
NORM ANALYSIS SUPPORTING THE DESIGN OF
CONTEXT-AWARE APPLICATIONS

Boris Shishkov, Marten van Sinderen
Department of Computer Science, University of Twente, Drienerlolaan 5, Enschede, The Netherlands

Kecheng Liu
Informatics Research Centre, The University of Reading, Whiteknights, Reading, U.K.

Hui Du
School of Economics and Management, Beijing Jiaotong University, Beijing, China

Keywords: Business modelling, Application design, Context-Aware applications, Norm Analysis.

Abstract: In this paper, we consider the challenge of designing context-aware applications, stressing especially on the
usefulness of elaborating process models with semiotic norms. Such an elaboration can bring value in
specifying and elaborating complex behaviors that may include alternative (context-driven) processes (we
assume that a user context space can be defined and that each context state within this space corresponds to
an alternative application service behavior). Hence, the main contribution of this paper comprises an
adaptability-driven methodological support to the design of context-aware applications.

1 INTRODUCTION

Context-Aware (CA) applications are characterized
by adaptability which is the capability of adequate
derivation of user context states (this involves
sensing the user environment and transforming the
sensed raw data into context information) and
appropriate reaction to user context state changes
(A-MUSE, 2007). Such a reaction is to include
‘switching’ from one desirable behavior to another.
Even though the application would be supposed to
realize such a ‘switching’ at real time, it must be
foreseen at design time. This means that the designer
should not only specify each desirable behavior but
also determine the rule patterns that govern the
‘switching’ between behaviors. Thus, the issues to
be directly or indirectly addressed in this work are:
(i) how to define each of the alternative behaviors;
(ii) how to relate these alternative behaviors in an
overall behavior (including the ‘switching’ between
alternative behaviors); (iii) how to analyze these
behaviors, applying appropriate (rule-driven)
‘switching’ patterns (where correctness is

determined by the fact that an exhibited behavior
matches the desirable behavior for a given context
situation). We claim nevertheless that these
challenges are interrelated since we consider the
‘switching’ rule pattern as naturally complementing
the corresponding behavior flow patterns.

Hence, our particular focus is the design of CA
applications, with a stress particularly on the rule-
flow-driven elaboration of process models. We
consider as a starting point the CA-application-
design challenge in general, and we consider further
on the need for such elaboration as well as a
(proposed) possible way of realizing it.

Approaching this, we envision not only the
conceptual problem of such modeling and
elaboration but also the need to reflect a conceptual
model in possible realizations in terms of modeling
techniques. It might be that one modeling formalism
is suitable for defining each of the alternative
behaviors and for relating these alternative behaviors
in an overall behavior, while another modeling
formalism is suitable for analyzing these behaviors,
and still another formalism is suitable for defining
the ‘switching’, and so on. Maybe a language which

334
Shishkov B., van Sinderen M., Liu K. and Du H. (2008).
NORM ANALYSIS SUPPORTING THE DESIGN OF CONTEXT-AWARE APPLICATIONS.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 334-337
DOI: 10.5220/0001713403340337
Copyright c© SciTePress

is close to the architectural domain would be
suitable for high level behavior specification,
whereas for the aim of analysis, a language that
allows automated evaluation of the properties of
concern should be chosen. Hence, the design process
would comprise transformations between design
models and analysis models, in addition to
transformations between levels of abstraction. In
such complex modeling, it is essential to know
which exactly are the challenges and which
techniques are suitable for approaching them. We
take in this work only the perspective of a Norm
Analysis elaboration (Liu, 2000) to high-level
behavior models including such ones that reflect
context-driven behavior (characterized by alternative
processes).

Hence, the main contribution of the current paper
comprises an adaptability-driven methodological
support to the design of CA applications, inspired by
our addressing in combination several key issues
that concern such a design. Such issues are the
context-driven service delivery, the related
(alternative) application behaviors, as well as the
‘switching’ among different alternative behaviors.

The paper’s outline is as follows: Sect. 2
considers the design of CA applications. Sect. 3
addressed the added value of Norm Analysis in
elaborating application behavior modeling. Sect. 4
presents the conclusion and outlines further research.

2 ON THE DESIGN OF CA
APPLICATIONS

We will present our CA-application-design views on
top of a more general modeling background
concerning the specification of an automated
(software) system. Such a specification is claimed to
typically stem from a corresponding business model
(Shishkov et al., 2006b). Thus, we will firstly
consider the challenge of specifying an application,
based on business modeling, and we are going to
study secondly what else needs to be added for
achieving context-awareness.

2.1 Business-modeling-driven Software
Specification

Producing a sound relevant business model is
claimed to be a must in specifying an automated
(software) system (Shishkov et al., 2006a), and
considering from this perspective the notions of
system (the entities of main interest to us and their

relations) and environment (the other entities and
their relations) seems useful (Shishkov & Quartel,
2006).

RI R

request
service

c

c
c

c

c

application

environment

business requirements

1 2

3

systemenvironm.

…

pr. consumer
bus. partner

gov. agency

ncbe
cbe

c

technical requirements

current situation new business model

application model

Figure 1: From business modeling to appl. modeling.

We have represented this in Figure 1 (1), as the
‘current situation’. There, we have, ‘within the
system’, some entities (entities could be humans,
could be machines, could be anything), represented
as squares. The entities have some relations among
themselves – this is represented by solid lines.
Assuming that the entities belonging to the system,
deliver some service to the outside (just as a broker,
an insurance company, or a hospital deliver services
to the outside), we consider all the outside entities as
belonging to the system environment; we might
identify there the entity(s) ‘consuming’ the service,
labelled as ‘primary consumer’ (represented as a
grey square), entities that have partnership relations
with entities belonging to the system, labelled as
‘business partners’, entities that have controlling
functions, such as government agencies, for
example, and so on. All these entities belong to the
environment, have relations among themselves, and
what is more important – they have relations with
the system, in particular – relations to entities
belonging to the system. These relations concern the
service(s) that the system provides to its
environment. These service(s) are restricted by
corresponding system/environmental demands, such
as quality standards, working hours, legal issues,
which demands are labelled as imposed
requirements – represented as ‘R’. It should be noted
that no automation is yet envisioned. Deciding to
introduce such automation, the system architect
typically abstracts from most entities belonging to
the environment and mainly focuses on the primary
consumer that turns out to become the main
environmental entity, while the service delivered to
the primary consumer is to essentially drive the
further design activities. Hence, the primary
consumer should ‘face’ all entities belonging to the

NORM ANALYSIS SUPPORTING THE DESIGN OF CONTEXT-AWARE APPLICATIONS

335

system. However, the architect not always envisions
automating all of them. Thus, the entities to be
automated should be distinguished from the entities
which are not going to be automated, as depicted in
Figure 1 (2). There, ‘(n)cbe’ stands for ‘(non)- to be
– computerized business entities’. The primary
consumer thus has relations not only to entities that
will be automated but also to ones that will not be
automated. These relations are to be restricted by the
imposed requirements (R) which are to be updated
nevertheless by the requirements presented to the
system architect by the future user of the automated
system under development – these requirements are
labelled as user requirements. Both the imposed
requirements and user requirements are reflected in
the overall business requirements, represented as RI.
Hence, we arrive at a ‘new business model’ that
might differ from what we associate with the
‘current situation’ not only because we have
introduced more requirements and we have grouped
the system entities but also because the entities from
the ‘current situation’ are not necessarily mapped
one-to-one to the entities in the ‘new business
model’. This is because often introducing software is
not only about efficiency (to replace human(s) by
software), it is also about innovation – the system
architect may wish to consider introducing new
services, re-arranging and/or updating the (observed)
entities and their relations, and so on. Figure 1 (2)
depicts therefore a new model that is only inspired
by the ‘current’ model (Figure 1(1)). Further, the
delimitation and representation of the entities that
are to be automated should be driven not only by
their relation to the primary consumer but also by
their relation(s) to the rest of the entities – those
entities that will not be automated – these ‘interface’
points are represented as black dots in Figure 1(2).
As for the software specification model, it is to be
derived from the new business model, and the
system architect may wish to abstract from the
entities that are not going to be automated –
abstracting from them however means that the future
software system will be adequately ‘accessible’
through the ‘interface points’ above mentioned, this
is what the system architect should take care of
(depicted in Figure 1(3) by the replication of the
black dots). The application model (Figure 1(3))
depicts hence software components (c) and their
relations – all mapped from the cbe entities (see
Figure 1(2)). However, some software components
may be introduced, which have no root in the new
business model, they are represented as black
square(s) – such components are introduced driven
by technical requirements, those requirements that

concern issues, such as platforms and operating
systems to be used, for example. We have thus (in
Figure 1(3)): (i) the application represented, as
consisting of components; (ii) the relation to the
primary consumer to whom the application should
deliver service(s), restricted by corresponding
business and technical requirements; (iii) the
‘interface points’ through which the outsider entities
(different from the primary consumer) can
collaborate with the application.

2.2 Towards Service Orientation and
Context Awareness

An application modeled in the way considered in
Sub-section 2.1, typically should not be expected to
support context-awareness. This is because, as
mentioned in the Introduction, supporting context-
awareness means ‘sensing’ the context of the user
and adapting (on this basis) the delivered behavior.
Such sensing is usually driven by technology – for
example, it is ‘sensed’ that Mary is at home or at
work, by receiving some GPS-related support. Such
kind of ‘support’ goes beyond the application and
concerns a service infrastructure. Further, to manage
context information through the infrastructure, one
would often need sensors, the context data
‘providers’ whose role in supporting CA
applications is very important. This all is illustrated
in Figure 2 and further elaborated.

2

sensor.. .

service

user within
context

application

context management

request

request
service

c

c

c

environment

infrastructure

1 application

Figure 2: Towards service orientation and context
awareness.

2.2.1 Towards Service Orientation

As Figure 2 (1) suggests, when an application is
platform-dependent (this means that it runs on top of
a service infrastructure), it realizes some of its
functions not through its components but through
addressing the infrastructure (and receiving some
services from it) – this is depicted through the grey
discs in the figure.

2.2.2 Towards Context Awareness

A platform-dependent application is not necessarily
a context-aware application. To be context-aware, an

ICEIS 2008 - International Conference on Enterprise Information Systems

336

application should adapt its behavior, based on
information concerning the context of its primary
consumer (user), which information the application
receives usually through an infrastructure. This is
shown in Figure 2 (2) where a sensor is also
depicted – this is the entity that captures the context
information and makes it available to the
application.

3 MANAGING ALTERNATIVE
BEHAVIORS

Taking into account that the proper ‘switching’
between alternative behaviors is to be adequately
addressed by the designers of CA applications, an
issue insufficiently elaborated in current approaches
(Shishkov & Van Sinderem, 2007), we propose the
usage of Norm Analysis (Liu, 2000) combined with
Petri Net (Van Hee & Reijers, 2000), inspired by
well-known relevant advantages of these techniques
(introducing them is omitted for brevity), widely
considered in literature.

4

1

3

2

5 6

8

7

9

10

11

 labels of transitions

 s: start

 1: register patient

 2: check emergency status

 3: list patient in ‘traffic-light’ (TL)
system

 4: list patient in a queue

 5: examine vital signs of patient

 6: check health history of patient

 7: analyze record of patient

 8: prescribe emergency
treatment

 9: examine patient

 10: formulate diagnosis

 11: treat patient

 e: end

s

e

emergency
treatment normal treatment

whenever a patient needs
emergency help
then the receptionist
is obliged
to list the patient in the TL
system.

whenever a patient does
not need emerg. help
then the receptionist
is obliged
to list the patient in a
normal queue.

Figure 3: A typical health-care process.

Figure 3 (left) is presenting a typical health-care
process, using Petri Net, and it is seen easily that
there are two alternative behaviors, namely
emergency and normal treatment. We could use
Norm Analysis in such cases to usefully elaborate
the process model. For instance, two norms
corresponding to the choice construct in Fig. 3 (left)
can be identified and specified in detail – consider
Fig. 3 (right).

4 CONCLUSIONS

By analyzing the design of software applications
(and enriching this with innovative views that

concern particularly CA applications) and proposing
the combined use of two well-known modeling
techniques, for the purpose of facilitating a modeling
problem that is relevant especially to the design of
CA applications, we have delivered in this paper, as
a first step in an on-going research, some limited
adaptability-driven methodological support to the
design of such application. To further the reported
research, we plan to work on bridging the current
behavior-modeling-related results to previous results
on identifying entities and relationships (Shishkov et
al., 2007).

ACKNOWLEDGEMENTS

This work is part of the Freeband A-MUSE project
(http://a-muse.freeband.nl), sponsored by the Dutch
government under contract BSIK 03025.

REFERENCES

A-MUSE project, 2007: http://a-muse.freeband.nl
Liu, K., 2000. Semiotics in information systems

engineering, Cambridge University Press. Cambridge.
Shishkov, B. and van Sinderen, M.J. and Tekinerdogan,

B., 2007. Model-driven specification of software
services. In: IEEE Int. Conf. on e-Business
Engineering, ICEBE 2007, 24-26 Oct 2007, Hong
kong, China. pp. 13-21. IEEE Computer Society Press.

Shishkov, B. and van Sinderen, M.J., 2007. Model-Driven
Design of Context-Aware Applications. In ICEIS’07,
9th Int Conf on Enterprise Inf Systems. INSTICC
Press.

Shishkov, B., Quartel, D., 2006. Refinement of SDBC
business process models using ISDL. In ICEIS’06, 8th
Int. Conf. on Enterprise Inf. Systems. INSTICC Press.

Shishkov, B., Dietz, J.L.G., Liu, K., 2006. Bridging the
Language-Action Perspective and Org. Semiotics in
SDBC. In ICEIS’06, 8th Int. Conf. on Enterprise
Information Systems. INSTICC Press.

Shishkov, B., Van Sinderen, M.J., Quartel, D., 2006.
SOA-driven business-software alignment. In
ICEBE’06, IEEE Int. Conf. on e-Business
Engineering. IEEE Press.

Van Hee, K., H.A., Reijers, H., 2000. Using formal
analysis techniques in business process re-design. W.
van der Aalst et al. (Eds.): Business Proc.
Management, LNCS 1806.

NORM ANALYSIS SUPPORTING THE DESIGN OF CONTEXT-AWARE APPLICATIONS

337

