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Abstract: Network Intrusion Detection Systems (NIDS) aim at preventing network attacks and unauthorised remote 
use of computers. More accurately, depending on the kind of attack it targets, an NIDS can be oriented to 
detect misuses (by defining all possible attacks) or anomalies (by modelling legitimate behaviour and 
detecting those that do not fit on that model). Still, since their problem knowledge is restricted to possible 
attacks, misuse detection fails to notice anomalies and vice versa. Against this, we present here ESIDE-
Depian, the first unified misuse and anomaly prevention system based on Bayesian Networks to analyse 
completely network packets, and the strategy to create a consistent knowledge model that integrates misuse 
and anomaly-based knowledge. Finally, we evaluate ESIDE-Depian against well-known and new attacks 
showing how it outperforms a well-established industrial NIDS. 

1 INTRODUCTION 

The Internet System Consortium estimates that, 
nowadays, more than 489 million computers are 
connected to the biggest network in the world 
(Internet System Consortium, 2007). Being part of 
such a vast community brings amazing possibilities 
but also worrying dangers. Against this record-
breaking growth (the same survey in July 2000 
yielded only 93 million computers) traditional 
passive measures for isolation and access control 
have been proved inadequate to dam the current 
flood of digital attacks and intrusion attempts.  

In this way, the area of Computer Security and, 
more accurately, Network Intrusion Detection 
Systems (NIDS) have been lately subject of 
increasing interest and research as suited answer 
against the mentioned threat. Specifically, a NIDS is 
a software in charge of distinguishing among 
legitimate and malicious network users. Moreover, 
due to the rising complexity and volume of the 
attacks, NIDS are performed in an automated 
manner, so the NIDS software monitors system 

usage to identify behaviour breaking the security 
policy.  

Based on their scope, NIDS can be divided into 
misuse or anomaly detectors. Initially, NIDS where 
conceived as misuse detectors. This is, they had a 
well-defined set of malicious behaviours and they 
just supervised the system to find those. Misuse 
Detection Systems are commonly characterized by a 
high accuracy in their decisions, as well as by an 
excellent throughput, since they are very good at 
detecting well-known attacks. Nevertheless, they 
also present an important flaw because they are not 
able to response against unknown attacks and, 
further, they require that an operator specifies the 
expert knowledge. In order to overcome this 
shortcoming, another strategy, known as anomaly 
detection, has been developed during the last decade. 
Anomaly Detection Systems model legitimate 
system usage in order to obtain afterwards a 
certainty measure of potential deviations from that 
normal profile. Each deviation that is found 
significant enough will be worth of being considered 
anomalous and notified to a human operator. This 
alarm can be analysed manually or processed 
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automatically either to filter intruder actions (in line 
with Intrusion Prevention paradigm), reconfigure the 
environment or collect audit information. Anomaly 
Detection Systems, however, cannot compete with 
Misuse Detection ones when it comes to detect well-
known attacks; therefore, each approach fails when 
it comes to the other’s area of expertise.  

Now, several paradigms have been used to 
develop diverse NIDS approaches (a detailed 
analysis of related work in this area can be found for 
instance in (Kabiri and Ghorbani, 2005)): Expert 
Systems (Alipio et al., 2003), Finite Automatons 
(Vigna et al., 2000), Rule Induction Systems 
(Kantzavelou and Katsikas, 1997), Neural Networks 
(Mukkamala et al., 2005), Intent Specification 
Languages (Doyle et al., 2001), Genetic Algorithms 
(Kim et al., 2005), Fuzzy Logic (Chavan et al., 
2004) Support Vector Machines (Mukkamala et al., 
2005), Intelligent Agent Systems (Helmer et al., 
2003) or Data-Mining-based approaches (Lazarevic 
et al., 2003). Still, none of them tries to combine 
anomaly and misuse detection and, fail when applied 
to either well-known or zero-day attacks. There is 
one exception in (Valdes and Skinner, 2000), but the 
analysis of network packets is too superficial (only 
headers) to yield any good results in real life. 
Moreover, few proposed models such as (Singhal 
and Jajodia, 2006; Brugger, 2004) add historical data 
neither for analysis nor for sequential adaptation of 
the knowledge representations models used for 
detection, so this information about the essence and 
the potential trends of the target system is not 
commonly considered, so as to, e.g., obtain a 
baseline profile of normal behaviour. 

Against this background, this paper advances the 
state of the art in two main ways. First, we present 
ESIDE-Depian (Intelligent Security Environment for 
Detection and Prevention of Network Intrusions), 
the first inherently unified Misuse and Anomaly 
Detector that analyses the whole network packet. 
Second, we detail a new methodology and 
knowledge representation model that allow the 
adaptive reasoning engine of ESIDE-Depian infer 
conclusions considering both Misuse and Anomaly 
Detection characteristic knowledge in an unified and 
homogeneous way. 

The remainder of the paper is structured as 
follows. Section 2 describes the general architecture 
of ESIDE-Depian, including the creation process of 
the knowledge model for each kind of Bayesian 
Experts used for Misuse Detection and the 
integration of all verdicts in one Naive Bayesian 
Network to assure a coherent outcome. Section 3 
presents the experiments carried out to evaluate 

ESIDE-Depian with real network traffic. Finally, 
Section 4 concludes and outlines the future work. 

2 ARCHITECTURE AND 
APPROACH 

The internal design of ESIDE-Depian is principally 
determined by its dual nature. Being both a misuse 
and anomaly detection system requires answering to 
sometimes clashing needs and demands. This is, it 
must be able to simultaneously offer efficient 
response against both well-known and zero-day 
attacks. In order to ease the way to this goal, ESIDE-
Depian has been conceived and deployed in a 
modular way that allows decomposing of the 
problem into several smaller units. Thereby, Snort (a 
rule-based state of the art Misuse Detection System 
(Roesch, 1999)), has been integrated to improve the 
training procedure to increase the accuracy of 
ESIDE-Depian. Following a strategy proven 
successful in this area (Alipio et al., 2003), the 
reasoning engine we present here is composed of a 
number of Bayesian experts working over a common 
knowledge model.  

The Bayesian experts must cover all possible 
areas where a menace may rise. In this way, there 
are 5 Bayesian experts in ESIDE-Depian, as follows: 
3 of them deal with packet headers of TCP, UDP, 
ICMP and IP network protocols, the so-called TCP-
IP, UDP-IP and ICMP-IP expert modules. A further 
one, the Connection Tracking Expert, analyses 
potential temporal dependencies between TCP 
network events and, finally, the Protocol Payload 
Expert in charge of the packet payload analysis. In 
order to obtain the knowledge model, each expert 
carries out separately a Snort-driven supervised 
learning process on its expertise area. Therefore, the 
final knowledge model is the sum of the individual 
ones obtained by each expert. Fig. 1 shows the 
general ESIDE-Depian architecture. 

The rest of this section is devoted to detail the 
creation and up-dating of the knowledge model for 
each kind of Bayesian expert (including the exact 
role of Snort in this process) and the way ESIDE-
Depian converges all experts’ verdicts. 

2.1 ESIDE-Depian Knowledge Model 
Generation Process 

The obtaining of the knowledge model in an 
automated manner can be achieved in an 
unsupervised or supervised way. 
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Figure 1: ESIDE-Depian General Architecture. 

Typically, unsupervised learning approaches 
don’t have into consideration expert knowledge 
about well-known attacks. They achieve their own 
decisions based on several mathematical 
representations of distance between observations 
from the target system, revealing themselves as ideal 
for performing Anomaly Detection. On the other 
hand, supervised learning models do use expert 
knowledge in their making of decisions, in the line 
of Misuse Detection paradigm, but usually present 
high-cost administrative requirements. Thus, both 
approaches present important advantages and several 
shortcomings. Being both ESIDE-Depian, it is 
necessary to set a balanced solution that enables to 
manage in an uniform way both kinds of knowledge. 
Therefore, ESIDE-Depian uses not only Snort 
information gathering capabilities, but also Snort’s 
decision-based labelling of network traffic. Thereby, 
the learning processes inside ESIDE-Depian can be 
considered as automatically-supervised Bayesian 
learning, divided into the following phases. Please 
note that this sequence only applies for the standard 
generation process followed by the Packet Header 
Parameter Analysis experts, (i.e. the TCP-IP, UDP-
IP and ICMP-IP expert modules): 

 Traffic Sample Obtaining. First we need to 
establish the information source in order to 
gather the sample. This set usually includes 
normal traffic (typically gathered from the 
network by sniffing, arp poisoning or so), as 
well as malicious traffic generated by the 
well-known arsenal of hacking tools such as 
(Metasploit, 2006), etc. Subsequently, the 

Snort Intrusion Detection System embedded in 
ESIDE-Depian adds labelling information 
regarding the legitimacy or malice of the 
network packets. Specifically, Snort’s main 
decision about a packet is added to the set of 
detection parameters, receiving the name of 
attack variable. In this way, it is possible to 
obtain a complete sample of evidences, 
including, in the formal aspect of the sample, 
both protocol fields and also Snort labelling 
information. Therefore, it combines 
knowledge about normal behaviour and also 
knowledge about well-known attacks, or, in 
other words, information necessary for Misuse 
Detection and for Anomaly Detection. 

 Structural Learning. The next step is devoted to 
define the operational model ESIDE-Depian 
should work within. With this goal in mind, 
we have to provide logical support for 
knowledge extracted from network traffic 
information. Packet parameters need to be 
related into a Bayesian structure of nodes and 
edges, in order to ease the later conclusion 
inference over this mentioned structure. In 
particular, the PC-Algorithm (Spirtes et al., 
2001) is used here to achieve the structure of 
causal and/or correlative relationships among 
given variables from data. In other words, the 
PC-Algorithm uses the traffic sample data to 
define the Bayesian model, representing the 
whole set of dependence and independence 
relationships among detection parameters. 
Due to its high requirements in terms of 
computational and temporal resources, this 
phase is usually performed in an off-line 
manner. 

 Parametric Learning. The knowledge model 
fixed so far is a qualitative one. Therefore, the 
following step is to apply parametric learning 
in order to obtain the quantitative model 
representing the strength of the collection of 
previously learned relationships, before the 
exploitation phase began. Specifically, 
ESIDE-Depian implements maximum 
likelihood estimate (Murphy, 2001) to achieve 
this goal. This method completes the Bayesian 
model obtained in the previous step by 
defining the quantitative description of the set 
of edges between parameters. This is, 
structural learning finds the structure of 
probability distribution functions among 
detection parameters, and parametric learning 
fills this structure with proper conditional 
probability values. 
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 Bayesian Inference. Next, every packet capture 
from the target communication infrastructure 
needs one value for the posterior probability 
of a badness variable, (i.e. the Snort label), 
given the set of observable packet detection 
parameters. So, we need an inference engine 
based on Bayesian evidence propagation. 
More accurately, we use the Lauritzen and 
Spiegelhalter method for conclusion inference 
over junction trees, provided it is slightly 
more efficient than any other in terms of 
response time (Castillo et al., 1997). Thereby, 
already working in real time, incoming 
packets are analysed by this method (with the 
basis of observable detection parameters 
obtained from each network packet) to define 
the later probability of the attack variable. The 
continuous probability value produced here 
represents the certainty that an evidence is 
good or bad. Generally, a threshold based 
alarm mechanism can be added in order to get 
a balance between false positive and negative 
rates, depending on the context. 

 Adaptation. Normally, the system operation 
does not keep a static on-going way, but 
usually presents more or less important 
deviations as a result of service installation or 
reconfiguration, deployment of new 
equipment, and so on. In order to keep the 
knowledge representation model updated with 
potential variations in the normal behaviour of 
the target system, ESIDE-Depian uses the 
general sequential/incremental maximum 
likelihood estimates (Murphy, 2001) (in a 
continuous or periodical way) in order to 
achieve continuous adaptation of the model to 
potential changes in the normal behaviour of 
traffic. 

2.2 Connection Tracking and Payload 
Analysis Bayesian Experts 
Knowledge Model Generation 

The Connection Tracking expert attends to potential 
temporal influence among network events within 
TCP-based protocols (Estevez-Tapiador et al., 
2003), and, therefore, it requires an structure that 
allows to include the concept of time (predecessor, 
successor) in its model. Similarly, the Payload 
Analysis expert, devoted to packet payload analysis, 
needs to model state transitions among symbols and 
tokens in the payload (following the strategy 
proposed in (Kruegel and Vigna, 2003)). Usually, 
Markov models are used in such contexts due to 

their capability to represent problems based on 
stochastic state transitions. Nevertheless, the 
Bayesian concept is even more suited since it not 
only includes representation of time (in an inherent 
manner), but also provides generalization of the 
classical Markov models adding features for 
complex characterization of states. Specifically, the 
Dynamic Bayesian Network (DBN) concept is 
commonly recognized as a superset of Hidden 
Markov Models (Ghahramani, 1998), and, among 
other capabilities, it can represent dependence and 
independence relationships between parameters 
within one common state (i.e. in the traditional static 
Bayesian style), and also within different 
chronological states.  

Thus, ESIDE-Depian implements a fixed two-
node DBN structure to emulate the Markov-Chain 
Model (with at least the same representational power 
and also the possibility to be extended in the future 
with further features) because full-exploded use of 
Bayesian concepts can remove several restrictions of 
Markov-based designs. For instance, it is not 
necessary to establish the first-instance structural 
learning process used by the packet header analysis 
experts since the structure is clear in beforehand. 

Moreover, according to (Estevez-Tapiador et al., 
2003; Kruegel and Vigna, 2003), the introduction of 
an artificial parameter may ease this kind of 
analysis. Respectively, the Connection Tracking 
expert defines an artificial detection parameter, 
named TCP-h-flags (which is based on an 
arithmetical combination of TCP flags) and the 
Payload Analysis expert uses the symbol and token 
(in fact, there are two Payload Analysis experts: one 
for token analysis and another for symbol analysis).  

Finally, traffic behaviour (and so TCP flags 
temporal transition patterns) as well as payload 
protocol lexical and syntactical patterns may differ 
substantially depending on the sort of service 
provided from each specific equipment (i.e. from 
each different IP address and from each specific 
TCP destination port). To this end, ESIDE-Depian 
uses a multi-instance schema, with several Dynamic 
Bayesian Networks, one for each combination of 
TCP destination address and port. Afterwards, in the 
exploitation phase, Bayesian inference can be 
performed from real-time incoming network 
packets. In this case, the a-priori fixed structure 
suggests the application of the expectation and 
maximization algorithm (Murphy, 2001), in order to 
calculate not the posterior probability of attack, but 
the probability which a single packet fits the learned 
model with. 
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2.3 Naive Bayesian Network of the 
Expert Modules 

Having different Bayesian modules is a two-fold 
strategy. On the one hand, the more specific 
expertise of each module allows them to deliver 
more accurate verdicts but, on the other hand, there 
must be a way to solve possible conflicting 
decisions. In other words, a unique measure must 
emerge from the diverse judgements.  

To this end, ESIDE-Depian presents a two-tiered 
schema where the first layer is composed of the 
results from the expert modules and the second layer 
includes only one class parameter: the most 
conservative response among those provided by 
Snort and the expert modules community (i.e. in 
order to prioritize the absence of false negatives in 
front of false positives).  Thus, both layers form, in 
fact, a Naive Bayesian Network (as shown in Fig. 1 
and Fig. 2). 

Such a Naive classifier (Castillo et al., 1997) has 
been proposed sometimes in Network Intrusion 
Detection, mostly for Anomaly Detection. This 
approach provides a good balance between 
representative power and performance, and also 
affords interesting flexibility capabilities which 
allow, for instance, ESIDE-Depian’s dynamical 
enabling and disabling of expert modules, in order to 
support heavy load conditions derived e.g. from 
denial of service attacks.  

Now, Naive Bayesian Network parameters 
should have a discrete nature which, depending on 
the expert, could not be the case. To remove this 
problem, ESIDE-Depian allows the using of the 
aforementioned set of administratively-configured 
threshold conditioning functions.  

Finally, the structure of the Naive Bayesian 
Network model is fixed in beforehand, assuming the 
existence of conditional independence hypothesis 
among every possible cause and the standing of 
dependency edges between these causes and the 
effect or class. Therefore, here is also not necessary 
to take into consideration any structural learning 
process for it; only sequential parametric learning 
must be performed, while the expert modules 
produce their packet classifying verdicts during their 
respective parametric learning stages.  

Once this step is accomplished, the inference of 
unified conclusions and the sequential adaptation of 
knowledge can be provided in the same way 
mentioned before. Fig. 2 details the individual 
knowledge models and how do they fit to conform 
the general one.  

3 EVALUATION 

In order to measure the performance of ESIDE-
Depian, we have designed two different kinds of 
experiments. In the first group, the network suffers 
well-known attacks (i.e. Misuse Detection) and in 
the second group, zero-day attacks (i.e. Anomaly 
Detection), putting each aspect of the double nature 
of ESIDE-Depian to the test. In both cases, the 
system was fed with a simulation of network traffic 
comprising more than 700.000 network packets that 
were sniffed during one-hour capture from a 
University network. The first experiment 
(corresponding to Misuse Detection) aimed to 
compare Snort and the Packet Header Parameters 
Analysis experts. To this end, Snort’s rule-set-based 
knowledge was used as the main reference for the 
labelling process, instantiated through Sneeze Snort-
stimulator (Snort, 2006). The sample analysed was a 
mixture of normal and poisoned traffic. Table 1 
details the results of this experiment.  

Table 1: Bayesian expert modules for TCP, UDP and 
ICMP header analysis results. 

Indicator TCP UDP ICMP 

Analyzed network packets 699.568 5.130 1.432 
Snort’s hits 38 0 450 
ESIDE-Depian’s hits 38 0 450 
Anomalous network packets 600 2 45 
False negatives 0 0 0 
Potential false positives rates 0,08% 0,03% 3,14% 

 
As it can be seen, the three experts achieved a 

100% rate of hitting success. Anyway, such results 
aren’t surprising, since ESIDE-Depian integrates 
Snort’s knowledge and if Snort is able to detect an 
attack, ESIDE-Depian should do so. Nevertheless, 
not only the number of hits is important; the number 
of anomalous packets detected reflects the level of 
integration between the anomaly and the misuse 
detection part of ESIDE-Depian. In fact, the latter 
can be highlighted as the most important 
achievement of ESIDE-Depian: detecting unusual 
packets preserving the misuse detection advantages 
at the same time. Concerning potential false rates, it 
is possible to observe that very good rates are 
reached for TCP and UDP protocols (according to 
the values defined in (Crothers, 2002) to be not 
human-operator-exhausting), but not so good for 
ICMP. Table 1 shows, however, a significant bias in 
the number of attacks introduced in the ICMP traffic 
sample (above 30%), and labelled as so by Snort; 
thus, it is not strange the slightly excessive rate of 
anomalous packets detected here by ESIDE-Depian.  
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Figure 2: ESIDE-Depian Final Knowledge Representation Model.

In the second experiment (also corresponding to 
misuse detection), the goal was to test the other 
expert modules (Connection Tracking and Payload 
Analysis). With this objective in mind, a set of 
attacks against a representation of popular services 
were fired through several hacking tools such as 
(Metasploit, 2006). The outcome of this test is 
summarized in Table 2.  

As we see, ESIDE-Depian prevailed in all cases 
with a 0% rate of false negatives and a 100% of 
hitting rate success. Still, not only Snort’s 
knowledge and normal traffic behaviour absorption 
was tested; the third experiment intended to assess 
ESIDE-Depian’s performance with zero-day attacks. 
With this idea in mind, a sample of artificial 
anomalies (Lee et al., 2001) was prepared with 
Snort’s rule set as basis and crafted (by means of the 

tool Packit) with slight variations aiming to avoid 
Snort’s detection (i.e. Zero-day attacks unnoticeable 
for misuse detection systems). Some of these attacks 
are detailed next. Table 3 shows the results of this 
experiment. 

Table 2: Bayesian expert modules for connection tracking 
and payload analysis results. 

Indicator Connection 
Tracking 

Symbol 
Analysi

s 

Token 
Analysis 

Analyzed network packets 226.428 2.676 2.676 
Attacks in the sample 29 139 19 
ESIDE-Depian’s hits 29 139 19 
Anomalous network packets 0 0 3 
False negatives 0 0 0 
Potential false positives rates 0,00% 0,00% 0,11% 
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Table 3: Example of Zero-Day attacks detected by ESIDE-
Depian and not by Snort. 

Protocol Artificial Network Anomaly Snort ESIDE 
Depian 

TCP packit -nnn -s 10.12.206.2 -F SFP  
       -d 10.10.10.100 -D 1023   

TCP packit –nnn -s 10.12.206.2 -F A  
       -d 10.10.10.100 -q 1958810375   

TCP packit –nnn -s 10.12.206.2  
       -d 10.10.10.100 –F SAF   

UDP 
packit -t udp -s 127.0.0.1 -o 0x10    
       -n 1 -T ttl -S 13352      
       -D 21763 -d 10.10.10.2 

  

UDP 
packit -t udp -s 127.0.0.1 -o 0x10 
       -n 0 -T ttl -S 13353  
       -D 21763 -d 10.10.10.2 

  

UDP 
packit -t udp -s 127.0.0.1 -o 0x50 
       -n 0 -T ttl -S 13352  
       -D 21763 -d 10.10.10.2    

  

ICMP packit -i eth0 -t icmp -n 666         
       -K 0 -s 3.3.3.3 -d 10.10.10.2   

ICMP packit -i eth0 -t icmp -K 18          
       -C 0 -d 10.10.10.2   

ICMP packit -i eth0 -t icmp -K 17  
       -C 0 -d 10.10.10.2   

 
Note that overcoming of Snort’s expert 

knowledge only has sense in those expert modules 
using this knowledge. This is, in protocol header 
specialized modules, because the semantics of 
Snort’s labelling doesn’t fit the morphology of 
payload and dynamic nature parameters. 

4 CONCLUSIONS AND FUTURE 
LINES 

As the use of Internet grows beyond all boundaries, 
the number of menaces rises to become subject of 
concern and increasing research. Against this, 
Network Intrusion Detection Systems monitor local 
networks to separate legitimate from dangerous 
behaviours. According to their capabilities and 
goals, NIDS are divided into Misuse Detection 
Systems (which aim to detect well-known attacks) 
and Anomaly Detection Systems (which aim to 
detect zero-day attacks). So far, no system to our 
knowledge combines advantages of both without 
any of their disadvantages. Moreover, the use of 
historical data for analysis or sequential adaptation is 
usually ignored, missing in this way the possibility 
of anticipating the behaviour of the target system. 

Our system addresses both needs. We present 
here ESIDE-Depian, a Bayesian-networks-based 
Misuse and Anomaly Detection system. Our 
approach integrates Snort as Misuse detector trainer 
so the Bayesian Network of five experts is able to 
react against both Misuse and Anomalies. The 
Bayesian Experts are devoted to the analysis of 
different network protocol aspects and obtain the 
common knowledge model by means of separated 
Snort-driven automated learning process. A naive 
Bayesian network integrates the results of the 
experts, all the partial verdicts achieved by them. 

Since ESIDE-Depian has passed the experiments 
brilliantly, it is possible to conclude that ESIDE-
Depian using of Bayesian Networking concepts 
allows to confirm an excellent basis for paradigm 
unifying Network Intrusion Detection, providing not 
only stable Misuse Detection but also effective 
Anomaly Detection capabilities, with one only 
flexible knowledge representation model and a well-
proofed inference and adaptation bunch of methods. 

On the other hand, the Bayesian approach also 
enables to implement powerful features over it, such 
as Dynamic-Bayesian-Network-based intrinsic full 
representation of time, in order to accomplish 
totally-characterised connection tracking and low- 
level chronological event correlation, or explanation 
tracking of the inferred cause-effect reasoning 
processes. Furthermore, contrary to other approaches 
such as Neural Networks, Bayesian networks allow 
administrative managing of inner information 
structures, so specific relationships among packet 
detection parameters and final conclusion can be 
explained, in a white-box manner. Moreover, it is 
not only possible to recover reasoning information, 
but also to act on both Bayesian network structures 
and conditional probability parameters, in order to 
adjust the whole behaviour of the Network Intrusion 
Detection System to special needs or configurations. 

Further, dynamic regulation of knowledge 
representation model can be accomplished by using 
the sensibility analysis proposed in (Castillo et al., 
1997), so as to avoid denial of service attacks, 
automatically enabling or disabling expert modules 
by means of one combined heuristic measure which 
considers specific throughputs and representative 
power. In addition, it is also possible to perform 
model optimization, to obtain the minimal set of 
representative parameters, and also the minimal set 
of edges among them, with the subsequent increase 
of the general performance.  

Approximate evidence propagation methods can 
also be applied in order to improve inference and 
adaptation time of response. Current expert models 
only consider exact inference, but it is possible to 
find methods which provide fast responses, with 
only a small and affordable loss of accuracy.  

Finally, Bayesian knowledge representation 
models present one further interesting capability in 
current Network Intrusion Detection state of art, the 
possibility to provide an ad-hoc method for NIDS 
evaluation. The Bayesian concept provides 
simulation of learned knowledge corresponding 
samples, so it is an ideal environment for artificial 
anomaly generation.  
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Future work will focus on further research on 
exploiting the aforementioned omni-directional 
inference capability of Bayesian networks to the 
prediction of the next event, as well as on comparing 
ESIDE-Depian to other cutting-edge Intrusion 
Detection Systems. 
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