
A QVT-BASED APPROACH FOR MODEL COMPOSITION
Application to the VUML Profile

Adil Anwar1,3, Sophie Ebersold1, Mahmoud Nassar2, Bernard Coulette1 and Abdelaziz Kriouile2
1 University of Toulouse, IRIT ;UT2 ; 5 allées A. Machado, F-31058 Toulouse, France

2 SI2M laboratory, ENSIAS, BP 713 Agdal, Rabat, Maroc

3 LRIMIARF laboratory, Université Mohammed V-Agdal, Faculté des sciences, Rabat, Maroc

Keywords: Model composition, VUML Profile, Viewpoints, Transformations, Correspondences, translation and
composition rules, QVT-Core standard.

Abstract: With the increasing importance of models in software development, many activities such as transformation,
verification and composition are becoming crucial in the field of Model Driven Engineering (MDE). Our
main objective is to propose a model-driven approach to compose design models. This approach is applied
to the VUML profile that allows to analyse/design a system on the basis of functional points of view. In this
paper we first describe a transformation-based composition process and then we specify transformations as
a collection of QVT-Core rules implemented in ATL. The proposal is illustrated by a simple example.

1 INTRODUCTION

In the context of increasing complexity of
Information Systems, the composition of models is a
challenging and recurring activity. To cope with
composition of UML models developed separately,
we have been using the VUML (View Based UML)
profile which allows to put into action a view-based
analysis/design. Our global objective is to formalise
and implement the model composition activity
(called “model merging” in VUML) by means of the
Model Driven Architecture (MDA) (Soley et al.,
2000) features, and to apply it to VUML.

Model driven approaches have been focusing
mainly on the definition of languages and tools
allowing the implementation of operations on
models, such as transformations (Jouault et al.,
2005) (OMG, 2007) or verification (Nébut et al.,
2006), etc. Several research works deal more
specifically with model composition in such
domains as Aspect Oriented Modelling (Reddy el
al., 2006) (Baniassad et al., 2004) or Requirements
Engineering (Sabetzadeh et al., 2005) (Chitchyan et
al., 2007). An emerging approach has proposed
generic operators and mechanisms to reuse design
knowledge of composition operators (Fleurey et al.,
2007). These approaches do not consider
composition as a MDA transformation.

However, composition should concern MDA
approach since it is addressed in the context of
Domain Specific Languages (DSL) and
implemented in programming languages such as
Java, or with transformation languages such as ATL
(Jouault et al., 2005). We think that a more abstract
and generic approach for specifying models
composition (and specially merging) as a MDA
activity is needed. Such models composition should
be independent of any specific DSL. Therefore, we
strongly believe that it lacks a shared definition of
composition as a MDA operation for combining
models.

In the present paper, we show how a composition
operation can be specified using the transformation
technology based on the QVT (Queries, Views,
Transformations) standard (OMG, 2007). More
precisely, we define the composition transformation
as a set of declarative rules described with the QVT-
Core language, which is the basic infrastructure of
the declarative part of QVT. There are significant
benefits to use QVT-Core for this purpose: (i) the
QVT-core language allows the rules developer to
declaratively specify transformation rules (which,
also, can be bidirectional), and to check the structure
of the involved models. Thus, the developer can put
the emphasis on rules specification, rather than on
rules execution and sequencing ; (ii) model patterns

360
Anwar A., Ebersold S., Nassar M., Coulette B. and Kriouile A. (2008).
A QVT-BASED APPROACH FOR MODEL COMPOSITION - Application to the VUML Profile.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 360-367
DOI: 10.5220/0001710203600367
Copyright c© SciTePress

can be described in a graphical way similarly to
UML object diagrams; this kind of representation
makes the transformation rules quite easy to
understand and to edit (Lohmann et al., 2007).

This paper addresses the following contributions:
 a generic composition process for merging

UML design models. This process is applied
to VUML profile;

 a models composition activity described in
QVT-Core to graphically specify model
transformations based on declarative rules.

The paper is organised as follows: section 2
introduces the VUML methodology to analyse and
design model software systems with a user centred
approach. Section 3 describes main steps of a
composition process. Section 4 illustrates our
approach with a simple example. In section 5, we
specify the transformation rules in QVT-Core thanks
to a graphical notation. Section 6 considers related
works, and the last section discusses the
contributions of this paper and some perspectives.

2 ANALYSIS/DESIGN
APPROACH IN VUML

2.1 Principles of VUML Profile

The VUML profile (View based Unified Modelling
Language) was developed to meet the needs of
modelling complex information systems with UML
according to various points of view. A point of view
(called viewpoint in VUML) on the system
represents an actor’s requirements and rights. Such
viewpoints may be considered as functional aspects.
The main concept of VUML language is the
multiview class, which is composed of a base class
(shared by all viewpoints), and a set of view classes
(extensions of the base class), each view class being
specific of a given viewpoint. VUML’s semantics is
described by a metamodel, a set of well-formed rules
expressed in OCL (OMG, 2003b), and a set of
textual descriptions in natural language. On the
methodological level, a process allows us to analyse
and design software systems with respect to
viewpoints. A code generator was developed to
derive Java code from VUML class diagrams.

2.2 Analysis and Design Process
Associated to VUML

The VUML analysis/design process is led by a set of
designers who have specific viewpoints. The process
is decomposed into five phases (figure 1):

 Analyse Actor’s Requirements. During this
phase, actors are identified and their
requirements are described in terms of
activities and use cases. Each actor is
associated with a viewpoint.

 Define a Common Domain Glossary.
This phase is a general and preliminary
analysis aiming at defining the basic concepts
which represent the business domain of the
application. At the end of this phase, a
common glossary of the system is established
and shared by all the designers.

 Design Viewpoint Models. The aim of this
phase is to produce a set of design models
according to specific viewpoints. Each
viewpoint model may be designed in parallel
with the others.

 Analyse Conflicts. During this phase,
representation conflicts, such as naming
conflicts and structural conflicts are detected
and resolved. While naming conflicts are
solved through renamings into the design
models, structural conflicts are solved by
applying heuristics allowing a semi-automatic
resolution method.

 Compose Viewpoint Models. The last phase is
a composition operation; it consists in
merging design models developed separately
in order to obtain a global VUML design
model. In the following sections, we will
focus on this phase.

Figure 1: VUML Analysis and Design Process.

A QVT-BASED APPROACH FOR MODEL COMPOSITION - Application to the VUML Profile

361

3 COMPOSITION PROCESS

3.1 Composition Steps

In order to provide a complete automatic solution for
model composition, we reuse existing researches
(Kolovos et al., 2006) (Fleurey et al., 2007) which
have demonstrated that designing a model
composition operator can be done through two
separate operators: a correspondence operator and a
merging operator. Thus, our composition process is
composed of three main steps called
correspondence, merging and analysis.

Correspondence. It consists in identifying the
set of correspondences between models to be
composed. This activity is governed by
correspondence rules which specify the strategy of
comparison between model elements. The
comparison of elements is based on syntactic
properties defined at the metamodel level. For
example, the syntactic properties of a UML class are
represented by the set {name, isAbstract,
ownedAttribute,ownedOperation} that are properties
of the metaclass Class in the UML metamodel
(OMG, 2003a). A correspondence rule, applied to
two elements describing the same concept, creates a
link between those elements called correspondence
relationship. Correspondence relationships are
stored into a separate model called correspondence
model. The correspondence step is summarized in
Figure 2.

Figure 2: Step 1 of Composition: Elaboration of the
correspondence model.

Merging. The merging step of the process
depends on the target metamodel. In our application
context, this step produces a VUML model. It
creates VUML elements from source elements of the
correspondence model according to the type of
correspondence relationships which relate them. The
strategy for merging two model elements is specified
by a merging rule. Elements which have no
correspondent in the opposite model are simply
translated into the VUML model with respect to

translation rules. The merging step is summarized in
Figure 3.

Figure 3: Step 2 of Composition: Creation of the resulting
VUML Model.

Analysis. The last step of the composition process is
an analysis activity that aims to supress composition
errors, Thus the produced VUML model can be
analyzed according to well-formedness rules defined
in the VUML profile. The analysis strategy is similar
to the one defined in (Bézivin et al., 2005); it allows
to generate a diagnosis model which conforms to a
diagnosis metamodel.

3.2 MDA-based Models Architecture

MDA proposal is a conceptual framework for
system modelling organized in four levels of
abstraction. We use this framework to describe the
interactions among models and metamodels
involved in our composition process. In Figure 4
below, we show only the three higher levels. The
M1 level is dedicated to models that are conceptual
abstractions of real word objects (M0). QVT
transformations and VUML class diagrams are, thus,
considered as models. At the M2 level, we find the
concept of metamodel. Metamodels are models of
languages which allow us to describe the models
involved in M1 level. Four metamodels are to be
considered in our approach: UML2 metamodel,
Correspondence metamodel, VUML metamodel,
and QVT metamodel. We proposed in a precedent
work (Anwar et al., 2007b) a kernel of a
Correspondence metamodel. It contains an abstract
metaclass called CorrespondenceRelationship which
is specialized according to the semantics of bindings
between elements. Due to space limitation, we do
not describe here this correspondence metamodel.

The M3 level of this framework is composed of
the metametamodel MOF2.0 which is able to
describe itself (meta-circularity).

ICEIS 2008 - International Conference on Enterprise Information Systems

362

Figure 4: MDA-based models architecture.

4 EXAMPLE

To illustrate how the transformation rules are
applied on models, we consider a simple example
which particularly describes a weighted point
through the WPoint class designed according to two
viewpoints. The first viewpoint represents a
weighted point with respect to its Cartesian
coordinates. We consider also the class Segment
which is composed of two weighted points and a
length method to calculate the Euclidian distance
between the two points. Figure 5 shows the resulting
design model elaborated with the Cartesian
viewpoint.

Figure 5: The Cartesian Viewpoint design model.

Let us consider now another viewpoint that
identifies a weighted point object by its polar
coordinates. A set of points forms a Disk which is
represented by a radius and a method to calculate for
example the perimeter of the Disk. Figure 6 shows
the resulting design model elaborated with the Polar
viewpoint.

Figure 6: The Polar Viewpoint design model.

The design models described above have to be
composed to build the global view of the system.
This operation is necessary for checking the global
consistency of the system’s model, or for analyzing
interactions across the composed views (Fleurey et
al., 2007).

The VUML merging scenario, illustrated in
Figure 7, can be achieved as follows: the class
Segment is the same in both design models.
Therefore, it is merged as one class Segment in the
VUML model. The class Disk exists in the Polar
viewpoint model only; so it is translated as the
multiview class Disk which has a base and one Polar
view. The class WPoint appears in both design
models with distinct descriptions; thus it is translated
as the multiview class WPoint: the shared elements
like weight and distance are placed into the base,
whereas specific coordinates are put into Cartesian
and Polar views.

Figure 7: The VUML Design model.

In the following section, we will use those two
viewpoint design models and the VUML resulting
model to illustrate the application of transformation
rules in the composition process.

A QVT-BASED APPROACH FOR MODEL COMPOSITION - Application to the VUML Profile

363

5 QVT TRANSFORMATION
RULES

Our model composition strategy is governed by
three categories of transformation rules:
correspondence, composition and translation rules.
This enables us: first to establish correspondences
between input models, second to merge these
models in order to produce the global model.

As justified in the introduction (Section 1) of this
paper, we have adopted the QVT standard to
describe the transformation rules that govern our
composition process. More precisely, we specify
rules in the QVT-Core language (OMG. 2007) with
a graphical representation defined in (Greenyer et
al., 2007). This notation is similar to that of UML
object diagrams, that is convenient to identify both
source and target patterns of transformation rules.

This section presents these three kinds of rules.
To illustrate them, we consider the two design
viewpoint models of the example described in
Section 3 above.

5.1 Correspondence Rules

This category of rule focuses on identifying all
possible relationships between source model
elements. In this aim, the compares the meta-
properties values defined in metamodel constructs.
This operation is showned in the guard condition of
the rule. That means that the relationship between
source elements holds (creating a correspondence
relationship which relates the two source model
elements) only when the guard condition is
evaluated to true.

According to the semantics of correspondence
which exists between two model elements, there are
different types of relationships. For example, for
class elements, we have identified two
correspondence relationships: similarity and
conformity. Conformity holds when two classes
appear with the same name and are semantically
equivalent (represents two views of the same
concept), and when they have the same properties
(attributes, operations, associations, etc.).

The transformation rules in QVT-Core language
are called mappings; a single mapping is composed
of several types of patterns. For example, the
mapping AttributesToEquality (Figure 8) is
structured in four columns. The first three columns
contain the patterns of the involved models, and the
last one contains the mapping nodes, called also
trace objects that reference nodes of the domain
patterns.

Figure 8: The AttributesToEquality mapping.

This rule shows the case where two attribute
elements of source models having two
corresponding types and defined in two distinct
classes sharing the same name are related by an
EqualityRelationship.

The mappings ClassesToConformity and
DataTypesToEquivalence are called top mappings
because they specify the context of the mapping
AttributesToEquality. Hence, they are placed in the
guard pattern of this mapping. They are considered
as preconditions of the rule.

To start the transformation, the guard patterns are
matched in the source models, and then the target
model elements are created. In this case, a
ConformityRelationship element and an
EquivalenceRelationship element are created in the
target model. Later, the pattern in the bottom area of
the mapping AttributesToEquality is searched in the
source models when the required precondition
pattern is true, the context of the mapping can be
applied. Finally, the EqualityRelationship element is
created in the target model.

Given our example about weighted points, an
EqualityRelationship is created in the
Correspondence model to link both weight attributes
of viewpoint models (Figures 5 and 6).

5.2 Composition Rules

The second category of transformation rules
regroups the composition rules; it consists in
building new model elements from elements related
by correspondence relationships.

To start this composition activity, the
composition operator looks for the set of elements
that match in the correspondence model and creates
a new model element in the target model with
respect to the semantics of the correspondence
relationship. Indeed, the composition strategy
depends on the nature of relationships. For example,
if two class elements are related by a
ConformityRelationship, the composition strategy
consists of merging these classes that is to create in

ICEIS 2008 - International Conference on Enterprise Information Systems

364

the target model a class that represents a deep copy
of the sources classes.

Figure 9 shows a QVT-Core rule that describes
how two classes related by a similarity relationship
are composed to build a multiview class in the
VUML model.

Figure 9: The QVT-Core SimilarityComposition rule.

To apply this rule, the top mapping described in
the guard pattern must hold first so that a VUML
model could exist. When the guard is true, the
context of the rule SimilarityToMultiviewClass is
available and so, the bottom pattern is searched in
the source model and matched. Then, a multiview
class is created in the target model for each
similarity relationship found in the correspondence
model.

Let us consider our example about weighted
points. A SimilarityRelationship was created about
WPoint during the Correspondence step.
Henceforth, a multiview class is created with a base
and two views in the VUML target model (figure 7).

5.3 Translation Rules

As composition rules, translation rules produce also
elements in the target model. The main difference
between them is that translation rules consider only
elements for which no correspondent has been found
in the opposite model. In case where the default
translating strategy is applied, the source elements
are deeply copied into the target model.

Alternate translation strategies must be used in
some situations depending on the target metamodel.
For example, if we apply the default translation
strategy to the Disk class (Figure 6), this class will
appear in the VUML model as a normal UML class
which may be lead to an inconsistency because this
class should be accessible only from the polar
viewpoint. To resolve this problem, the translation
rule has to create a multiview class as target element
with a base and one Polar view (Figure 7). In this
way, it is possible to access to the WPoint class only
through the PolarDisk view, that consistent with the
Polar viewpoint model (Figure 6). The rule
described below expresses this translation strategy.

Figure 10: The QVT-Core Class2MultiviewClass
Translation rule.

Let us consider again our example about
weighted points. Class Disk appears only in the
Polar viewpoint model, thus, it is translated into the
VUML model as a multiview class of same name
with one Polar view (figure 7).

6 RELATED WORKS

A number of researchers have developed model
composition known also as model merging
approaches in different application domains:
requirements engineering (Sabetzadeh et al., 2005),
Aspect Oriented Modelling (Baniassad et al., 2004)
(Reddy et al., 2006), Schema integration (Eder et al.,
1994), Ontology merging (Noy et al., 2000). We will
focus in the rest of this section on works that are
close to our approach.

Reddy et al (Reddy et al., 2006) propose
directives for model composition in aspect oriented
design. The objective is to compose a set of aspect
models which encapsulate crosscutting concerns
(persistence, security, etc) with a primary model
which represent the functionalities of a software
system. This approach can be classified as
imperative because it describes the operation of
composition in an algorithmic way. Therefore, it is
not easily compatible with our approach based on
declarative rules which rather specify what should
be transformed instead of how it should be done.

The EML language (Epsilon Merging Language)
proposed by (Kolovos et al., 2006) is a rule based
language for merging models. The tool support of
EML was developed as an Eclipse plugging. EML
belongs to the Epsilon platform (Epsilon, 2006),
which is a model driven framework for developing
integrated languages for model management tasks
such as model comparison, model transformation,
model validation, etc. The comparison strategy in
EML is similar to ours. But contrary to EML, our
approach considers the result of the correspondence
step as a model that is the input of the merging step.

A QVT-BASED APPROACH FOR MODEL COMPOSITION - Application to the VUML Profile

365

The Atlas Model Weaver (AMW) (Del Fabro et
al., 2005) is a model composition framework that
uses model weaving and model transformation to
define and execute composition operation. The tool
support is available as an open source deliverable of
Eclipse GMT (EclipseGMT. 2005). This technique
has the advantage of being generic and flexible
thanks to the extension mechanism of the weaving
metamodel; however, the manual definition of the
links between model elements is a tedious work.

Other works such as (Yahyaoui et al., 2005)
(Romero et al., 2006) focus on the definition of
viewpoints correspondences in the context of the
RM-ODP standard (ISO, 2005). These authors relate
viewpoints through explicit links for change
management and propagation. But contrary to them,
we also use such links to merge viewpoint models as
shown above in this paper.

7 DISCUSSION AND
CONCLUSIONS

In this paper, we have presented a QVT-based
approach to specify rules to compose models
developed separately. We adopted QVT because it is
the OMG standard recommended for specifying
MDE transformations. We used the QVT-Core
language which represents the basic infrastructure of
the declarative part of QVT. In addition, we adopted
the graphical notation proposed by (Greenyer et al.,
2007).

Compared to our previous works (Anwar et al.,
2007b) the main benefit of this study is to use a
standardized language to express composition as
declarative transformation rules at a high level of
abstraction. Thus, the rules designer may
concentrate himself on the definition of rules rather
than on their sequencing.

Our approach has been applied to the VUML
profile which allows to produce view-based models
separately and merge them into a unique multiview
model. We experimented it on a significant case
study describing the view-based design of a Shared
Medical File Sytem (Anwar et al., 2007a).

To validate our work, we have implemented the
operations (QVT transformations) in ATL (Jouault
et al., 2005) which is considered here as an
implementation of the QVT standard. It is also a
standard component in Eclipse, now integrated into
the M2M project (Eclipse, 2007).

In the near future, we intend to extend our
approach in several ways:

• Enrich our composition rules metamodel
(Anwar et al., 2007a) so as to separate target
model-independent rules from target model-
dependent rules. Concretely, we have already
identified generic composition rules which are
reusable in any model composition strategy
and specific rules for the VUML DSL. We
intend to integrate this hierarchy into a well-
defined metamodel.

• Enlarge the kinds of source models: we
should compose not only UML models
resulting from decentralized modelling with
UML, but also VUML models previously
composed through the VUML process.

• Integrate behavioural diagrams of UML
(mainly state charts or activity diagrams) into
the VUML profile so as to cover dynamic
aspects of system design.

• Cope with compositional conflicts as follows:
(i) semantics conflicts due to homonymy and
synonymy at the analysis level. To solve them
in automatic ways, one can reuse dedicated
techniques coming from database community
(Geller et al., 1992) or ontology-based works
(Noy et al., 2000); (ii) structural conflicts at
the design level. These types of conflicts may
be solved through refactoring techniques but
so far they are difficult to automate.

ACKNOWLEDGEMENTS

This work was partially supported by the COMPUS
Project MA/06/151, PAI VOLUBILIS 2006.

REFERENCES

Anwar, A., Ebersold, S., Coulette, B., Nassar, M.,
Kriouile, A., 2007a. Une approche MDA pour
produire un modèle VUML par intégration de modèles
par points de vue. In Proceedings of (IDM’2007),
Toulouse France, Hermès Science, pp 41-58.

Anwar, A., Ebersold, S., Coulette, B., Nassar, M.,
Kriouile, A., 2007b. Vers une approche à base de
règles pour la composition de modèles : application au
profil VUML. Revue RSTI-L’Objet. vol.13- n°4/2007,
pp 73-103.

Baniassad, E., Clarke, S., 2004. Theme: An Approach for
Aspect-Oriented Analysis and Design. In Proceedings
of ICSE'04 (Int. Conference in Software Engineering),
p. 158-167. Edinburgh, Scotland.

Bézivin J., Jouault F., 2005. Using ATL for Checking
Models. In proc. of the International Workshop on

ICEIS 2008 - International Conference on Enterprise Information Systems

366

Graph and Model Transformation (GraMoT), Tallinn,
Estonia. 2005.

Del Fabro, MD., Bézivin, J., Jouault, F., Breton, E.,
Gueltas, G., 2005. AMW: a generic model weaver.
Dans 1ère Journée IDM’05. Paris, France, p. 105-114.

Eclipse GMT Project Web Page.
http://www.eclipse.org/gmt/amw/, 2005.

Eclipse/M2M Project Web Page .
http://www.eclipse.org/m2m/, 2007.

Eder, J., Frank, H., 1994. Schema Integration for Object
Oriented Database Systems. Published in: Tanik M.,
Rossak W., Cooke D. (eds.): Software Systems in
Engineering, ASME, PD-Vol. 59, pp. 275-284.

EpsilonSubProject2006.
http://www.eclipse.org/gmt/epsilon/.

Fleurey, F., Baudrey, B., France, R., Ghosh, S., 2007. A
Generic Approach For Model Composition. In
Proceedings of the Aspect Oriented Modeling.
Workshop at Models 2007. Nashville USA.

Geller, J., Perl, Y., Neuhold, E., Sheth, A., 1992.
Structural Schema Integration with full and partial
correspondence using the Dual Model, Information
Systems, Vol. 17, No. 6, 1992, pp. 443-464.

Greenyer, J., 2006. A Study of Model Transformation
Technologies - Reconciling TGGs with QVT.
University of Paderborn, Department of Computer
Science, Master/Diploma thesis.

Greenyer, J., Kindler, E., 2007. Reconciling TGGs with
QVT. G. Engels et al. (Eds.): MoDELS, LNCS 4735,
pp. 16-30.

ISO/IEC CD 19793, ITU-T Rec. X.906 (2005).
Information technology – Open distributed processing
– Use of UML for ODP system specifications. ISO &
ITU-T.

Jouault, F., Kurtev, I., 2005. Transforming Models with
ATL. In Proceedings of the Model Transformations in
Practice, Workshop at Models. Montego Bay, Jamaica
2005.

Kolovos, DS., Paige, RF., Polack, FAC., 2006. Merging
Models with the Epsilon Merging Language (EML).
In Proc. ACM/IEEE 9th International Conference on
Models/UML), Genova, Italy, October.

Lohmann, C., Greenyer, J., Jiang, J., Systâ, T., 2007.
Applying Triple Graph Grammars For Pattern-Based
Workflow Model Transformations. In Journal of
Object Technology, Special Issue: Tools EUROPE,

 October 2007. pp 253-273.
 http://www.jot.fm/issues/issue_2007_10/paper13/.
Nassar M., Coulette B., Crégut X., Ebsersold S.., Kriouile

A., 2003. Towards a View based Unified Modeling
Language. Proc. of 5th International Conference on
Enterprise Information Systems (ICEIS’2003), Angers,
France.

Nébut C., Fleurey, F., Le Traon, Y., Jézéquel, JM., 2006.
Automatic test generation: A use case driven
approach. IEEE Transactions on Software
Engineering, 32(3):140--155, March.

Noy, N., Musen, M., 2000. PROMPT: Algorithm and Tool
for Automated Ontology Merging and Alignment. In
proc. Of AAAI/IAAI, pp 450–455.

OMG 2003a, UML 2.0 Superstructure Final Adopted
specification,Document-ptc/03-08-02,
http://www.omg.org/docs/ptc/03-08-02.pdf.

OMG 2003b, UML 2 OCL Final Adopted Specification,
2003. http://www.omg.org/docs/ptc/03-10-14.pdf.

OMG 2007. OMG: (MOF2).0 QVT Final Adopted
Specification.http://www.omg.org/docs/ptc/07-07-
07.pdf.

Reddy, Y. R., Ghosh, S., France, R. B., Straw, G.,
Bieman, J. M., McEachen, N., Song, E., Georg, G.,
2006. Directives for Composing Aspect-Oriented
Design Class Models. Transactions of Aspect-
Oriented Software Development, Vol.1, No. 1, LNCS
3880, p75-105, Springer.

Romero, R., Moreno, N., Vallecillo, A., 2006. Modeling
ODP Correspondences using QVT. In MDEIS 2006,
Paphos, Cyprus, pp. 15-26.

Sabetzadeh, M., Easterbrook, S., 2005. An Algebraic
Framework for Merging Incomplete and Inconsistent
Views. In 13th IEEE International Requirements
Engineering Conference, September 2005.

Soley et al., 2000. MDA Model Driven Architecture,
Object Management Group White Paper, Draft 3.2 -
November 27.

Yahiaoui, N., Traverson, B., and Levy, N. 2005.
Adaptation management in multi-view systems. In
Proc. of the 2nd International Workshop on
Coordination and Adaptation Techniques for Software
Entities (WCAT’05), pages 99–105, Glasgow,
Scotland, UK.

A QVT-BASED APPROACH FOR MODEL COMPOSITION - Application to the VUML Profile

367

