
A MAPPING-DRIVEN APPROACH FOR SQL/XML 
VIEW MAINTENANCE 

Vânia M. P. Vidal, Fernando C. Lemos, Valdiana S. Araújo 
Department of Computing, Federal University of Ceará, Fortaleza/CE, Brazil 

Marco A. Casanova 
Department of Informatics, PUC-Rio, Rio de Janeiro/RJ, Brazil 

Keywords: XML Views, Incremental View Maintenance, Relational Databases. 

Abstract: In this work we study the problem of how to incrementally maintain materialized XML views of relational 
data, based on the semantic mappings that model the relationship between the source and view schemas. 
The semantic mappings are specified by a set of correspondence assertions, which are simple to understand. 
The paper focuses on an algorithm to incrementally maintain materialized XML views of relational data. 

1 INTRODUCTION 

As XML becomes the facto standard for data 
exchange among applications (over the web), and 
since most business data is currently stored in 
relational database systems, the problem of 
publishing relational data in XML format has special 
significance. A general and flexible way to publish 
relational data in XML format is to create XML 
views of the underlying relational data. The 
community agrees on a certain schema, and 
subsequently all members of the community create 
XML views that conform to the predefined schema. 
As mention in (Bohannon et al, 2004), this is called 
schema-directed XML publishing. 

The contents of views can be materialized to 
improve query performance and data availability 
(Dimitrova et al, 2003; Gupta and Mumick, 2000). 
To be useful, a materialized view needs to be 
continuously maintained to reflect dynamic source 
updates. Basically, there are two strategies for 
materialized view maintenance. Re-materialization 
re-computes view data at pre-established times, 
whereas incremental maintenance periodically 
modifies part of the view data to reflect updates to 
the database. It has been shown that incremental 
maintenance generally outperforms full view 
recomputation. 

In this work we study the problem of how to 
efficiently maintain XML view of relational data, 
based on the mappings that model the relationship 

between the source and view schemas. The schema 
mappings are specified by a set of correspondence 
assertions (Popa et al, 2002; Vidal et al, 2006), 
which defines how to transforms source states to 
view states. The benefits of using declarative 
formalisms for schema mappings are well-known 
(Bernstein and Melnik, 2007; Jiang et al, 2007). We 
also note that other mapping formalisms are either 
ambiguous (Miller, 2007) or require the user to 
declare complex logical mappings (Fuxman et al, 
2006; Yu and Popa, 2003), and are not appropriated 
to support incremental view maintenance. It is 
important to pointing out that the problem of 
generating schema mappings is outside the scope of 
this paper.  

The views that we address are focused on 
schema-directed XML publishing. As such, the 
correspondence assertions induce schema mappings 
defined by the class of projection-selection-equijoin 
(PSE) SQL/XML queries, which support most types 
of data restructuring that are common in data 
exchange applications. We make a compromise in 
constraining the expressiveness of mappings so we 
can have an algorithm that is much more efficient 
and views that are self-maintainable. 

In this paper, we present an algorithm to 
incrementally maintain materialized XML views of 
relational data, in the context of the SQL/XML 
(Eisenberg et al, 2004) standard. The algorithm has 
four major steps: first, it identifies the view paths that 
are relevant to a base update μ; second, it identifies all 

65
M. P. Vidal V., C. Lemos F., S. Araújo V. and A. Casanova M. (2008).
A MAPPING-DRIVEN APPROACH FOR SQL/XML VIEW MAINTENANCE.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - DISI, pages 65-73
DOI: 10.5220/0001711900650073
Copyright c© SciTePress



 

elements in a relevant path that are affected by μ; third, 
it generates the list of updates required to maintain the 
affected elements; and, finally, it sends the list of 
updates to the view. We also establish sufficient 
conditions, based on the correspondence assertions, to 
prove that a list of updates correctly maintains a view. 
The results we present in this paper are novel and have 
never been submitted for publication. 

The implementation of the View_Maintainer 
Algorithm is very efficient, since most of the work is 
done at view definition time. For each type of view 
update, based on the view correspondence 
assertions, and at view definition time, we 
automatically generate: (i) The set of view paths that 
are relevant to the update (i.e. the view paths that 
may have affected elements); (ii) The query that 
computes the set of affected elements in a given 
relevant path; and (iii) The SQL/XML queries that 
extracts, from the base source, all information 
needed for propagating the update to the view. 

The main features of the presented approach that 
distinguish it from the previous related works are as 
follows: 
(i) The mappings are used only at view definition 

time. So, no mapping compilation is required at 
view maintenance time. 

(ii) The list of updates required to maintain the view 
are defined based solely on the source update 
and current source state, that is, they need not 
access the materialized view. 

(iii) The algorithm generates a set of view updates 
(instead of delta updates). So, no data 
combination (or merge) is required, and the 
view updates can be directly applied to the view 
without accessing the base data source.  

Features (ii) and (iii) are very important when the 
view is stored outside the DBMS, since accessing a 
remote data source is possibly too slow.  

This paper is organized as follows. Section 2 
summarizes related work in the area of incremental 
view maintenance. Section 3 discusses XML Views 
in the context of SQL/XML. Section 4 presents the 
View_Maintainer algorithm. Finally, Section 5 
contains the conclusions. 

2 RELATED WORK 

The problem of Incremental View Maintenance has 
been extensively studied for relational view (Ceri 
and Widom, 1991; Gupta and Mumick, 2000) as 
well as for object-oriented view (Ali et al, 2000; 
Kuno and Rundensteiner, 1998). There have been 
also incremental maintenance algorithms for semi-

structured views (Abiteboul et al, 1998; Liefke and 
Davidson, 2000; Zhuge and Garcia-Molina, 1998) 
and XML views (Dimitrova et al, 2003; EL-Sayed et 
al, 2002; Sawires et al, 2005). Different data models 
and view specification languages have been assumed 
by a number of researchers. The algorithms in 
(Abiteboul et al, 1998; Liefke and Davidson, 2000; 
Zhuge and Garcia-Molina, 1998) are developed for 
views defined with a query over graph structures. 
The views considered in (Dimitrova et al, 2003; EL-
Sayed et al, 2002) are defined using an XML algebra 
over XML trees, and the views in (Sawires et al, 
2005) are defined using path expressions over XML 
documents. None of the above techniques can be 
directly applied to XML views of relational data. 

The only work on maintaining XML views over 
relational schema that we are aware of is (Bohannon 
et al, 2004). The incremental algorithm in (Bohannon 
et al, 2004) maintains XML documents produced by 
an ATG, a formalism for mapping a relational schema 
to a predefined (possibly recursive) DTD. In their 
approach, a middleware system interacts with the 
underlying DBMS and maintains a hash index and a 
subtree pool for the external XML view. The main 
problem with this approach, not to mention the high 
complexity of the algorithm, is that it requires several 
round-trips between the middleware and the DBMS. 
Therefore, the view is not self maintainable, which is 
a desirable feature for external views (view stored 
outside the DBMS). Other draw backs are that the use 
of in-memory hash table limits the technique for large 
documents cached in a middleware, and it is not 
possible to detect irrelevant updates. 

3 XML VIEWS 

With the introduction of the XML datatype and the 
SQL/XML standard, users may create a view of 
XML type instances over relational tables using 
SQL/XML publishing functions, such as 
XMLElement(), XMLAgg(), etc. In this section, we 
propose to specify an XML view with the help of a 
set of correspondence assertions, which 
axiomatically specify how the XML view elements 
are synthesized from tuples of the base source. 
Definition 1. Let S be a base relational schema. An 

XML view, or simply, a view over S is a quadruple 
V = <e, Te,Ψ, A>, where: 
(i) e is the name of the primary element of the 

view; 
(ii) Te is the XML type of element e, which must be 

a restricted complex type (Te is defined using 
the complexType and sequence constructors 

ICEIS 2008 - International Conference on Enterprise Information Systems

66



 

only, and the type of its attributes is an XML 
simple type). 

(iii) ψ is a global correspondence assertion (GCA); 
A global correspondence assertion (GCA) is 
an expression of form: [V] ≡ [ Rp[selExp]], where 
Rp is a relation scheme of S, and selExp is a 
predicate expression. 

(iv) A is a set of path correspondence assertions 
(PCA) that specifies Te in terms of Rp (Vidal et 
al, 2006). 

We also say that the pair <e, Te> is the view 
schema of V and Rp is the pivot relation scheme of 
the view. � 

Let S be a relational schema and V = <e, Te,Ψ, A> 
be an XML view over S. Given a state σS of S, let 
σS(Rp) denote the relation that σS associates with Rp. 
As shown in (Vidal et al, 2006), A defines a 
constructor function, denoted τ[A], from tuples of 
σS(Rp) to instances of Te. 
 

 

FK1

FK2

FK3

ARTICLES
code

title
link
date
summary
subject
author (FK)

RELATED_ART
article (FK)
related (FK)

AUTHORS
email

name
homepage

 
 

Figure 1: Relational schema ArticlesDB. 

 

Figure 2: XML type TArticle. 

Moreover, we say that an instance $t of Te is 
semantically equivalent to a tuple r of σS(Rp) ($t ≡A r) 
iff τ[A](r) = $t. The state of V on σS is an XML 
document σv whose root element, denoted root[σv], 
contains a set E of <e> elements of type Te and is 
defined as 

E = { $t | $t is an <e> element of type Te and there 
                       is r∈σS(Rp) such that r satisfies selExp 
                      and $t=τ[A](r) }. 

The functional mapping defined by the 
correspondence assertions can be correctly translated 
to an SQL/XML query view definition. For example, 
consider the relational schema ArticlesDB in Figure 1. 
Suppose the XML view Articles_XML, whose 
schema is shown if Figure 2. The root element of 
view Articles_XML, contains multiple occurrences of 
the element <Article>, with type TArticle. The GCA of 
view Articles_XML is given by: 

ψ :[Articles_XML] ≡ [ ARTICLES[subject = sport ]]. 
Figure 3 shows A[Articles_XML], the path 

correspondence assertions which specify TArticle in 
terms of ARTICLES. The correspondence assertions 
of Articles_XML are generated by: (1) matching the 
elements and attributes of TArticle with attributes or 
paths of ARTICLES; and (2) recursively descending 
into sub-elements of TArticle to define their 
correspondence assertions. The problem of 
generating the correspondences is outside the scope 
of this paper.  

Given a state σ of ArticlesDB, the root element of 
Articles_XML contains a set A of element <Article>, 
with type TArticle, defined as follows:  

A = { $a | $a is an instance of TArticle and 
                     ∃r∈ σ(ARTICLES), where 
                     r.subject ='sport' and $a ≡A[Articles_XML] r }. 

Figure 4 shows an SQL/XML implementation of 
the constructor function τ[A[Articles_XML]]. For each 
tuple in table ARTICLES, the SQL/XML query uses 
the SQL/XML standard publishing functions to 
construct an instance of the XML type TArticle. The 
constructor function creates an instance $a of TArticle 
from a tuple a of ARTICLES such that $a is 
semantically equivalent to a, as specified by the 
assertions of Articles_XML. The constructor function 
contains four sub-queries, one for each element and 
attribute of TArticle. Each subquery is generated from 
the correspondence assertion of the corresponding 
element or attribute. Figure 4 also shows the 
assertion that generates each SQL/XML subqueries. 

 

A MAPPING-DRIVEN APPROACH FOR SQL/XML VIEW MAINTENANCE

67



 
Figure 3: Correspondence Assertions of Articles_XML view. 

XMLELEMENT("article", 
  XMLFOREST(a.code AS "code"), ............................................................................
  XMLFOREST(a.title AS "title"), ......................................................................
  XMLFOREST(a.link AS "URL "), ...........................................................................
  XMLFOREST(a.date AS "date"), ...........................................................................
  (SELECT XMLELEMENT("relArticle", ................................................................
     XMLFOREST(a2.code AS "code"), ................................................................
     XMLFOREST(a2.title AS "title"), ...........................................................
     XMLFOREST(a2.link AS "URL")) ...................................................................
    FROM RELATED_ART r, ARTICLES a2 
    WHERE r.article = a.code AND r.related = a2.code), 
  (SELECT XMLELEMENT("author", ...........................................................................
     XMLFOREST(u.email AS "email"), ..............................................................
     XMLFOREST(u.name AS "name"), ...................................................................
     XMLFOREST(u.homepage AS "homepage") ) ...........................................
   FROM AUTHORS u WHERE u.email = a.author) ) 

Figure 4: SQL/XML implementation of the constructor function τ[A[Articles_XML]](a). 

4 INCREMENTAL VIEW 
MAINTENANCE 

In this section, let S be a relational schema and V = 
<e0, Te0, Ψ, A> be a view over S, where [V] ≡ 
[R0[selExp]] is the GCA of V. We first explain the 
intuition behind our approach for incremental view 
maintenance. Then, we address the use of the view 
correspondence assertions to identify the view paths 
that are relevant to a base update μ. Finally, we 
present an algorithm for the incremental 
maintenance of V. 
 
 
 

4.1 Our Approach 

In following, we introduced the concept of view path 
and then we explain the intuition behind our 
approach.  

Definition 2. Let Te1,…,Ten be restricted XML 
Schema types defined in the XML Schema of Te0. 
Suppose that Tek contains a property (attribute or 
element) ek+1 of type Tek+1, for k=0,...,n-1. Then, we 
say that: 
(i) e1 / e2 /…/ en is a path of Te0;  and  
(ii) eo / e1/…/ en is a path of V. � 

To illustrate, consider the view Articles_XML in 
Figure 2. article/relArticles and article/relArticles/URL are 
examples of paths of Articles_XML. 

ICEIS 2008 - International Conference on Enterprise Information Systems

68



 

In our approach, incremental view maintenance 
is done using the following steps: 
1. Identifies the view paths that are relevant to a 

base update μ; 
2. Identifies all elements in a relevant path that are 

affected by μ; 
3. Generates the list of view updates required to 

maintain the affected elements.  
4. Sends the list of updates to the view.  

Formal definitions of relevant path and affected 
element are given in Section 4.2. An example is 
given below.  
Example 1. Consider the view Articles_XML in 
Figure 2. Let 

μ1 = UPDATE ARTICLES SET link =  
'nyt.com/get?code=A6B1' 
WHERE code = 'A6B1' 

Suppose that the current state of the data source 
ArticlesDB is the one shown in Figure 5. Figure 6(a) 
shows the corresponding state of view Articles_XML. 
As indicated in Fig. 6 (a), μ1 affects the content of 
the URL element of the article element $A1 in 
doc("Article.xml")/article, and the  content of the 
relArticle element $A2 in doc("Article.xml")/article/ 
relArticle. So the paths δ1 = article/URL and  
δ2 = article/relArticles/URL are relevant to μ1.  

The view updates required to maintain paths δ1 
and δ2 are, respectively, 
(i) Replace the URL element of $A1 by 

<URL>nyt.com/get?code=A6B1</URL> 
(ii) Replace the URL element of $A2 by  

<URL>nyt.com/get?code=A6B1</URL> 
The new state of view Articles_XML, after the 

updates, is shown in Figure 6(b). 
 

ARTICLES 
CODE TITLE LINK DATE SUMMARY SUBJECT AUTHOR 
A6A5 The Bracket nytimes.com/article?code=A6A5 01/08/2007 If you picked the … sports marcus@nytimes.com 
A6B1 Beware of The Tigers nytimes.com/article?code=A6B1 02/08/2007 Along the time... sports marcus@nytimes.com 
A6B2 Watch Your Mouth nytimes.com/article?code=A6B2 03/08/2007 Since the Heysel... sports marcus@nytimes.com 
G6JL More Mistakes nytimes.com/article?code=G6JL 18/09/2007 The afternoon... arts shpigel@nytimes.com 

 

RELATED_ART 
ARTICLE RELATED 

A6B2 A6B1 
A6B2 A6A5 

 

AUTHORS 
EMAIL NAME HOMEPAGE 

marcus@nytimes.com Jeffrey Marcus http://www.nytimes.com/marcus 
dargis@nytimes.com Ben Shpigel http://www.nytimes.com/shpigel 

  
Figure 5: An instance of ArticlesDB. 

<root[Articles_XML]> 
 <article> 
  <code>A6A5</code> <title>The Bracket</title> 
  <URL>nytimes.com/article?code=A6A5</URL> 
  <date>01/08/2007</date> 
  <author>…</author> 
 </article> 
 <article> 
  <code>A6B1</code> <title>Beware of The Tigers</title> 
  <URL>nytimes.com/article?code=A6B1</URL> 
  <date>02/08/2007</date> 
  <author>…</author> 
 </article> 
 <article> 
  <code>A6B2</code> <title>Watch Your Mouth</title> 
  <URL>nytimes.com/article?code=A6B2</URL> 
  <date>03/08/2007</date> 
  <relArticle> 
   <code>A6B1</code><title>Beware of The Tigers</title> 
   <URL>nytimes.com/article?code=A6B1</URL> 
  </relArticle> 
  <relArticle>…</relArticle> <author>...</author> 
 </article> 
</root[Articles_XML]> 

 <root[Articles_XML]> 
 <article> 
  <code>A6A5</code> <title>The Bracket</title> 
  <URL>nytimes.com/article?code=A6A5</URL> 
  <date>01/08/2007</date> 
  <author>…</author> 
 </article> 
 <article> 
  <code>A6B1</code> <title>Beware of The Tigers</title> 
  <URL>nyt.com/get?code=A6B1</URL> 
  <date>02/08/2007</date> 
  <author>…</author> 
 </article> 
 <article> 
  <code>A6B2</code> <title>Watch Your Mouth</title> 
  <URL>nytimes.com/article?code=A6B2</URL> 
  <date>03/08/2007</date> 
  <relArticle> 
   <code>A6B1</code><title>Beware of The Tigers</title> 
   <URL>nyt.com/get?code=A6B1</URL> 
  </relArticle> 
  <relArticle>…</relArticle> <author>...</author> 
 </article> 
</root[Articles_XML]> 

Figure 6: (a) An instance of Articles_XML view; (b) Instance of Articles_XML view after the updates. 

$A1 

$A2 $A2 

$A1 

(a) (b) 

A MAPPING-DRIVEN APPROACH FOR SQL/XML VIEW MAINTENANCE

69



 

Figure 7: Path δv. 

 

Figure 8: Mapping function f[δV]. 

4.2 Identifying Relevant Paths 

First, we define the updates for which the path  
δv = e0 is relevant, and then for the other types of 
view path.  

Definition 3. Let μ be a base update. The path δv = 
e0 is relevant to μ iff μ is one of the following 
operations: (i) insertion in R0; (ii) deletion from R0; 
(iii) update on attribute a of R0, where a is 
referenced in selExp. � 

In the rest of this section, let: 
• μ be an update over base source S; 
• σS and σ’S be the states of S before and after μ, 

respectively; 
• σV and σ’V be the states of V in σS and σ’S, 

respectively; 
• δV = e0 /…/ en , n>0, be a path of V. 

Let [Tei /ei+1] ≡ [Ri /ϕi+1] be the path correspondence 
assertions of ei+1 in A, for 0≤ i ≤n-1 (see Figure 7). 
We say that the path e1/…/ en of Te0 matches the path 
ϕ1 / … /ϕn of R0  (e1/…/ en ≡A ϕ1 /… /ϕn). 

Definition 4. Let K={k1,.., km} be the primary key of 
Rn, and [Ten/ai] ≡ [Rn/ki] be in A (which exists by 
assumption on A), for 1≤i≤m. Given an element 
$en in root(σv)/δV, the mapping function of δV, 
denoted by f[δV], maps $en into a tuple rn in σS(Rn) 
such that ki=$en/ai, for 1≤i≤m. In this case, we say 
that $en matches rn. � 

For the purpose of our proof, we assume that 
each tuple in a relational table has a unique, 
immutable identifier. We also assume that each non-
leaf element in an XML document has a unique, 
immutable identifier. Given a tuple (or element) t, 
let ID(t) returns the identifier of t. We stress that 
these assumptions are necessary only to establish our 
formal results, and the identifiers are not required by 
the View_Maintainer Algorithm. 

From the definition of V, we can prove that, 
given $en ∈ root(σv)/δV, where f[δV]($en) = rn, then: (i) 
$en ≡A rn; and (ii) if there is $e’n∈root(σ’v)/δV, where 
ID($e’n) = ID($en), then f[δV]($e’n) = r’n, where 
ID(r’n) = ID(rn) (see Figure 8). 

Definition 5. Let 
• σS and σ’S be the states of S before and after μ, 

respectively; 
• rn-1 be a tuple in σS(Rn-1) 
• r’n-1 be a tuple in σ’S(Rn-1) where ID(r’n-1) = ID(rn-1) 
• I[μ, rn-1/ϕn] be the set of tuples inserted in rn-1/ϕn 

by μ 
• D[μ, rn-1/ϕn] be the set of tuples deleted from 

rn-1/ϕn by μ. 
(i) We say that path ϕn of r’n-1 is affected by μ iff 
• if ϕn has simple type then rn-1/ϕn ≠ r’n-1/ϕn 

• if ϕn has a complex type then I[μ, rn-1/ϕn] ≠ ∅ or 
D[μ, rn-1/ϕn] ≠ ∅. 

(ii) Let σV and σ’V be the value of V in σS and σ’S, 
respectively. Let $en-1 be an element in root(σv)/ e0/ 
e1/…/en-1 where f[e0/…/en-1]($en-1) = rn-1. We say that 
property en of $en-1 is affected by μ, iff path ϕn of 
rn-1 is affected by μ. � 

Note that, if the value of path ϕn of a tuple rn-1 in 
σS(Rn-1) is affected by μ, then the value of property 
en of the element $en-1 in root(σv)/ e0/ e1/…/en-1, where 
f[e0/…/en-1]($en-1) = rn-1, is also affected by μ.  

Definition 6. Let σS and σ’S be the states of S before 
and after μ, respectively. A[μ,δV](σ’S) returns the 
set of all tuples r’n-1 in σ’S(Rn-1) such that the path ϕn 
of r’n-1 is affected by μ. � 

Definition 7. δv is relevant to μ iff there exists a 
state σS of S such that A[μ,δV](σ’S) ≠ ∅. � 

ICEIS 2008 - International Conference on Enterprise Information Systems

70



 

From Definition 7, we have that the path δv is 
relevant to μ iff there exists a state σS of S, and there 
is a tuple r in σS(Rn-1) such that the value of path ϕn 
of r is affected by μ. In this case, the value of the 
property en of an element $en-1 in the path root(σv)/ e0/ 
e1/…/en-1, where $en-1 matches an affected tuple, is 
also affected by μ.   

The following theorems establish sufficient 
conditions to detect when a path δv= e0 / e1/…/ en, 
where n >0, is relevant to an update μ.  

Theorem 1. Let μ be an insertion or deletion 
operation on R. Then, δv is relevant to μ iff 
ϕn = ϕ1.FK-1.ϕ2, where ϕ1 and ϕ2 can be null and 
FK is a foreign key of R. � 

Theorem 2. Let μ be an update operation on an 
attribute a of R. Then, δv is relevant to μ iff ϕn 
satisfies one of the following conditions: 
Case 1: Rn-1 = R and ϕn = a. 
Case 2: Rn-1 = R and ϕn = {a1,...,an} and a ∈{a1,...,an}.  
Case 3: ϕn = ϕ.l.a, where ϕ can be null and l is a 
foreign key that references R or l is the inverse of a 
foreign key of R. 
Case 4: ϕn = ϕ.l.{a1,...,an}, where ϕ can be null, l 
is a foreign key that references R or l is an inverse 
of a foreign key of R, and a ∈{a1,...,an}.  
Case 5: ϕn = ϕ1.l.ϕ2, where ϕ1 and ϕ2 can be null, l 
is a foreign key of R or l is an inverse of a foreign 
key of R, and a is an attribute of l. � 

To illustrate, consider the example below.  

Example 2. Consider the update μ1 of Example 1. 
From the set A of path correspondence assertions of 
view Articles_XML (see Figure 3), we have that:  
(i) Since URL ≡A link, and the value of link for the 
updated tuple in ARTICLES is affected by μ, then, 
from Definition 7, we have that the view path 
article/URL is relevant to μ. (This follows from Case 
1 of Theorem 2).  
(ii) Since relArticles/URL ≡A FK1-1/FK2/link, and the 
value of link for the updated tuple in ARTICLES is 
affected by μ, then, from Definition 7, we have that 
the view path article/relArticles/URL is relevant to μ. 
(This follows from Case 3 of Theorem 2). 

4.3 The View_Maintainer Algorithm 

Figure 9 shows the View_Maintainer Algorithm. 
Given an update to μ over base source S, the 
algorithm generates, for each path δv that is relevant 
to μ, the list of updates U required to maintain δv 
w.r.t. μ, and then it sends the list of updates U to the 
view. The set of all paths of V that are relevant to μ, 

denoted by P[μ,V], is automatic and efficiently 
computed, at view definition time, using theorems 1 
and 2. 

In case that δv = eo (cases 1-3 of the VM 
algorithm), then μ is an insertion, deletion or update 
over the pivot relation R0 (see Definition 3). In case 
that μ is an insertion, if the inserted tuple rnew satisfy 
the select condition of the view’s global assertion, 
then the view updates U consists of an insertion of an 
element $e0 in doc("V.xml") where $e0 ≡A rnew. The 
view updates are expressed using the XQuery 
Update Facility (W3C, 2007). In case that μ is a 
deletion, if the deleted tuple rold satisfy the select 
condition of the view’s global assertion, then the 
view updates U consists of a deletion of the element 
$e0 in doc("V.xml")/e0 where f[δV]( $e0) = rold. 

In case that δv= e0 / e1/…/ en, where n>0, (Case 4 
of the VM algorithm), the algorithm first computes 
the set T which contains the tuples in Rn-1 such that 
the path ϕn is affected by μ. The view updates U 
consists of replacing the value of property en for 
each element $en-1 in doc("V.xml")/e0/ e1/…/en-1 such 
that $en-1 matches an affected tuple in T. 

The queries Q[e0] (lines 5 and 12 of the VM 
algorithm) and Q[δV] (line 19 of the VM algorithm), 
whose definitions are given bellow, are defined at 
view definition time, using the view correspondence 
assertions.  

In the following definitions, let σS be the current 
state of S. 

Definition 8. Q[e0] is a parameterized SQL/XML 
query such that given a tuple r in σS(R0), 
Q[e0](r) ≡A r. � 

For example, for the view Articles_XML (see 
Figure 2), Q[article] is shown in Figure 4.  

Definition 9. Let δv = eo /…/ en, n>0, be a path of V 
which matches the path ϕ1 / … /ϕn of R0 (e1/…/ en ≡A 
ϕ1 / … /ϕn) (see Figure 7). Q[δV] is a parameterized 
SQL/XML query such that given a tuple r in  
σS(Rn-1), Q[δV](r) ≡A r/ϕn.. � 

In (Vidal et al, 2006), is presented an algorithm that 
automatically generates Q[e0] and Q[δV] from A. In 
following, we present an example for each type of 
update operation. In those examples, suppose that 
the current state of the data source ArticlesDB is the 
one shown in Figure 5. 

Example 3. Consider the update μ1 in Example 1.  
(i) Relevant Paths: δ1 = article/URL and δ2 = 
article/relArticles/URL (see example 2).  
(ii) Updates for relevant path δ1: From Case 4 of the 
VM algorithm we have: 

A MAPPING-DRIVEN APPROACH FOR SQL/XML VIEW MAINTENANCE

71



Input: a view V, a base update μ on table R and the current state σs of S 

1. U := ∅; 
2. For each δv in P[μ,V] do  
3.  Case 1: δV = e0 and μ is an insertion operation 
4.   If selExp(rnew) = true then      /* rnew  is the inserted tuple*/ 
5.    Let $e0 := Q[e0](rnew);      /* See Definition 8 */  
6.    U := U ∪ { let $e := doc("V.xml") do insert $e0 into $e } 
7.  Case 2: δV = e0 and μ is a deletion operation 
8.   If selExp(rold) = true then    /* rold  is the deleted tuple*/ 
9.          U := U ∪ { let $e := doc("V.xml")/e0 [a1 = rold.k1, ..., am = rold.km] do delete $e } 
           /* {k1,.., km} is the primary key of R0, and [Te0/ai] ≡ [R0/ki] is the PCA for ai in A, 
for 1≤ i ≤m. */ 
10.         Case 3: δV = e0 and μ is an update operation 
11.   Case 3.1:  selExp(rnew) = true and selExp(rold) = false      
12.    Let $e0 := Q[e0](rnew);      /* See Definition 8 */  
13.    U := U ∪ { let $e := doc("V.xml") do insert $e0 into $e } 
14.   Case 3.2:  selExp(rnew) = false and selExp(rold) = true      
15.          U := U ∪ { let $e := doc("V.xml")/e0 [a1 = rold.k1, ..., am = rold.km] do delete $e } 
           /* {k1,.., km} is the primary key of R0, and [Te0/ai] ≡ [R0/ki] is the PCA for ai in A, 
for 1≤ i ≤m. */ 
16.  Case 4: δV = e0 /…/ en, where n>0, [Tei /ei+1] ≡ [Ri / ϕi+1] is the CA of ei+1 in A, for 0≤ i ≤n-
1; 
17.   Let T := A[μ,δV](σ’S);    /* T  is the set of affected tuples. See Definition 6 */ 
18.   For each r in T do 
19.    Let I := Q[δV](r);     /* See Definition 9 */ 
20.    U := U ∪ { let $en-1 := doc("V.xml")/ e0 /…/ en-1 [a1 = r.k1, ..., am = r.km] 
           for $en in $en-1/en do delete $en    for $en in I do insert $en 
into $en-1 }; 
    /*{k1,.., km} is the primary key of Rn-1, and [Ten-1/ai] ≡ [Rn-1/ki] is the PCA for ai 
in A, for 1≤ i ≤m. */ 
21. ApplyUpdates( V, U); 

Figure 9: View_Maintainer Algorithm. 

Affected Tuples (in table ARTICLES): T = { rnew }.  
For r = rnew, we have:  
U1 = { let $a := doc("Article.xml")/article[code = A6B1] 
          for $u in $a/URL do delete $u, 
          for $u in I do insert $u into $a }, where 
I = <URL>nyt.com/get?code=A6B1</URL> 

(iii) Updates for relevant path δ2: From Case 4 of the 
algorithm, we have: 

Affected Tuples (in table ARTICLES): T = { rnew }.  
For r = rnew, we have:  
U2={let $a:=doc("Article.xml")/article/relArticle[code=A6B1] 
          for $u in $a/URL do delete $u, 
          for $u in I do insert $u into $a }, where 
I = <URL>nyt.com/get?code=A6B1</URL> 

(iii) The new state of view Articles_XML, after 
applying updates U1 and U2, is shown in Figure 
6(b). 

 
 

Example 4. Consider the update 
μ2 = INSERT INTO ARTICLES VALUES ( 
   'A9B6', 'So Much Soccer', 
   'nytimes.com/get?code=A9B6', 
   '12/09/2007', 'Soccer fans,…', 
   'sports',marcus@nytimes.com'). 

(i) Relevant paths: δ3 = article. (From Definition 3) 
(ii) Updates for relevant path δ3: From Case 1 of the 
algorithm, since rnew.subject = "sports", we have: 

U3 = { let $a := doc("Article.xml") 
          do insert $article into $a }, where,  
$article = Q[article](rnew) = 
         <article> 
             <code>'A9B6'</code> 
             <title>'So Much Soccer'</title> 
             <link>'nytimes.com/get?code=A9B6'</link> 
             <date>'12/09/2007'</date> 
             <author>…</author> 
         </article>. 

ICEIS 2008 - International Conference on Enterprise Information Systems

72



 

Example 5. Consider the update 
μ3 = DELETE FROM RELATED_ART 
   WHERE ARTICLE = 'A6B2' AND 
         RELATED = 'A6B1'. 

(i) Relevant paths: δ4 = article/relArticle. 
(ii) Updates for relevant path δ4: From Case 4 of the 
algorithm, we have: 

Affected Tuples (in table ARTICLES): 
T = { < A6B2, …, marcus@nyt.com> }. 

For affected tuple <A6B2, …, marcus@nyt.com>, 
we have:  
U4 = { let $a := doc("Article.xml")/article[code = A6B2] 
         for $u in $a/relArticle do delete $u, 
         for $u in I do insert $u into $a }, where 
I = { <relArticle> 
       <code>A6A5</code> 
           <title>The Bracket</title> 
         <URL>nytimes.com/article?code=A6A5</URL> 

          </relArticle>}. 

5 CONCLUSIONS 

We first introduced the concept of view path and 
showed how to analyze the correspondence 
assertions to identify which view nodes in a view 
path are affected by a base update. Then, we 
presented the View_Maintainer Algorithm and we 
proved that the algorithm correctly maintains a view. 
We also established sufficient conditions, based on 
correspondence assertions, to prove that a list of 
updates correctly maintains a view.  

The effectiveness of the View_Maintainer 
Algorithm is guaranteed for externally maintained 
view since: (i) View updates are defined based 
solely on the source update and current source state. 
Hence, no access to the materialized view or other 
data source is required. This is important, because 
accessing a remote data source may be too slow. (ii) 
The updates are applied to the view without 
accessing any data source. Therefore, the view V is 
self-maintainable. (iii) The implementation of the 
View_Maintainer Algorithm is very efficient, since 
most of the work is done at view definition time. 

REFERENCES 

Abiteboul, S., McHugh, J., Rys, M., Vassalos, V., Wiener, 
J. L., 1998. Incremental Maintenance for Materialized 
Views over Semistructured Data. In VLDB, pp. 38–49. 

Ali, M. A., Fernandes, A. A., Paton, N. W., 2000. 
Incremental Maintenance for Materialized OQL 
Views. In DOLAP, pp. 41–48. 

Bernstein, P. A. and Melnik, S., 2007. Model Management 
2.0: Manipulating Richer Mappings. In SIGMOD, pp. 
1-12. 

Bohannon, P., Choi, B., Fan, W., 2004. Incremental 
evaluation of schema-directed XML publishing. In 
SIGMOD, pp. 13-18. 

Ceri, S. and Widom, J., 1991. Deriving productions rules 
for incremental view maintenance. In VLDB, pp. 577–
589. 

Dimitrova, K., El-Sayed, M., Rundensteiner, E. A., 2003. 
Order-sensitive View Maintenance of Materialized 
XQuery Views. In ER, pp. 144–157. 

Eisenberg, A., Melton, J., Kulkarni, K., Michels, J.E. and 
Zemke, F., 2004. SQL:2003 has been published. In 
SIGMOD, vol. 33, no. 1, pp. 119–126. 

EL-Sayed, M., Wang, L., Ding, L., Rudensteiner, E., 
2002. An algebraic approach for Incremental 
Maintenance of Materialized Xquery Views. In 
WIDM, pp. 88–91. 

Fuxman, A., Hernandez, M. A., Ho, H., Miller, R. J., 
Papotti, P., Popa, L., 2006. Nested mappings: schema 
mapping reloaded. In VLDB, pp. 67–78. 

Gupta, A. and Mumick, I.S., 2000. Materialized Views. 
MIT Press. 

Jiang, H., HO, H., Popa, L., Han, W., 2007. Mapping-
Driven XML Transformation. In WWW, pp. 1063–
1072. 

Kuno, H. A. and Rundensteiner, E. A., 1998. Incremental 
Maintenance of Materialized Object-Oriented Views 
in MultiView: Strategies and Performance Evaluation. 
In IEEE Transaction on Data and Knowledge 
Engineering, vol. 10, no. 5, pp. 768–792. 

Liefke, H. and Davidson, S. B., 2000. View Maintenance 
for Hierarchical Semistructured Data. In DaWaK, pp. 
114–125. 

Miller, R. J., 2007. Retrospective on Clio: Schema 
Mapping and Data Exchange in Practice. In 
International Workshop on Description Logics. 

Popa, L., Velegrakis, Y., Miller, R. J., Hernandez, M. A., 
Fagin, R., 2002. Translating Web Data. In VLDB, pp. 
598–609. 

Sawires, A., Tatemura, J., Po, O., Agrawal, D., Candan, 
K., 2005. Incremental Maintenance of Path-expression 
Views. In SIGMOD, pp. 443–454. 

Vidal, V. M. P., Casanova, M. A., Lemos, F. C., 2006. 
Automatic Generation of SQL/XML Views. In: SBBD, 
pp. 221-235. 

W3C XML Query Update Facility, 2007. 
http://www.w3.org/TR/xqupdate. Visited: 12/12/2007. 

Yu, C. and Popa, L., 2003. Constraint-Based XML Query 
Rewriting For Data Integration. In SIGMOD, pp. 371–
382. 

Zhuge, Y. and Garcia-Molina, H., 1998. Graph Structured 
Views and their Incremental Maintenance. In ICDE, 
pp. 116–125. 

A MAPPING-DRIVEN APPROACH FOR SQL/XML VIEW MAINTENANCE

73


