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Abstract: Reliable and accurate software cost estimations have always been a challenge especially for people involved 
in project resource management. The challenge is amplified due to the high level of complexity and 
uniqueness of the software process. The majority of estimation methods proposed fail to produce successful 
cost forecasting and neither resolve to explicit, measurable and concise set of factors affecting productivity. 
Throughout the software cost estimation literature software size is usually proposed as one of the most 
important attributes affecting effort and is used to build cost models.  This paper aspires to provide size and 
effort-based estimations for the required software effort of new projects based on data obtained from past 
completed projects. The modelling approach utilises Artificial Neural Networks (ANN) with a random 
sliding window input and output method using holdout samples and moreover, a Genetic Algorithm (GA) 
undertakes to evolve the inputs and internal hidden architectures and to reduce the Mean Relative Error 
(MRE). The obtained optimal ANN topologies and input and output methods for each dataset are presented, 
discussed and compared with a classic MLR model. 

1 INTRODUCTION 

Accurate software development cost estimation has 
always been a major concern especially for people 
involved in project management, resource control 
and schedule planning. A good and reliable estimate 
could provide more efficient management over the 
whole software process and guide a project to 
success. The track record of IT projects shows that 
often a large number fails. Most IT experts agree 
that such failures occur more regularly than they 
should (Charette, 2005). According to the 10th 
edition of the annual CHAOS report from the 
Standish Group that studied over 40,000 projects in 
10 years, success rates increased to 34% and failures 
declined to 15% of the projects. However, 51% of 
the projects overrun time, budget and/or lack critical 
features and requirements, while the average cost 
apparently overruns by 43% (Software Magazine, 
2004). One of the main reasons for these figures is 
failure to estimate the actual effort required to 
develop a software project. 

The problem is further amplified due to the high 
level of complexity and uniqueness of the software 
process. Estimating software costs, as well as 
choosing and assessing the associated cost drivers, 

both remain difficult issues that are constantly at the 
forefront right from the initiation of a project and 
until the system is delivered. Cost estimates even for 
well-planned projects are hard to make and will 
probably concern project managers long before the 
problem is adequately solved. 

Over the years software cost estimation has 
attracted considerable research attention and many 
techniques have been developed to effectively 
predict software costs. Nonetheless no single 
solution has yet been proposed to address the 
problem. Typically, the amount and complexity of 
the development effort proportionally drives 
software costs. However, as other factors, such as 
technology shifting, team and manager skills, 
quality, size etc., affect the development process it is 
even more difficult to assess the actual costs. 

A commonly investigated approach is to 
accurately estimate some of the fundamental 
characteristics related to cost, such as effort, usually 
measured in person-months. However, it is preferred 
to measure a condensed set of attributes and then use 
them to estimate the actual effort. Software size is 
commonly recognised as one of the most important 
factors affecting the amount of effort required to 
complete a project according to Fenton and Pfleeger 
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(1997). It is considered a fairly unpromising metric 
to provide early estimates mainly because it is 
unknown until the project terminates. Nonetheless, 
many researchers investigate cost models using size 
to estimate effort (e.g.,Wittig and Finnie; Dolado 
2001) whereas others direct their efforts towards 
defining concise methods and measures to estimate 
software size from the early project phases (e.g., 
Park 2005; Albrecht 1979). The present work is 
related to the former, aspiring to provide size and 
effort-based estimations for the software effort 
required for a new project using data from past 
completed projects, even though they originate back 
from the 90’s. The hypothesis is that once a robust 
relationship between size and effort is affirmed by 
means of a model, then this model may be used 
along with size estimations to predict effort of new 
projects more accurately. Thus, in this work we 
attempt to study the potentials of developing a 
software cost model using computational 
intelligence techniques relying only on size and 
effort data. The core of the model proposed consists 
of Artificial Neural Networks (ANN). The ANN’s 
architecture is further optimised with the use of a 
Genetic Algorithm (GA), focused on evolving the 
number and type of inputs, as well as the internal 
hidden architecture to predict effort as precisely as 
possible. The inputs used to train and test the ANN 
are project size measurements (either Lines of Code 
(LOC) or Function Points (FP)), and the associated 
effort to predict the subsequent in series, unknown 
project effort. In addition, a Multi-Linear Regression 
(MLR) prediction model is presented as a 
benchmark to assess the performance of the model 
materialising estimations of the dependent variable 
(effort) with a classic method. 

The rest of the paper is organised as follows: 
Section 2 presents a brief overview of relative 
research on size-based software cost estimation and 
especially focuses on machine learning techniques. 
Section 3 provides a description of the datasets and 
performance metrics used in the experiments 
following in Section 4. Section 4 includes the 
application of an ANN cost estimation model and 
describes an investigation of further improvements 
of the model proposing a hybrid algorithm to 
construct the optimal input and output method and 
architecture for the datasets. In addition, this section 
presents a comparison of the results to a classic 
MLR model. Section 5, concludes with the findings 
of this work, discusses a few limitations and 
suggests future research steps. 
 
 

2 RELATED WORK 

Several techniques have been investigated for 
software cost estimation, especially data-driven 
artificial intelligence techniques, such as neural 
networks, evolutionary computing, regression trees, 
rule-based induction etc. as they present several 
advantages over other, classic approaches like 
regression. Most of the studies performed 
investigate, among other issues, the identification 
and realisation of the most important factors that 
influence software costs. This section focuses on 
related work mainly of size-based cost estimation 
models. 

To begin with, most size-based models consider 
either the number of lines written for a project 
(called lines of code (LOC) or thousands of lines of 
code (KLOC)) used in models such as COCOMO 
(Boehm et al., 1997), or the number of function 
points (FP) used in models such as Albrecht’s 
Function Point Analysis (FPA) (Albrecht and 
Gaffney, 1983). Many research studies investigate 
the potential of developing software cost prediction 
systems using different approaches, datasets, factors, 
etc. Review articles like the ones of Briand and 
Wieczorek (2001), Jorgensen and Shepperd (2007), 
include a detailed description of such studies. We 
will attempt to highlight some of the most important 
relevant studies: in Wittig and Finnie (1997) effort 
estimation was assessed using backpropagation 
ANN on the Desharnais and ASMA datasets, mainly 
using system size to determine the latter’s 
relationship with effort. The approach yielded 
promising prediction results indicating that the 
model required a more systematic development 
approach to establish the topology and parameter 
settings and obtain better results. In Dolado (2001) 
the cost estimation equation of the relationship 
between size and effort was investigated using 
Genetic Programming evolving tree structures, 
representing several classical equations, like the 
linear, power, quadratic, etc. The approach reached 
to moderately good levels of prediction accuracy 
results by using solely the size attribute and 
indicated that further improvements can be achieved. 

In summary, the literature thus far, has showed 
many research attempts focusing on measuring 
effort and size as the key variables. In addition, 
many studies indicate ANN models as promising 
estimators, or that they perform at least as well as 
other approaches. Subsequently, we firstly aim to 
examine the potentials of ANNs in software cost 
modeling and secondly to investigate the possibility 
of providing further improvements for such a model. 
Our goal is to inspect: (i) whether a suitable ANN 
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model, in terms of input parameters, may be built; 
(ii) whether we can achieve sufficient estimates of 
software development effort using only size or 
function based metrics on different datasets of 
empirical cost samples; (iii) whether a hybrid 
computational model, which consists of a 
combination of ANN and GA, may contribute to 
devising the ideal ANN architecture and set of 
inputs that meet some evaluation criteria. Our 
strategy is to exploit the benefits of computational 
intelligence and provide a near to optimal effort 
predictor for impending new projects. 

3 DATASETS AND 
PERFORMANCE METRICS 

A variety of historical software cost data samples 
from various datasets containing empirical cost 
samples were employed to provide a strong 
comparative basis with results reported in other 
studies. Also, in this section, the performance 
metrics used to assess the ANN’s precision accuracy 
are described. 

3.1 Datasets Description 

The following datasets were chosen to test the 
approach describing historical project data: 
COCOMO`81 (COC`81), Kemerer`87 (KEM`87), a 
combination of COCOMO`81 and Kemerer`87 
(COKEM`87), Albrecht and Gaffney`83 
(ALGAF`83) and finally Desharnais`89 (DESH`89). 

The COC`81 (Boehm, 1981) dataset contains 
information about 63 software projects from 
different applications. Each project is described by 
the following 17 cost attributes: reliability, database 
size, complexity, required reusability, 
documentation, execution time constraint, main 
storage constraint, platform volatility, analyst 
capability, programmer capability, applications 
experience, platform experience, language & tool 
experience, personnel continuity, use of software 
tools, multi-site development and required schedule. 

The second dataset, named KEM`87 (Kemerer, 
1987) contains 15 software project records gathered 
by a single organisation in the USA which constitute 
business applications written mainly in COBOL. 
The attributes of the dataset are: the actual project’s 
effort measured in man-months, the duration, the 
KLOC, the unadjusted and the adjusted FP’s count. 
Also, a combination of the two previous datasets 
was created, namely COKEM`87, to experiment 
with a larger but more heterogeneous dataset. 

The third dataset ALGAF`83 (Albrecht and 
Gaffney, 1983) contains information about 24 
projects developed by the IBM DP service 
organisation. The datasets’ characteristics 
correspond to the actual project effort, the KLOC, 
the number of inputs, the number of outputs, the 
number of master files, the number of inquiries and 
the FP’s count. 

The fourth dataset, DESH`89 (Desharnais, 1989), 
includes observations for more than 80 systems 
developed by a Canadian Software Development 
House at the end of 1980. The basic characteristics 
of the dataset account for the following: the project 
name, the development effort measured in hours, the 
team’s experience and the project manager’s 
experience measured in years, the number of 
transactions processed, the number of entities, the 
unadjusted and adjusted FP, the development 
environment and the year of completion. 

From the datasets the project size and effort were 
chosen because they were the common attributes 
existing in all datasets and furthermore, they are the 
main factors reported in literature to affect the most 
productivity and cost (Sommerville, 2007). 

3.2 Performance Metrics 

The performance of the predictions was evaluated 
using a combination of three common error metrics, 
namely the Mean Relative Error (MRE), the 
Correlation Coefficient (CC) and the Normalized 
Root Mean Squared Error (NRMSE) together with a 
devised Sign prediction (Sign) metric. These error 
metrics were employed to validate the model’s 
forecasting ability considering the difference 
between the actual and the predicted cost samples 
and their ascendant or descendant progression in 
relation to the actual values. 

The MRE, given in equation (1), shows the 
prediction error focusing on the sample being 
predicted. )(ixact

is the actual effort and )(ix pred
 the 

predicted effort of the thi project. 
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The CC between the actual and predicted series, 
described by equation (2), measures the ability of the 
predicted samples to follow the upwards or 
downwards of the original series as it evolves in the 
sample prediction sequence. An absolute CC value 
equal or near 1 is interpreted as a perfect follow up 
of the original series by the forecasted one. A 
negative CC sign indicates that the forecasting series 
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follows the same direction of the original with 
negative mirroring, that is, with a rotation about the 
time-axis.  
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The NRMSE assesses the quality of predictions 
and is calculated using the Root Mean Squared 
Error (RMSE) as follows: 
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If NRMSE=0 then predictions are perfect; if 
NRMSE=1 the prediction is no better than taking   

predx equal to the mean value of n samples. 
The Sign Predictor (Sign(p)) metric assesses if 

there is a positive or a negative transition of the 
actual and predicted effort trace in the projects used 
only during the evaluation of the models on 
unknown test data. With this measure we are not 
interested in the exact values, but only if the 
tendency of the previous to the next value is similar; 
meaning if the actual effort value rises and if the 
predicted value rises too in relation to their previous 
value, then the tendency is identical. This is 
expressed in equations (5) and (6). 
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4 EXPERIMENTAL APPROACH 

In this section we provide the detailed experimental 
approach and the results yielded by the models 
developed: (i) An ANN approach, with varying 
input and output method (a random timestamp was 
given to the data samples which were inputted using 
a sliding-window technique); (ii) A Hybrid model, 
coupling ANN with a GA to reach to a near to 
optimal input output method and internal 
architecture; (iii) A classic MLR model, which will 
then be used for later comparisons. 

4.1 An ANN-Model Approach 

The following section presents the ANN model 
which investigates the relationship between software 
size (expressed in LOC or FP) and effort, by 
conducting a series of experiments. We are 
concerned with inspecting the predictive ability of 
the ANN according to the architecture utilised and 
the input output method (volume and chronological 
order of the data fed to the model) per dataset used.  

4.1.1 Model Description 

The core architecture of the ANN was a feedforward 
MLP (Figure 1) linking each input neuron with three 
hidden layers, consisting of parallel slabs activated 
by a different function (i.e., i-h1- h2 - h3 – o, where  i  
is the input vector h1, h2, h3 are the internal hidden 
layers and o is the output). Variations of this 
architecture were employed regarding the number of 
inputs and the number of neurons in the internal 
hidden layers, whereas the difference between the 
actual and the predicted effort is manifested at the 
output layer (forecasting deviation). 

 
Figure 1: A Feed-forward MLP Neural Network. 

Firstly, the ANN were trained in a supervised 
manner, using the backpropagation algorithm. Also, 
we utilised a technique to filter the data and reserve 
holdout samples, namely training, validation and 
testing subsets. The extraction was made randomly 
using 70% of the data samples for training, 20% for 
validation and 10% for testing. With 
backpropagation the inputs propagate through the 
ANN resulting in an output according to the initial 
weights. The predicting behaviour of the ANN is 
characterised by the difference among the predicted 
and the desired output. Then, the difference is 
propagated in a backward manner adjusting the 
necessary weights of the internal neurons, so that the 
predicted value is moved closer to the actual one in 
the subsequent iteration. The training set is utilised 
during the learning process, the validation set is used 
to ensure that no overfitting occurs in the final result 
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and that the network is able to generalise the 
knowledge gained. The testing set is an independent 
dataset, i.e., does not participate during the learning 
process and measures how well the network 
performs with unknown data. During training the 
inputs are presented to the network in patterns 
(inputs/output) and corrections are made on the 
weights of the network according to the overall error 
in the output and the contribution of each node to 
this error. 

4.1.2 Results 

The experiments conducted constituted an empirical 
investigation mainly regarding the number of inputs 
and internal neurons forming the layers of the ANN. 
In these experiments several ANN parameters were 
kept constant as some preliminary experiments 
previously conducted implied that varying the type 
of the activation function in each layer had no 
significant effect on the forecasting quality. More 
specifically, we employed the following functions: 
for i the linear [-1,1], h1 the Gaussian, h2 the tanh, h3 
the Gaussian complement and for o the logistic 
function. Also, the learning rate, the momentum, the 
initial weights and the amount of iterations were set 
to 0.1, 0.1, 0.3 and 10,000 respectively. 

In addition, the randomly generated subsets were 
given a specific chronological order (ti) and for each 
repetition of the procedure a sliding window 
technique was used to extract an input vector and 
supply it to the ANN model. The window-sliding 
size i varied, with i=1…5. Practically, this is 
expressed in Table 1, covering the following Input 
Output Methods (IOM): 

(1-2) using the lines of code or the function points 
of i projects we estimate the effort of the i-th 
project; 

(3-4) using lines of code or function points with 
effort of the i-th project we estimate the effort 
required for the next project (i+1)-th in the 
series sequence; 

(5-6) using lines of code or function points of the i-
th and (i+1)-th projects and effort of the i-th 
project we estimate the effort required for the 
(i+1)-th project. 

Each input method may vary the number of past 
samples per variable from 1 to 5 (i index). 
 
 
 
 
 

Table 1: Sliding window technique to determine the ANN 
input and output data supply method. (*where i=1…5). 

Input 
Output 
Method 

Inputs* Output* 

IOM-1 LOC(ti) EFF(ti) 
IOM-2 FP(ti) EFF(ti) 
IOM-3 LOC(ti), EFF(ti) EFF(ti+1) 
IOM-4 FP(ti), EFF(ti) EFF(ti+1) 
IOM-5 LOC(ti), LOC(ti+1), EFF(ti) EFF(ti+1) 
IOM-6 FP(ti), FP(ti+1), EFF(ti) EFF(ti+1) 

The best results obtained utilising the ANN 
model and various datasets are summarised in Table 
2. The first column refers to the dataset used, the 
second column to the input and output method 
(IOM) with which i data inputs are fed to the model, 
the third column refers to the ANN topology and the 
rest of the columns refer to the error metrics during 
the training and testing phase. The last two columns 
indicate the number of predicted projects that have 
the same sign tendency, in the sequence of the effort 
samples and the total percentage of the successful 
tendencies during testing. The figures in Table 2 
show that an ANN model deploying a mixture of 
architectures and input, output methods yields 
various accuracy levels. More specifically, the 
DESH`89 dataset achieves high prediction accuracy, 
with lowest MRE equal to 0.05 and CC equal to 1.0. 
The KEM`87 dataset also performs adequately well 
with relatively low error figures. The worst 
prediction performance is obtained with ALGAF`83 
and COKEM`87 datasets. These failures may be 
attributed to too few projects involved in the 
prediction in the first case, and to the creation of a 
heterogeneous dataset in the latter case. Finally, as 
the results suggest, the COC`81 and KEM`87 
datasets achieve adequately fit predictions and thus, 
we may claim that the method is able to approximate 
the actual development cost. Another observation is 
that the majority of the best yielded results employ a 
large number of internal neurons. Therefore, further 
investigation is needed with respect to different 
ANN topologies and IOM for the various datasets. 
To this end we resorted to using a hybrid scheme, 
combining ANN with GA, the latter attempting to 
evolve the near to optimal network topology and 
input/output schema that yields accurate predictions 
and has reasonably small size (i.e., number of 
neurons) so as to avoid overfitting. 

4.2 A Hybrid Model Approach 

The rationale behind this attempt was that the 
performance of ANN highly depends on the size, 
structure and connectivity of the network and results  
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Table 2: Best Experimental Results obtained with the ANN-model. 

DATASET 
INPUT 

OUTPUT 
METHOD 

ANN 
ARCHITECTURE 

TRAINING PHASE TESTING PHASE 
Sign(p) Sign(p) 

% MRE CC NRMSE MRE CC NRMSE 

COC`81 IOM-5 3-15-15-15-1 0.929 0.709 0.716 0.551 0.407 0.952 5/10 50.00 
COC`81 IOM-1 2-9-9-9-1 0.871 0.696 0.718 0.525 0.447 0.963 7/12 58.33 
KEM`87 IOM-1 1-15-15-15-1 0.494 0.759 0.774 0.256 0.878 0.830 2/3 66.67 
KEM`87 IOM-5 5-20-20-20-1 0.759 0.939 0.384 0.232 0.988 0.503 2/2 100.00 

COKEM`87 IOM-3 8-20-20-20-1 5.038 0.626 0.781 0.951 0.432 0.948 3/8 37.50 
COKEM`87 IOM-3 4-3-3-3-1 5.052 0.610 0.796 0.768 0.257 1.177 4/8 50.00 
ALGAF`83 IOM-6 5-3-3-3-1 0.371 0.873 0.527 1.142 0.817 0.649 3/4 75.00 
ALGAF`83 IOM-2 2-20-20-20-1 0.335 0.975 0.231 1.640 0.936 0.415 2/4 50.00 
DESH`89 IOM-4 4-9-9-9-1 0.298 0.935 0.355 0.481 0.970 0.247 17/20 85.00 
DESH`89 IOM-4 6-9-9-9-1 0.031 0.999 0.042 0.051 1.000 0.032 20/20 100.00 

may be further improved if the right parameters are 
found. Therefore, we applied a GA to investigate 
whether we can find the ideal network settings by 
means of a cycle of generations including candidate 
solutions that are pruned by the criterion ‘survival of 
the fittest’, meaning the best performing ANN. 

4.2.1 Model Description 

The first task for producing the hybrid model was to 
determine a type of encoding so as to express the 
potential solutions (binary string representing the 
ANN architecture, including inputs). The space of 
all feasible solutions (the set of solutions among 
which the desired solution resides) was called the 
search space. Each point in the search space 
represents one possible solution. Each possible 
solution was “marked” by its fitness value, which in 
our case was expressed in equation (7), minimizing 
both the MRE and the size of the network.  

sizeMRE
fitness

++
=

1
1  (7)

The GA looks for the best solution among a 
number of possible solutions represented by one 
point in the search space.  Searching for a solution is 
then equal to looking for some extreme value 
(minimum or maximum) in the search space. The 
GA developed included three types of operators: 
selection (roulette wheel), crossover (with rate equal 
to 0.25) and mutation (with rate equal to 0.01). 
Selection chooses members from the population of 
chromosomes proportionally to their fitness; and 
also elitism was used to ensure that the best member 
of each population was always selected for the new 
population. Crossover adapts the genotype of two 
parents by exchanging parts of them and creates a 
new chromosome with a new genotype. Crossover 
was performed by selecting a random gene along the 
length of the chromosomes and swapping all the 
genes after that point. Finally, the mutation operator  

 
simply changes a specific gene of a selected 
individual in order to create a new chromosome with 
a different genotype. 

4.2.2 Results 

This section presents and discusses the results 
obtained using the Hybrid model on the various 
available datasets. The best ANN architectures 
yielded are displayed in the third column of Table 3 
with the various error figures obtained both during 
the training and the testing phase. 

The main observation is that for some of the 
datasets the hybrid model optimised the ANN 
prediction accuracy (i.e., ALGAF`83), whereas for 
other datasets it performs adequately well in terms 
of generalisation (i.e., DESH`89). More specifically, 
the experiments show that the MRE is significantly 
lowered during testing in almost all the datasets, 
with KEM`87 being the only exception. The CC 
improves or remains at the same levels in most of 
the cases, whereas NRMSE deteriorates. The error 
figures show that in most of the cases the yielded 
architectures are consistent in that they improve the 
respective estimations, even though the training 
phase errors suggest that the ANN’s learning ability 
is reduced. Another observation is that we cannot 
suggest with confidence that this approach 
universally improves the performance levels as the 
yielded results are not consistent among the datasets, 
even though the hybrid models manage to 
generalise. It seems that while in some cases the 
ANNs presented high learning success (e.g., 
DESH`89, ALGAF`83, KEM`87) in other cases 
learning was quite poor (e.g., COC`81) as indicated 
in the training phases. The results indicate that the 
approach may be further improved, so that to 
improve the learning ability of the ANNs and obtain 
even better predictions. 
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Table 3: Hybrid model (coupling ANN and GA) results. 

DATASET INPUT OUTPUT 
METHOD 

YIELDED ANN 
ARCHITECTURE 

TRAINING PHASE TESTING PHASE 
MRE CC NRMSE MRE CC NRMSE 

COC`81 IOM-1 3-25-2-9-1 4.290 0.801 0.595 0.431 0.838 0.549 
COC`81 IOM-3 2-16-21-18-1 6.356 0.736 0.668 1.967 0.942 0.556 
COC`81 IOM-5 7-0-9-14-1 7.086 0.995 0.095 0.981 0.708 0.725 
KEM`87 IOM-1 2-20-14-2-1 6.6445Ε-005 1.000 1.8165Ε-005 0.572 -0.552 1.521 
KEM`87 IOM-3 2-11-4-5-1 4.5565Ε-006 1.000 1.735Ε-006 0.474 -0.500 1.593 
KEM`87 IOM-5 5-6-19-6-1 3.4593Ε-006 1.000 7.0407Ε-007 0.572 -0.551 1.521 

ALGAF`83 IOM-2 6-20-6-11-1 8.4427Ε-006 1.000 1.3176Ε-005 0.083 0.141 1.109 
ALGAF`83 IOM-4 6-3-7-3-1 0.004 1.000 0.004 0.113 0.061 1.075 
ALGAF`83 IOM-6 1-0-2-5-1 0.000 1.000 0.000 0.083 0.141 1.109 
DESH`89 IOM-2 3-28-12-14-1 1.332 0.651 0.776 0.047 0.663 0.777 
DESH`89 IOM-4 2-17-5-25-1 0.657 0.872 0.486 0.042 0.782 0.717 
DESH`89 IOM-6 3-2-26-3-1 0.914 0.657 0.747 0.124 0.374 0.890 

4.3 Comparison to a Classic 
Regression-based Approach 

In this section we present the results obtained from a 
simple Multi-Linear Regression (MLR) model so as 
to provide some comparative assessment of the 
models proposed thus far. The MLR model will 
assess how well the regression line approximates the 
real effort and it is built with the leave-one-out 
sampling testing technique. The assumption for this 
model is that the dependent variable (effort) is 
linearly related with the independent variable(s) 
(size and/or next effort). 

4.3.1 Model Description 

The MLR model is built by employing the yielded b 
coefficients from each of the IOM specified earlier 
with the leave-one-out technique, both during 
training and testing. According to equation (8) the 
model produces the slope of a line that best fits the 
data and then, during the testing phase we estimate 
the value of the dependent variable using the sliding-
window. We assessed the values of the predicted and 
actual effort calculated from the coefficients 
influencing the independent variables of size and 
effort in the regression equation with the 
performance metrics. 

exbxbby nn +⋅++⋅+= ...110  (8)

4.3.2 Results 

The MLR approach was tested only on the largest 
datasets, namely COC`81 and DESH`89 which 
yielded the best predictions with the ANN and thus a 
comparison to the ANN models will become 
feasible. The results of the MLR indicate average 
performance for both datasets with precision 
accuracy lower than the accuracy of both the 

 
approaches proposed in this work (simple and hybrid 
ANN). With the COC`81 dataset the yielded results 
were MRE 3.017, CC 0.647 and NRMSE 0.798 for 
the training, and 10.097, 0.011 and 3.029 for the 
testing phase. With the DESH`89 dataset MRE was 
equal to 1.035, CC 0.093, NRMSE 0.985 during 
training and 1.57, 0.112 and 1.032 respectively 
during testing. The main problem of the MLR 
method yielding mediocre results may be attributed 
mainly to the method’s dependence on the 
distribution and normality of the data points used 
and its inability to approximate unknown functions, 
as opposed to the ability demonstrated by the ANN 
and GA. 

5 CONCLUSIONS 

In the present work we attempted to study the 
potentials of developing a software cost model using 
computational intelligence techniques relying only 
on size and effort project data. The core of the model 
proposed consists of Artificial Neural Networks 
(ANN) trained and tested using project size metrics 
(Lines of Code, or, Function Points) and Effort, 
aiming to predict the next project effort in the series 
sequence as accurately as possible. Separate training 
and testing subsets were used and serial sampling 
with a sliding window propagated through the data 
to extract the projects fed to the models. Commonly, 
it is recognized that the yielded performance of an 
ANN model mainly depends on the architecture and 
parameter settings, and usually empirical rules are 
used to determine these settings. The problem was 
thus reduced to finding the ideal ANN architecture 
for formulating a reliable prediction model. The first 
experimental results indicated mediocre to high 
prediction success according to the dataset used. In 
addition, it became evident that there was need for 
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more extensive exploration of solutions in the search 
space of various topologies and input methods as the 
results obtained by the simple ANN model did not 
converge to a general solution. Therefore, in order to 
select a more suitable ANN architecture, we resorted 
to using Evolutionary Algorithms. More specifically, 
a Hybrid model was introduced consisting of ANN 
and Genetic Algorithms (GA). The latter evolved a 
population of networks to select the optimal 
architecture and inputs that provided the most 
accurate software cost predictions. In addition, a 
classic MLR model was utilised as benchmark so as 
to perform comparison of the results. 

Although the results of this work are at a 
preliminary stage it became evident that the ANN 
approach combined with a GA yields better 
estimates than the MLR model and that the 
technique is very promising. The main limitation of 
this method, as well as any other size-based 
approach, is that size estimates must be known in 
advance to provide accurate enough effort 
estimations, and, in addition, there is a large 
discrepancy between the actual and estimated size, 
especially when the estimation is made in the early 
project phases. Finally, the lack of a satisfactory 
volume of homogeneous data as well as of definition 
and measurement rules for size units such as LOC 
and FP result in uncertainty to the estimation 
process.  The software size is also affected by other 
factors that are not investigated by the models, such 
as programming language and platform, and in this 
work we emphasised only on coding effort which 
accounts for only a percentage of the total effort in 
software development. Another important limitation 
with the technologies used is that the ANNs are 
considered “black boxes” and the GA requires 
extensive space search which is very time-
consuming. Therefore, future research steps will 
concentrate on ways to improve performance; 
examples of which may be: (i) study of other factors 
affecting development effort and their 
interdependencies, (ii) further adjustment of the 
ANN and GA parameter settings, such as 
modification of the fitness function, (iii) 
improvement of the efficiency of the algorithms by 
testing more homogeneous or clustered data and, 
(iv) improvement of the quality of the data and use 
more recent datasets to achieve better convergence. 
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