
ENHANCING ENTERPRISE COLLABORATION USING
CONTEXT-AWARE SERVICE BASED ON ASPECTS

Khouloud Boukadiα, Chirine Ghediraβ and Lucien Vincentα

αDivision for Industrial Engineering and Computer Sciences, ENSM, Saint-Etienne, France
β LIRIS Laboratory, Claude Bernard Lyon 1 University, Lyon, France

Keywords: Web service, BPEL, service adaptation, context-aware, Aspect Oriented Programming.

Abstract: In fast changing markets, dynamic collaboration ability involves establishing and "enacting" business
relationships in an adaptive way taking into account context changes. This relies on using adaptable and
flexible IT platforms. Service orientation can address this challenge. Accordingly, collaborative processes
can be implemented as a composition of a set of services. However, combining "directly" elementary IT
services is a hard task and presents risks in both service provider and user sides. In this paper we present a
high-level structure called Service Domain which orchestrates a set a of related IT services based on BPEL
specifications. To ensure the Service Domain adaptability to context changes our approach aims to prove
the benefits of bringing Aspect Oriented Programming.

1 INTRODUCTION

Continuing globalization and changing customer
needs are forcing enterprises to rethink and
restructure their business models and organizational
structures. To stay competitive, enterprises have to
be increasingly efficient, flexible, and innovative.
They will focus more on core competencies and
outsource other activities to dynamically selected
partners to deliver the best possible customer value
and the shortest time-to-market.

IT systems play a crucial role in enterprise. They
must allow the enterprise to respond to changes
which occur in a timely, dynamic, and reliable
manner without compromising organizational
flexibility. This brings into focus the role of defining
and implementing flexible business processes
supported by flexible IT systems, which allow
enterprises to collaborate with partners in dynamic
and flexible way. Flexible IT systems are those that
are malleable enough to deal with context changes in
an unstable environment (Byrd and Turner, 2001).

The emergence of the service-oriented
computing (SOC) paradigm and Web services
technology, in particular, has aroused enormous
interest in service-oriented architecture (SOA).
Based on the service orientation, existing IT
infrastructure can be bundled and offered as Web

services with standardized and well defined
interfaces. We call Web services arising from
applying this process enterprise IT Web services or
shortly IT services.

1.1 Enterprise IT Services

Enterprise publishes IT services in order to be used
inside and outside the enterprise. IT services can be
combined and recombined into different solutions
and scenarios, as determined by business needs. IT
services promote business processes by composing
individual IT services to represent complex
processes, which can even span multiple
organizations. However, transforming enterprise IT
infrastructure into a large set of published IT
services with different granularity levels has a
number of drawbacks. Firstly, it may imply that an
enterprise has to expose service elements which are,
in isolation meaningless, to the outside world.
Secondly, service consumer will undertake several
and low-level service combinations and this will
overburden its task, thereby decreasing the added
value of service provisioning. Thirdly, in this form a
service consumer can compose a process which has
no sense to the service provider. To overcome these
limits, we believe that an enterprise must re-organize
its IT services and presents its functionalities
through a high-level service. In this work, we

29
Boukadi K., Ghedira C. and Vincent L. (2008).
ENHANCING ENTERPRISE COLLABORATION USING CONTEXT-AWARE SERVICE BASED ON ASPECTS.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - SAIC, pages 29-36
DOI: 10.5220/0001714200290036
Copyright c© SciTePress

develop a high level structure called Service Domain
(SD) which represents a combination of related IT
services as a single logical service. Service Domain
orchestrates a set of IT services in order to give a
high level functionality and a comprehensible
external view to the end user. Service Domain will
be published as a Web service, thus hiding the
complexity of publishing, selecting and combining
fine grained IT services.

Furthermore, in order to satisfy enterprise
adaptability to context changes, Service Domain
must be more than a functionality provided through
the Web. Indeed, it must have the capacity to adapt
own its own behaviour by comporting appropriately
to accommodate the situation in which it evolves. To
respond to this characteristic, Service Domain has to
assess its current capabilities, the ongoing
commitments, and the surrounding environment. As
a result Service Domain must be context-aware.

1.2 Contribution and Paper
Organization

Our aim in this paper is to present the concept and
the architecture of the Service Domain which
orchestrates a set of related IT services based on the
Business Process Execution Language (BPEL1)
specifications (Andrews and Curbera, 2003). Service
Domain has in addition the characteristic of being
context-aware. Context awareness is guaranteed by
enhancing BPEL execution using Aspect Oriented
Programming (AOSD, 2007). Indeed, AOP enable
crosscutting concerns which is crucial for managing
context information separately from the business
logic implemented in the BPEL process

The rest of the paper is organized as follows.
First, in section 2, we present the SD architecture.
Then, in Section 3, we expose our context
categorization and we highlight the limits of BPEL
to address adaptability to the context changes. In
section 4, we introduce the Aspect Oriented
Programming and how we use it to enhance BPEL
adaptability. In addition, we expose a running
example and implementations. Finally, Section 5
details some related work.

1 BPEL is an XML-based language designed to enable task-

sharing for a distributed computing even across multiple
organizations using a combination of Web services.

2 SERVICE DOMAIN CONCEPT

Service Domain (SD) is a high level structure used
to manage a large number of enterprise IT services.
In fact, a set of related IT services are gathered
within one SD which will be empowered with
suitable facilities to assist and enhance IT services
uses. The SD enhances the Web service concept. In
fact, its purpose is not to define new application
programming interfaces (APIs) or new standards,
but rather, to provide, based on existing IT services,
a new higher-level structure that can hide
complexities from service users, simplify
deployment for service suppliers and provide self-
managing capabilities. Service Domain is based
on/uses Web service standards (i.e. WSDL, SOAP
and UDDI).

The Service Domain will be used as major
building block for implementing enterprises business
processes, which will be represented as a
composition of Service Domains that belong to
different enterprises (see Figure 1).

Figure 1: Inter-enterprise collaboration based on Service
Domain.

The Service Domain orchestrates and manages
several IT services as a single virtual service. It
promotes a SOA solution which decreases the
intricacy of providing business applications.

 As an example of a Service Domain, we can
consider a "logistic enterprise" which exposes a
"Delivery Service Domain" (DSD) which constitutes
on merchandise delivery service. DSD encapsulates
five IT services: "Picking merchandise", "Verifying
merchandise", "Putting merchandise in parcels",
"Computing delivery price" and "Transporting
merchandise". Keeping these IT service in one place
facilitates manageability and avoid extra
composition work in the client side as well as
exposing non-significant services like "Verifying
merchandise" in the enterprise side.

The Service Domain is implemented as a node
consisting of an Entry Module, a Context Manager

ICEIS 2008 - International Conference on Enterprise Information Systems

30

Module (CMM), Service Orchestration Module
(SOM) and finally an Aspect Activator Module
(AAM) as presented in Figure 2.

Figure 2: Service Domain architecture.

In this last Figure, three of these Modules
provide external interfaces to the Service Domain
node: Entry Module, Context Manager Module, and
Service Orchestration Module. The Entry Module is
based on Web service standard (SOAP) for receiving
requests and returning responses. Aside from service
requests from clients, the Entry Module also
supports administrative operations for managing the
Service Domain node. For example, an administrator
can send a register command in order to add a new
IT service with a given Service Domain by
registering it into the corresponding IT service
catalogue. The register command can also deal with
a new orchestration schema which will be added in
the orchestration schemas registry.

When the Entry Module receives an incoming
request, it communicates with the orchestration
schemas registry in order to select a suitable
orchestration schema and identify the best IT service
instances to fulfill the request. The selection of the
orchestration schema and IT service instances, takes
into account the context of the incoming request.
Orchestration schemas with the set of IT service
instances are delivered to the Service Orchestration
Module (orchestration engine). The orchestration of
different IT services belonging to one Service
Domain is ensured using BPEL. The SOM presents
an external interface called Execution Control
Interface (ECI) which enables a user to obtain
information regarding the state of execution of the
SD internal process. This interface is very useful in
case of external collaboration since it insures
monitoring of the internal process execution. It
presents a principal difference between our Service
Domain and the traditional Web service. In fact,
with the ECI interface, SD is based on the Glass box

principles in contrast to the Web service which is
based on the black box principles. Finally, the last
external interface called Context Detection Interface
(CDI) is used by the CMM to catch context
information changes. Context detection is used to
guarantee the SD adaptability. Adaptability of the
SD is based on selecting and injecting the right
Aspect according to the context change. To fulfil
this requirement, SD uses the AAM to identify the
suitable Aspect related to the context information
and inject it in the BPEL process. This guarantees
greater flexibility by quickly adapting the execution
of the SD without stopping and redeploying it.

3 BPEL AND CONTEXT

The push towards context-aware, adaptive and on
demand computing requires keeping Service
Domain with suitable infrastructure which supports
the delivery of adaptive services with varying
functionalities.

Service Domain will be used in a context in
which several factors call for dynamic execution
evolution and changes (e.g., changes in the
environment and unpredictable events). SD must
meet with the requirements of customers' context
changes as well as different service levels
expectations. For instance, the Delivery Service
Domain could advertise different behaviors by
offering several delivery calculation methods
depending on, for example, change in delivery
location or time.

As SD uses BPEL to orchestrate a set of related
IT services, its adaptability to context is closely
related to the BPEL support of adaptability features.

In this section, we will expose the context
paradigm, our context categorization and finally, we
will present the shortage of BPEL to address the
adaptability to context requirement.

3.1 Context Categories for the SD

Context appears in many disciplines as a meta-
information which characterizes the specific
situation of an entity, to describe a group of
conceptual entities, and to partition a knowledge
base into manageable sets or as a logical construct to
facilitate reasoning services. Our definition of
context follows the Dey's one (Dey et al., 2001)
who says that a context is "any information that can
be used to characterize the situation of an entity. An
entity is a person, place, or object that is considered
relevant to the interaction between a user and an

ENHANCING ENTERPRISE COLLABORATION USING CONTEXT-AWARE SERVICE BASED ON ASPECTS

31

application, including the user and the application
themselves". The categorization of context is
important for the development of context aware
applications. Context includes implicit and explicit
inputs. For example, user context can be deduced in
an implicit way by the service provider such as in
pervasive environment using physical or software
sensors. Explicit context is determined explicitly by
entities involved in the context. Bradely et al. depict
that a variety of categorizations of context have also
been proposed (Bradely and Dunlop, 2005). As a
matter of fact, there are certain types of context
which are, in practice, more used than others. These
context categories are location, identity, time, and
activity. Despite the various attempts to develop
categorization for context, there is no generic
context categorization. Relevant information differs
from one domain to another and depends on their
effective use (Mostafaoui and Mostafaoui, 2003) .

In this work, we propose a categorization of
context using an OWL ontology (Bechhofer et al.,
2004). Figure 3 depicts our context categorization
ontology which is dynamic in the sense that new
sub-categories may be added at any time. Each
context definition belongs to a certain category
which can be provider-related, customer-related and
collaboration-related.

Figure 3: Ontology for categories of context.

In the following, we explain the different
concepts which constitute our ontology based model
for context categorization:

• A provider-related context deals with the
conditions under which the providers can offer
their Web services for externally. For example,
the performance qualities include some metrics
which measure the service quality such as time,
cost, QoS, and reputation. These attributes model
the competitive advantages that providers may
have over each other.

• A customer-related context represents the set of
available information and meta-data used by
service providers to adapt their service. For

example, a customer profile which represents a
set of information characterizing the customer.

• A collaboration-related context represents the
context of the business opportunity. We identify
three sub-categories: location, time and business
domain. The location and time represent the
geographical location and the period of time
within which the business opportunity should be
accomplished.

3.2 BPEL Adaptation to Context

BPEL expose a static behavior which is inherited
from the workflow management systems. This
characteristic did not deal with evolutionary and
runtime changes characterizing the execution
environment (Charfi and Mezini, 2007). The only
way is to stop the running process, modify the
orchestration, and restart process execution.
However, this is not a viable solution, especially for
long-running and collaborative processes.

Actually, BPEL is silent in regards to the
specification and handling of crosscutting concerns
like context information. Then, it is difficult to
define, modularize and manage context-sensitive
behaviors. Traditionally, the implementation of
adaptability extensions in BPEL gets scattered and
tangled with the core functional logic. This in turn
negatively impacts the system adaptability and
scalability. Addressing these limitations, calls for
developing new principles for building such SD, and
for extending BPEL capabilities with mechanisms to
ease the addressing of context changes and to
facilitate the development of adaptive behavior. To
overcome these limitations, we propose to empower
BPEL with Aspect Oriented Programming (AOSD,
2007) to deal with Service Domain adaptation based
on context. Our approach aims to prove the benefits
of bringing Aspect Oriented paradigms to ensure
context-aware services.

4 SD ADAPTABILITY USING
ASPECTS

Our goal is to present an adaptable Service Domain
to context changes. To this end, we use the Aspect
Oriented Programming (AOP).

4.1 Motivation behind the AOP

Aspect Oriented Programming is an emerged
paradigm which enables capturing and modularizing

ICEIS 2008 - International Conference on Enterprise Information Systems

32

concerns which crosscut a software system into
modules called Aspects. Aspects can be integrated
dynamically to the system thanks to dynamic
weaving principle (AOSD, 2007). AOP introduces a
unit of modularity called Aspects containing
different code fragments (advice), and location
descriptions (pointcuts) to identify where to plug the
code fragment. These points, which can be selected
by the pointcuts, are called join points.

The rationale behind using AOP is based on two
arguments. First, AOP enable crosscutting concerns
which is crucial for managing context information
separately from the business logic implemented in
the BPEL process. This separation of concerns
makes the modification of context information and
its related adaptability action easier. For example, in
the Delivery Service Domain, we can define an
Aspect related to the calculation of extra fees when
there is a context change that corresponds to
modifying the delivery date. This Aspect can be
reused in several BPEL processes. Besides, we can
attach the adaptability action (action realised as
response to context change requirements) to another
context information (eg. location context) without
changing the orchestration logic.

Second, based on dynamic weaving principles,
Aspects can be activated and deactivated at runtime.
Consequently, BPEL process can be dynamically
adapted at runtime.

Adding AOP to BPEL is very beneficial.
However, AOP is currently used on low level
language extension (Kiczales et al., 2001). In order
to exploit AOP for SD adaptation, AOP techniques
need to be improved to support: (i) runtime
activation of Aspects in the BPEL process to enable
dynamic adaptation according to context changes,
and (ii) Aspects selection to enable customer-
specific contextualization of the Service Domain.

4.2 Empowering the SD with Aspect

The core of our approach is a runtime Aspects
weaving that can be injected on the existing SD
BPEL process, to achieve adaptable execution based
on context changes. Our key contribution consists of
encapsulating context information and the
corresponding adaptation actions in a set of Aspects.

A BPEL process is considered as a graph G(V,E)
where G is a DAG (Directed Acyclic Graph). Each
vertex vi ∈ V is a Web service (Web service
operation). Each edge (u, v) represents a logical flow
of messages from u to v. If there is an edge (u, v),
then it means that an output message produced by u
is used to create an input message to v.

In this work, we use this definition of BPEL, but
it is extended by adding specific constructs. We
identify three types of vertex: (i) context aware
vertex, (ii) non context aware vertex and (iii) context
manager vertex. Theses vertexes correspond
respectively to Context aware IT Services, Non-
Context aware IT Service and Context Manager
Services. Context manager vertexes detect context
changes and usually precede the context aware
vertexes.

A Context aware IT Service (CITS) is a service
which may have several configurations exporting
different behaviors according to the specific context.
CITS = {<ID-CITS, Ctx, Asp>} where ID-CITS is
the identifier of CITS, Ctx is the name of a context
and Asp is the Aspect related to this context.

We define an Aspect as Asp=< ID-Asp, Entry-
condition, Advice, Join-points>. Where ID-Asp is the
identifier of the Aspect, Entry-condition represents
the condition where the Aspect can be used, Advice
addresses the adaptability actions related to specific
context information (add, parameterize and remove
IT service(s)) and Join-points describe the set of
vertexes where possible adaptations may be required
in the BPEL process.

Our adaptation approach is a three-step process:
1. Context detection consists of checking the
runtime context information, in order to detect
possible context changes. These tasks are performed
by the Context Manager Service which is developed
as a Web service in the BPEL process.
2. Aspect Activation is responsible for the plug-in
and the removal of pre-defined Aspects into the
BPEL process using the Aspect Activator Module.
The Aspect Activator Module is conceived as an
extension to the BPEL engine as was done in (Charfi
and Mezini, 2007). When running a process
instance, the Aspect Activator receives the context
change information from the Context Manager
Service. Then it chooses and activates the
appropriate Aspect that matches the values of the
changed contextual information.
3. Updating original BPEL Process by activating the
right Aspect which is executed in the BPEL process
to create a contextualized process.

4.3 Running Scenario

The running scenario is related to a manufacturer of
plush toys enterprise which receives orders from its
clients during the Christmas period. Once an order is
received, the firm proceeds to supply the different
components of plush toys. When supplied
components are available, the manufacturer begins

ENHANCING ENTERPRISE COLLABORATION USING CONTEXT-AWARE SERVICE BASED ON ASPECTS

33

assembly operations. Finally, the manufacturer
selects a logistic provider to deliver these products
by the target due date. In this scenario, the focus will
be only on the delivery service.

Assume that an inter-enterprise collaboration is
established between the manufacturer of plush toys
(service consumer) and a logistic enterprise (service
provider). The logistic provider delivers parcels
from the plush toys manufacturer warehouse to a
specific location. The delivery service starts by
picking merchandise from the customer warehouse
(see Figure 4 step (i)). If there is no past interaction
between the two parties involved, the delivery
service verifies the shipped merchandise. Once
verified, putting merchandise in parcels service is
invocated, which is followed by a computing
delivery price service. Finally, the service transports
the merchandise in the business opportunity location
at the delivery due date. The delivery service is
considered as a Service Domain orchestrating five
IT services: Picking merchandise, Verifying
merchandise, Putting merchandise in parcels,
Computing delivery price and Delivering
merchandise. Figure 4 depicts the BPEL process
modelled as a graph of the delivery service and the
adaptation actions according to the context changes
(step ii and step iii).

Figure 4: The delivery service internal process.

Assume that Picking merchandise from customer
warehouse, Putting merchandise in parcels and
Delivering merchandise services are context
independent while Verifying merchandise and
Computing delivery price are context-aware (i.e.,
they have different behaviors according to the
current customer and opportunity context). We
suppose that the Verifying merchandise service is
aware of the past interactions with customers
(historical relationships). This information
corresponds to history category defined in the

context categorization. This information may be
either "past interaction=No" or "past
interaction=Yes". In the first case, the Verifying
merchandise service is called, but skipped in the
second case, The Computing delivery price service
is aware of runtime context changes corresponding
to changes in delivery location or date. When there
are changes in the date or the place, extra fees must
be added to the total delivery price.

When the BPEL process (Listing 1) starts, the
Context Manager service is invoked to collect
context information (historical context category)
about the plush toys enterprise (Listing 1 line 7).
Assume that the context information indicates that
the plush toys enterprise is a well known customer
(i.e., "past interaction=Yes"). Delivery service
behavior will be adapted to respond to this context
information. The Aspect Activator will choose the
suitable Aspect to be activated from the set of
Aspects attached to the Verifying merchandise
service.

Listing 1: The delivery process.

The selected Aspect is shown in Listing 2. As
mentioned before, an Aspect defines one or more
pointcuts and an advice. To implement the advice
code, we have chosen the BPEL specification, as the
goal is to adapt the BPEL process. For the pointcuts
language, we have chosen XPath, a language
specialized for addressing parts of an XML
document (a BPEL process is an XML document).
The advice part of the Aspect is expressed as a
before advice activity, which is executed instead of
the activity captured by the pointcut (line 3). The
join point, where the advice is weaved, is the
<invoke> activity that calls the Verifying
merchandise service (line 5). The advice code is
expressed as a <switch> activity. If
ContextResponse ="1" (i.e., "past interaction=Yes")
the advice branches to the activity <empty>, in order

ICEIS 2008 - International Conference on Enterprise Information Systems

34

to express that it is not really necessary to perform
this service. The BPEL process of the Delivery
service after applying the Aspect is depicted in the
Figure 4 (step (ii)).

Listing 2: Context as an Aspect.

Before invoking Computing Delivery Price, the
Context Manager service checks the context
information to detect possible context changes. Let
us assume that the plush toys enterprise has decided
to change the delivery date. Hence, the Context
Manager service captures the new date (Listing 1
line13). Then the Aspect Activator chooses the
suitable Aspect to be activated from the set of
Aspects related to Computing Delivery Price
service. The selected Aspect is shown in Listing 3.
The pointcut of this Aspect (lines 3-6) selects the
delivery price calculation activity in the delivery
process. The context change is implemented using a
before advice, which contains a switch with a case
branch (lines 7-25) for calculating additional fees
depending on the number of days between the initial
and the new delivery date. This number will be
multiplied by the daily fees already defined by the
logistic enterprise. The case branch uses an assign
activity (lines 14-21) to compute the additional fees
to the part ExtraFees of the variable calculPrice
which will be sent to the Computing Delivery Price
service. The Delivery service BPEL process after
applying the Aspect is depicted in the Figure 4 (step
(iii)).

Listing 3: Managing context change as an Aspect.

5 RELATED WORK

There are many ongoing research efforts related to
the adaptation of Web services and Web service
composition according to context changes (Maamar
et al., 2007; Bettini et al., 2007). In the proposed
work, we focus specially on the adaptation of a
BPEL (workflow) process. Some research efforts
from the Workflow community address the need for
adaptability. They focus on formal methods to make
the workflow process able to adapt to changes in the
environment conditions. For example, authors in
(Casati et al., 2000) propose eFlow with several
constructs to achieve adaptability. The authors use
parallel execution of multiple equivalent services
and the notion of generic service that can be
replaced by a specific set of services at runtime.
However, adaptability remains insufficient and
vendor specific. Moreover, many adaptation
triggers, like infrastructure changes, considered by
workflow adaptation are not relevant for Web
services because services hide all implementation
details and only expose interfaces described in terms
of types of exchanged messages and message
exchange patterns. In addition, authors in (Modafferi
et al., 2005) extend existing process modeling
languages to add context sensitive regions (i.e., parts
of the business process that may have different
behaviors depending on context). They also
introduce context change patterns as a mean to
identify the contextual situations (and especially
context change situations) that may have an impact

ENHANCING ENTERPRISE COLLABORATION USING CONTEXT-AWARE SERVICE BASED ON ASPECTS

35

on the behavior of a business process. In addition,
they propose a set of transformation rules that allow
generating a BPEL based business process from a
context sensitive business process. However, context
change patterns which regulate the context changes
are specific to their running example with no-
emphasis on proposing more generic patterns.

There are a few works using an Aspect based
adaptability in BPEL. In (Charfi and Mezini, 2007),
the authors presented an Aspect oriented extension
to BPEL: the AO4BPEL which allows dynamically
adaptable BPEL orchestration. The authors combine
business rules modeled as Aspects with a BPEL
orchestration engine. When implementing rules, the
choice of the pointcut depends only on the activities
(invoke, reply or sequence). However in our
approach the pointcut depends on the returned value
of the Context Manager Web service which detects a
context changes. Business rules in this work are very
simple and do not express a pragmatic adaptability
constraint like context change in our case. Another
work is proposed in (Erradi et al., 2005) in which the
authors propose a policy-driven adaptation and
dynamic specification of Aspects to enable instance
specific customization of the service composition.
However, they do not mention how they can present
the Aspect advices or how they will consider the
pointcuts.

6 CONCLUSIONS

In this paper, we have presented a high-level
structure called Service Domain which orchestrates
a set a of related IT services based on BPEL
specifications. The Service Domain envision
enhances the Web service concept to satisfy the
inter-enterprise collaboration requirements by hiding
complexities of managing several fine grained IT
services and also be presenting a context-aware
behaviours. However, BPEL presents limits
regarding to dynamic adaptation. To overcome this
shortage, we use Aspect Oriented Programming
principles especially crosscutting concerns and
dynamic weaving. As future work, we are working
towards completing the development of the Service
Domain architecture. An empirical study to validate
and test the proposed approach will be the driver of
future research, and interaction with industrial
partners is the key idea behind the validation of the
proposed approach.

REFERENCES

Andrews, T. and Curbera, F., 2003. Business Process
Execution Language for Web Services (BPEL4WS)
version 1.1.

AOSD, 2007. Aspect–Oriented Software Development.
Bechhofer, S., Harmelen, F. I., 2004. OWL Web Ontology

Language Reference.
Bettini, C., Maggiorini, D. and Riboni, D., 2007.

Distributed Context Monitoring for the Adaptation of
Continuous Services. World Wide Web, 10, 503-528.

Bradely, N. A. and Dunlop, M. D., 2005. Toward a
Multidisciplinary Model of Context to Support
Context-Aware Computing. Human-Computer
Interaction, 20 (4), 403-446

Byrd, T. A. and Turner, D. E., 2001. An exploratory
examination of the relationship between flexible IT
infrastructure and competitive advantage. Information
and Management 39 (1), 41-52.

Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V. and
Shan, M.-C., 2000. Adaptive and Dynamic Service
Composition in eFlow. Proceedings of CAISE 2000.
Stockholm, Sweden.

Charfi, A. and Mezini, M., 2007. AO4BPEL: An Aspect-
oriented Extension to BPEL. World Wide Web, 10,
309-344.

Dey, A. K., Abowd, G. D. and Salber, D., 2001. A
Conceptual Framework and a Toolkit for Supporting
the Rapid Prototyping of Context-Aware Applications.
Human-Computer Interaction, 16 (12), 97-166.

Erradi, A., Maheshwari, P. and Padmanabhuni, S., 2005.
Towards a Policy-Driven Framework For Adaptive
Web Services Composition. Proceedings of the
International Conference on Next Generation Web
Services Practices Seoul, Korea.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm,
J., 2001. Overview of AspectJ. Proceedings of The
European Conference on Object Oriented
Programming Budapest, Hungary.

Maamar, Z., Benslimane, D., Thiran, P., Ghedira, C.,
Dustdar, S. and Sattanathan, S., 2007. Towards a
context-based multi-type policy approach for Web
services composition. Data & Knowledge
Engineering, 62 (2), 327-351.

Modafferi, S., Benatallah, B., Casati, F. and Pernici, B.,
2005: A Methodology for Designing and Managing
Context-Aware Workflows. Proceedings of IFIP
International conference MOBIS.

Mostafaoui, S. and Mostafaoui, G. K., 2003. Towards A
Contextualisation of Service Discovery and
Composition for Pervasive Environments. In
Workshop on Web-services and Agent-based
Engineering.

ICEIS 2008 - International Conference on Enterprise Information Systems

36

