete and/or validate the
obtained results. Finally, a transformation model
(Transformation M), in conformance to its
transformation metamodel (Transformation MM), is
derived automatically from a mapping model. A
transformation model is basically represented by a
set of rules that states how elements from source
metamodel are transformed into elements of target
metamodel. These rules are expressed in a
transformation language based on MDA standards
(OCL, MOF). This language, such as the standard
QVT is described by a metamodel as a general

formalism and abstract syntax for model
transformation in MDA. Frequently, the
transformation model is completed by some
information such as those concerning the execution
environment, and produces a transformation
program ready for the execution. This last part is
often achieved by a designer (or software engineer)
who implements a business model in a specific
platform. Finally, a transformation engine takes a
source model as input, and executes the
transformation program to transform this source
model into the target model.
According to our approach and architecture, the
matching and transformation components are
executable programs that take models or metamodels
as parameters, while the mapping component is a set
of relationships between elements of source and
target metamodels. Concerning the mapping
component, we have proposed in a previous work a
generic metamodel and implemented it in a tool
called MMT (Lopes, 2005-1). In this first approach,
the mapping model between two metamodels, was
supposed to be defined manually by an expert. From
this mapping model, a transformation model
represented by a set of rules is generated
automatically.

MMM : Metametamodel MM : Metamodel M : Model

pim

The MOF MMM

Source MM Matching MM Transformation MM Target MM Mapping MM

 Matching M Mapping M Transformation MSource M Target M

Transformation
 Engine

input output

execute

produce derive

psm

adapt/update

 Transformation
Program

 conformsTo

ICEIS 2008 - International Conference on Enterprise Information Systems

420

4 A METHODOLOGY FOR
A SEMI-AUTOMATIC
TRANSFORMATION PROCESS

We intend through our methodology to enforce the
new architecture for the transformation process
presented above and to discuss the implementation
of the main steps. Figure 4 illustrates the main steps
of a methodology allowing a semi-automatic
transformation process. These steps are represented
by two activities diagrams. The first activity diagram
(a), on the left side, shows the steps followed by a
certain domain expert who starts with the
specification of the two metamodels source and
target and follows the process until the generation of
transformation rules and an executable
transformation program. The second diagram (b), on
the right side, illustrates the steps of a designer who
specifies a business model of a given application
based on a PIM metamodel and generates
automatically, by using a transformation program,
an implementation of this business model on a given
specific platform. This distinction between expert
user and designer is discussed in (Gavras, 2004)
where a classification of MDA technology users is
presented. Moreover, in any MDA based project, the
distinction between preparation activities and
execution activities is essential. The first activities
are performed by the expert, while the second
activities are mainly performed by designers or
software engineers.

The first goal within such a methodology is to
introduce the matching process into the OMG’s
Model-Driven Architecture (MDA) approach in
order to increase the degree of automation of the
transformation process. This requires the reduction
of human expert manual tasks by the rational choice
among the plethora of existing works on matching
algorithms. These algorithms have a high
applicability to the problem of useful automatic
mapping production.

For this purpose, we propose a methodology
based on MDA standards. All the metamodels,
source and target, as well as transformations, are
based on the same metametamodel “Meta Object
Facility” ("MOF 2.0). As noted previously, it is clear
that using the same metametamodel, i.e. MOF, will
generally facilitate mapping discovery between
metamodels. However, it should be noted that we
do not claim that this methodology is exhaustive, but
it traces accurately the essential phases of the
transformation process including the matching
process.
In the next section, we outline the content for each
phase of the methodology and describe what is to
achieve in every step. In accordance to figure 4, we
describe the steps of a domain expert leading to a
generation of a transformation program in section
4.1 (preparation activities), while section 4.2
presents the steps followed by a designer (execution
activities) implementing its business model into a
specific platform

Figure 4: Methodology for a semi-automatic transformation process.

Executable model PIM’s metamodel specification

Generation of transformation rules

Validate and/or update obtained mappings

[1]

[2]

[3]

[4]

[5]

PSM’s metamodel specification

Apply the matching approach

[PSM is complete] [no]
[yes]

[2]

[3]

Complete PSM [5]

Specification of a PIM Model

 Transformation program Execution (PIM M to PSM M)

Edition of a PSM model

[1]

[4]

Transformation
program

 (a) Preparation

 (b) Execution activities

TOWARDS A SEMI-AUTOMATIC TRANSFORMATION PROCESS IN MDA - Architecture and Methodology

421

4.1 Generation of a Transformation
Program

This first part of the transformation process groups
five steps leading to an executable transformation
program. There follows, the presentation of each
step in this first part:

4.1.1 PIM’s Metamodel Specification

This phase aims to define the appropriate PIM
metamodel for a given application domain. Since
MDA allows the separation of concerns between the
business aspect and the technology, the PIM
metamodel represents business logic without taking
care of technological features. Thus, the models in
conformance to PIM metamodel ignore all the
platform specific details. PIMs metamodels are
represented completely or partly by MDA
metamodels standards such as UML or EDOC.
Basically, there are two possibilities to create new
metamodels in the context of MDA:
• Using the concept of profiles to extend the

UML metamodel in order to take into account
particular semantics of a given system.

• Creating new metamodels based directly on
the MOF or Ecore metamodel

4.1.2 PSM’s Metamodel Specification

This phase aims to define and specify the
appropriate PSM metamodel. PSM are lower levels
than PIMs as they must adhere to specific
constraints imposed by the target platform, i.e. the
platform in where the application will be
implemented. The OMG afford compliant tools to
specify PSM metamodels. In this way, UML
profiles, as official OMG specifications, could also
serve to precise specific constraints for a given
platform. As samples of PSM, we quote the Web
Service Description Language (WSDL) metamodel
for the web service technology and the relational
metamodel for the relational databases. Once these
two first phases are accomplished, the matching
process can be applied.

4.1.3 Application of the Matching Process

This phase aims to select the relevant match
algorithms or matchers in order to generate matches
(mappings). The Matching process could be
represented by a model management operation
called match (Bernstein, 2003). This operation takes
two metamodels M1 and M2 as input and produces
Mapping model Mm as output. M1 and M2,

respectively, conform to the corresponding
metamodels MM1 and MM2. Mm conforms to the
metamodel of mapping MMm. The “ ” operator
represents the “conformsTo” relationship.

Mm MMm = match (M1 MM1, M2 MM2)

Ideally, the mapping model is represented
graphically. In fact, the graphical mapping model
provides a higher level view than the lexical
counterpart in order to present clear correspondences
and to make it easier to check that a correspondence
is valid.

The use of multiple matchers may be required
(Dimitris, 2006). The choice of the appropriate
matching approach to use is based on the
examination of the PIM and PSM metamodels
characteristics. This decision requires the
specification and the definition of the appropriate
criteria, essentially the application domain and
modeling language. In the literature, several schema
matching approaches have been proposed (Sun,
2003). Each schema matching approach has its own
characteristics that were grouped by taxonomy. In
addition, each approach has been evaluated through
match quality measures (Lopes, 2006). Finally, It is
ambitious to be certain that the obtained mappings
from the matching process are exhaustive and
faultless, thus presenting the need of the human
expert to intervene as presented in the next phase.

4.1.4 Validate and Update obtained
Mappings

The human expert is in charge of this phase. Given
that it is extremely optimistic to assert that all the
mappings are obtained as a result of the previous
phase or that all the matching techniques exist and
are utterly effective, it is fairly rational to provide
the human expert with interactive tools in perform-
ing the required correcting task. These tools, allow
the expert to accept, discard or modify the obtained
mappings, furthermore, to specify correspondences
which the matcher was unable to find. A graphical
interface tool is able to present mappings between
the source metamodel PIM and the target metamodel
PSM and to define all the dependencies between
mappings. This phase is of a great consequence for
the transformation of mappings into transformation
program such as QVT rules. Thus, the expert has to
be as accurate as possible. Once the mappings are
validated by the expert, the next phases enchain by
an actual generation of the transformation rules for
which automation is entirely possible.

ICEIS 2008 - International Conference on Enterprise Information Systems

422

4.1.5 Generation of Transformation Rules

This phase aims to generate automatically
transformation rules from mappings and formatting
them into a transformation model in order to be used
by the transformation program which transforms the
PIM model into the PSM model. The mapping
model obtained in the previous step should be
sufficiently defined to allow an automatic generation
of transformation model. This transformation model,
which consists of a set of transformation rules, is a
model structured in conformance to the OMG’s
standard MOF2.0-QVT. These QVT transformation
rules are either correspondence rules (declarative
approach) or construction rules (imperative
approach). A hybrid approach, containing both
correspondence rules, and construction rules is also
possible (Blanc, 2005). The automatic generation of
transformation rules in our approach is due to the
explicit distinction between mapping and
transformation components. This distinction is stated
more in ontologies field where they claim the
importance to distinguish between ontology
translation and ontology mapping (Dou, 2003):
 “It's important to distinguish ontology translation from
ontology mapping, which is the process of finding
correspondence (mappings) between the concepts of two
ontologies. If two concepts correspond, they mean the
same thing, or closely related things. The mappings should
be expressed by some mapping rules, which explain how
those concepts correspond. Obviously, ontology
translation needs to know the mappings of two ontologies
first, then it can use the mapping rules."

4.2 Generation of a Platform Specific
Model

This second part in the transformation process
groups also five steps leading to an executable
platform specific model. This part is mainly
achieved by a designer who, after defining his
business model would like to implement it on a
specific platform.

4.2.1 Specification of a PIM Model

Using a PIM metamodel, a designer defines his
business model focusing only on the business logic
without taking into account implementation
considerations. In this step the designer may use, for
example, different UML diagrams which will lead to
a final class diagram ready for the implementation
on a given platform. Several tools such as Poseidon
may help the designer during this step. This step
corresponds typically to the definition of a
conceptual model in the context of database design.

4.2.2 Transformation Program Execution
(from PIM Model to PSM Model)

The transformation program obtained in the first part
is used here. It takes a PIM model as input and
produces the equivalent PSM model as output. The
transformation engine, which implements the
transformation program, reads the source model,
applies the rules to the source model and produces
the corresponding target model. All the input and
produced models are often expressed in XMI format.

4.2.3 From PSM Model to an Executable
Model

In this section we group the last three steps of the
second part, starting with a first binding of a PSM
model and leading to an executable model on a
given platform. The PSM model produced from the
previous step represents a first version of a platform
specific model which usually should be completed
by information very specific to the target platform to
produce a final executable model. So, the
completeness of the PSM obtained is to be verified.
In the case of effective completeness the
transformation task is successfully accomplished,
otherwise, the designer will complete it manually.

4.3 Illustrative Example

Figure 5 illustrates the whole transformation process
discussed here. This figure presents a simple
example involving the main concepts of matching,
mapping and transformation according to our point
of view. In this example a fragment of a UML
metamodel is matched with a fragment of a
relational database metamodel. The result of this
matching is a mapping model, defined here using a
graphical formalism that we have introduced (Lopes,
2005-1), to specify mappings between elements of
two metamodels, which are MOF compliant. This
graphical formalism is very useful to specify
mappings in a declarative manner and at a high level
of abstraction. However, it is clear that this
formalism is not sufficient to express complex
mappings. Thus, a textual language must sometimes
be used to complete it. OCL (Object Constraint
Language) has been used in several
experimentations of our approach (Lopes, 2005-1).
From a mapping model (validated by an expert), a
transformation program represented by a set of rules
is generated automatically. This program takes a
source UML model and produces an implementation
of this model as a relational database.

TOWARDS A SEMI-AUTOMATIC TRANSFORMATION PROCESS IN MDA - Architecture and Methodology

423

Class

Table

C2T

name column

attribute field
C2T A2F

Rule C2T {
from Class: UML!Class
to Table: Oracle!Table
(

name Class.name
 …………………………………………
)

MATCHING

Transformation
generation

name
address

Bank

account
name

Client

name address

 name

Execution

Bank

Client

M
A
P
P
I
N
G

account

Transformation
execution

Figure 5: Transformation Process: from metamodel
matching to model transformation.

5 DISCUSSION

Table 1 resumes the main steps in the process of
transformation focalizing on two important aspects:
how they are achieved (manual or automatic) and
what is responsible for their achievement (expert,
designer, software). Concerning the software aspect,
the transformation process involves three main
programs which are at the heart of the semi-
automatic transformation process:
• Matching program: implements the matching

metamodel and produces a first version of a
mapping model between two metamodels
source and target.

• Generation program: takes a mapping model
validated (updated) by an expert, and generates
automatically a transformation program as a set
of rules.

• Transformation program: takes a source model
defined by a designer and produces an
equivalent target model on a specific platform.

Table 1: Main steps and actors in the semi-automatic
transformation process.

 How Who

PIM & PSM
metamodels

manual
(graphical

editor)
expert user

Matching process automatic

matching program
(expert user)

Validation/update
mappings

manual
(graphical editor) expert user

Transformation
rules generation automatic generation program

(expert user)

PIM model
manual

(graphical
editor)

designer

Transformation
rules execution automatic

transformation
program

(designer)
Final PSM manual

(textual editor) designer

6 CONCLUSIONS AND FUTURE
WORK

In this paper, we have presented our approach for a
semi automatic transformation process in MDA
through an architecture and a methodology. We
argue that a semi-automatic transformation process
will be a great challenge in MDA approach as there
is not yet a complete solution that automates the
development of model transformation. A semi-
automatic process will bring many advantages: it
accelerates the development time of transformations;
it reduces the errors that may occur in manual
coding; it increases the quality of final
transformation code. The key principle for this
process is to consider mapping and matching
metamodels as first class entities in MDA. In our
previous work (Lopes, 2006-1; Lopes, 2006-2), we
have proposed a first algorithm for metamodel
matching based on set theory. In future work, we
will study and implement other metamodel matching
algorithms, e.g. algorithms based on machine
learning and heuristics. An evaluation between
different metamodel matching algorithms can help
to capture the fundamental characteristics of each
approach. Thus, a hybrid algorithm can be proposed
as the composition of the best characteristics of each
individual algorithm.

ICEIS 2008 - International Conference on Enterprise Information Systems

424

REFERENCES

Almeida, A.J.P., 2006. Model-driven design of distributed
applications. PhD thesis, University of Twente. ISBN
90-75176-422

Bernstein, P.A, 2003. Applying Model Management to
Classical Meta Data Problems. In CIDR’03,
Proceedings of the Conference on Innovative Data
Systems Research. CIDR.

Bézivin, J., 2005. On the Unification Power of Models. In
Software and Systems Modeling, 4(2):171-188,

Bézivin, J., Dupé, G., Jouault, F., Pitette, G., Rougui, J.E.,
2003. First Experiments with the ATL Model
Transformation Language: Transforming XSLT into
Xquery. In 2nd OOPSLA, Workshop on Generative
Techniques in the context of Model Driven
Architecture.

Bézivin, J., Hammoudi, S., Lopes, D., Jouault, F., 2004.
Applying MDA Approach for Web Service Platform.
In EDOC 2004, 8th IEEE International Enterprise
Distributed Object Computing Conference.

Bézivin J., Heckel, R., 2004. Language Engineering for
Model-driven Software Development. In Dagstuhl
Seminar.

Bézivin, J., Lammel, R., Saraiva, J. Visser, J., 2006.
Model Driven Engineering: An Emerging Technical
Space. In GTTSE 2006, Generative and
Transformational Techniques in Software
Engineering.

Blanc, X., 2005. MDA en action, Ingénierie logicielle
guidée par les modèles, EYROLLES. Paris, 1st edition

Budinsky, F., Steinberg, D., Merks, E. , Ellersick, R.,
Grose, T. J., 2003. Eclipse Modeling Framework: A
Developer’s Guide, Addison-Wesley Pub Co, 1st
édition.

Dimitris, M., Dimitris, P., 2006. A Tool for Semi-
Automated Semantic Schema Mapping: Design and
Implementation. In Caise’06, International Workshop
Data Integration and the Semantic Web.

Dominguez, K., Pérez, P., Mendoza, L., Grimán, A., 2006.
Quality in Development Process for Software
Factories According to ISO 15504 , In CLEI electronic
journal, [http://www.clei.cl, Vol. 9 Num. 1 Pap. 3:
June 2006].

Dou D, McDermott D, and Peishen Qi 2003 Ontology
Translation on the Semantic Web. In Proc. Int'l
Conf. on Ontologies, Databases and Applications of
Semantics (ODBASE2003). LNCS 2888.

Eclipse Tools Project. Eclipse Modeling Framework
(EMF) version 2.0, 2004. Available on
http://www.eclipse.org/emf.

Gavras. A, Belaunde.M, Pires L.F, Almeida.J.P,
"Towards an MDA-based Development Methodology
for Distributed Applications" , Proceedings of the 1st
European Workshop on Model-Driven Architecture
with Emphasis on Industrial Applications (MDA-IA
2004)

Hammoudi, S., Janvier, J., Lopes, D., 2005. Mapping
Versus Transformation in MDA: Generating
Transformation Definition from Mapping

Specification, In VORTE 2005, 9th IEEE International
Enterprise Distributed Object Computing Conference.

Hammoudi, S., Lopes, D., 2005. From Mapping
Specification to Model Transformation in MDA:
Conceptualization and Prototyping. In MDEIS’2005,
First International Workshop.

Jouault, F., 2006. Contribution à l'étude des langages de
transformation de modèles, Ph.D. thesis, University of
Nantes.

Kappel, G., Kargl, H., Kramler, G., Schauerhuber, A.,
Seidel, M., Strommer, M., Wimmer, M., 2007.
Matching Metamodels with Semantic Systems – An
Experience Report. In BTW 2007, Datenbanksysteme
in Business, Technologie und Web.

Kleppe, A., Warmer, J., Bast, W., MDA Explained: The
Model Driven Architecture: Practice and Promise.
Addison-Wesley, 1st édition, August 2003.

Lopes, D., 2005. Study and Applications of the MDA
Approach in Web Service Platforms, Ph.D. thesis
(written in French), University of Nantes.

Lopes, D., Hammoudi, S., Bézivin, S., Jouault, F., 2005.
Generating Transformation Definition from Mapping
Specification : Application to Web Service Platform.
In CAISE'05, Proceedings of the 17th Conference on
Advanced Information Systems Engineering.

Lopes, D., Hammoudi, S., Abdelouahab, Z., Schema
Matching in the context of Model Driven Engineering:
From Theory to Practice. Editores Tarek Sobh and
Khaled Elleithy, Advances and Innovations in Systems,
Computing Sciences and Software Engineering,
Springer, 2006

Lopes, D., Hammoudi, S., De Souza, J., Bontempo, A.,
2006. Metamodel matching : Experiments and
comparison. In ICSEA'06, Proceedings of the
International Conference on Software Engineering
Advances.

OMG, 2001. Model Driven Architecture (MDA)-
document number ormsc/2001-07-01. (2001).

OMG, 2003. UML Profile for Enterprise Distributed
Object Computing Specification. OMG Adopted
Specification ptc/02-02-05.

OMG, 2005. MOF QVT Final Adopted Specification,
OMG/2005-11-01.

OMG, 2007. MDA Specifications. Available in
http://www.omg.org/mda/specs.htm#MDAGuide.

Sun, X. L. and Rose, E.. Automated Schema Matching
Techniques: An Exploratory Study. Research Letters
in the Information

Unified Enterprise Modeling Language (UEML), 2003.
Available on http://www.ueml.org.

TOWARDS A SEMI-AUTOMATIC TRANSFORMATION PROCESS IN MDA - Architecture and Methodology

425

