
REALIZING WEB APPLICATION VULNERABILITY ANALYSIS
VIA AVDL

Ha-Thanh Le and Peter Kok Keong Loh
School of Computer Engineering, Nanyang Technological University, Block N4

Nanyang Avenue, 639798, Singapore

Keywords: Web application vulnerability, vulnerability description, AVDL, vulnerability analysis.

Abstract: Several vulnerability analysis techniques in web-based applications detect and report on different types of
vulnerabilities. However, no single technique provides a generic technology-independent handling of web-
based vulnerabilities. In this paper we present our experience with and experimental exemplification of
using the Application Vulnerability Description Language (AVDL) to realize a unified data model for
technology-independent vulnerability analysis of web applications. We also introduce an overview of a new
web vulnerability analysis framework. This work is part of a project that is funded by the Centre for
Strategic Infocomm Technologies, Ministry of Defence Singapore.

1 INTRODUCTION

The rapid rise of corporate web applications offers
abundant opportunities for e-businesses to flourish.
However, this also raises many security issues and
exacerbates the demand for practical customer-
friendly solutions (Raina 2004; Grossman 2007;
IBM 2007). Most existing approaches are
technology-specific and concentrate on solutions
based on the application layer and program code
(Static analyzers e.g., Pixy (Jovanovic, Kruegel et al.
2006), WebSSARI (Huang, Yu et al. 2004) and
PHP’s intrablock and intra/inter procedural 3-tier
architecture (Xie and Aiken 2006) scan Web
application source code for vulnerabilities, whereas
dynamic tools such as WAVES (Huang, Huang et al.
2003) and PHP’s taintedness tracking (Nguyen-
Tuong, Guarnieri et al. 2005) try to detect attack
while executing applications).

In this paper, we investigate the effectiveness of
using the Application Vulnerability Description
Language (AVDL) (OASIS 2007) to develop a
unified data model used in a technology-
independent, rule-base solution for vulnerability
analysis of web-based applications.

We review other works that relate to web-based
vulnerability analysis in section 2. In Section 3, we
present an overview of our approach. In section 4,
we present vulnerability analysis case studies with
two web scanners and AVDL as a vulnerability

description format. The paper concludes with
Section 5.

2 RELATED WORKS

2.1 Web-based Vulnerability
Taxonomies

For web applications, which are usually developed
using high-level declarative languages, the
vulnerabilities occur frequently in places where the
script-based algorithms interact with other systems
or components, such as databases, file systems,
operating systems, or the network (Dowd,
McDonald et al. 2006; Stamp 2006). In other words,
systems can be compromised via web technologies,
e.g. exploitation via a web script may start a security
breach. Many web vulnerability classes have also
been detected, classified and documented via
technology-specific scanners (Nguyen-Tuong,
Guarnieri et al. 2005; Dowd, McDonald et al. 2006;
Siddharth and Doshi 2006; Cova, Felmetsger et al.
2007; Grossman 2007; IBM 2007). A model of
vulnerability taxonomy such as (Bishop 1999),
(Bazaz and Arthur 2007) and (Berghe, Riordan et al.
2005) has been proposed, on which new analytical
methodologies may be designed and implemented.
Others only concentrate research on potential classes

259
Le H. and Kok Keong Loh P. (2008).
REALIZING WEB APPLICATION VULNERABILITY ANALYSIS VIA AVDL.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 259-265
DOI: 10.5220/0001696802590265
Copyright c© SciTePress

Table 1: Vulnerability Detection models and Analysis techniques.

Negative
approach

Match the models of known vulnerabilities against web-based applications to
identify instances of the modeled vulnerabilities

Detection
model

Positive
approach

Use model of expected behavior of application to analyze the application
behavior to identify abnormality caused by a security violation

Static
techniques

Provide set of pre-execution techniques for predicting dynamic properties of the
analyzed program

Analysis
technique

Dynamic
techniques

Use a series of checks to detect vulnerabilities and prevent attacks at run-time

of vulnerability: cross-site scripting (XSS)
(Jovanovic, Kruegel et al. 2006), SQL Injection
(Halfond, Viegas et al. 2006; Kals, Kirda et al. 2006;
Nguyen-Tuong, Guarnieri et al. 2005). Much
research work also focused on PHP or the web
scripting language (JSP, ASP).

2.2 Web-based Vulnerability Analysis

Several tools and techniques have been developed to
analyze vulnerabilities in web-based applications.
Cova et. al. (Cova, Felmetsger et al. 2007) classify
vulnerability analysis of web-based applications
according to detection models and analysis
techniques (Table 1).

More recent research proposed vulnerability
detection methods using static analysis schemes
(Huang, Yu et al. 2004; Livshits and Lam 2005;
Minamide 2005; Jovanovic, Kruegel et al. 2006; Xie
and Aiken 2006), Ghosh et. al. based on fault
injection (Ghosh, O'Connor et al. 1998) while
Halfond et. al. (Halfond, Orso et al. 2006) and
Nguyen-Tuong et. al. (Nguyen-Tuong, Guarnieri et
al. 2005) use tainting technique. Another positive
and dynamic methodology such as penetration
testing (Hurst 2007) forces anomalous program
states during application execution to observe
application behavior and infer the forensics of
potential vulnerabilities.

Several techniques are implemented in web
application scanners (Kals, Kirda et al. 2006; Fong
and Okun 2007). Scanner output can help to assess
the security of the web application. However, no
single scanner provides a technology-independent
coverage of possible vulnerabilities. An experiment
conducted by Suto (Suto 2007) on three commercial
scanners revealed that NTOSpider scans and covers
most of the vulnerabilities while other tools
AppScan (Watchfire) missed 88% while WebInspect
(SPIDynamics) missed 95% of the legitimate
vulnerabilities found by NTOSpider.

Several automatic tools are developed: Nguyen-
Tuong et. al. (Nguyen-Tuong, Guarnieri et al. 2005)
using precise tainting over information flow. On the
other hand, Woo et. al. (Woo, Alhazmi et al. 2006)
proposed a methodology that must work with web
browsers. In [29], the authors extended the VDM
model to AML vulnerability model for web
applications. Sets of vulnerability discovery data
were examined and fitted to a vulnerability
discovery model that will be used for projection of
both current and future vulnerabilities.

2.3 Web Vulnerability Description

Although there are many vulnerability analysis and
detection tools for web-based applications, none of
them provides a complete methodology to find more
vulnerabilities (Cova, Felmetsger et al. 2007).
Testers and QA team must rely on a combination of
tools and must understand different vulnerability
description formats consequently. However, tools
usually possess overlapping functionalities, raising
costs, lowering performance, incurring data surplus
and overheads in vulnerability analysis and
detection. While there are existing vulnerability
databases such as (SecurityFocus 2007), Bugtraq
(SecurityFocus 2007) and CVE (CVE 2007) focus
on the description of known vulnerabilities, J.
Steffan and M. Schumacher (Steffan and
Schumacher 2002) suggest a graph-based
collaborative attack modeling, which provides
meaningful knowledge sharing method with more
detail vulnerability description.

OASIS recommended using web Application
Vulnerability Description Language - AVDL
(OASIS 2004) "a standard XML format that allows
entities (such as applications, organizations, or
institutes) to communicate information regarding
web application vulnerabilities”. The other two are
Web Application Security standard – WAS and
VulnXML (OASIS 2007). Among these, AVDL is
expected to become the most common descriptive

ICEIS 2008 - International Conference on Enterprise Information Systems

260

Scanner_L1

L1_Output

Language-neutral Data framework
Generic Data Model

Reports

Scanner_L2

L2_Output

Scanner_L3

L3_Output

Scanner_L4

L4_Output

Scanner_Li

Li_Output

…

…

… HTML
(L1)

XML
(L2)

PHP
(L3)

AJAX
(L4)

Web
language (Li)

Front-end

Rule-based Inference/Diagnostic
Engine

Diagnostics

Figure 1: The framework for Web application vulnerability analysis.

notation which creates a secure web environment
that automates mundane security operations.

3 NEW VULNERABILITY
ANALYSIS MODEL

3.1 Analyzing Scanner Output

Many vulnerabilities are common among different
web technologies, the rest are particular for each of
them due to language characteristics, compile
process, executing methodology. The question is
how to detect vulnerabilities with least dependence
on development technologies and programming
languages. Our approach (Le and Loh 2007) is to
develop an analysis technique that would cover
vulnerabilities over multiple web-programming
technologies. We propose an approach comprising a
combination of vulnerability scanners to generate
output and categorization with a language-neutral
data model using appropriate mining techniques for
vulnerability data analysis and rule extraction and
classification. A functional layer with a rule-based
inference engine and diagnostics capability is
needed to generate reports for the users (Figure 1).

3.2 AVDL – Unified Vulnerability
Description

AVDL, VulnXML and WAS are XML-based
standards for describing web application security
properties and vulnerabilities in uniform way. In our
research, we use AVDL (OASIS 2004; OASIS
2004) as a vulnerability description format in the
data model. The report generated by the inference
engine will also be AVDL-compliant.

Many analysis techniques rely on the
input/output schema and process flow to detect the
abnormalities which is considered as potential
signatures of vulnerability. AVDL Traversal
Structure (TS) output provides information of user-
level transaction activity (Figure 2a). This structure
describes request/response pair for the round-trip
HTTP traversal to the server and contains sufficient
descriptive data (type of request, connection
methodology, targeted host, URI, protocol version of
request data, header structure) needed for
vulnerability analysis. The detected vulnerabilities
within the web application are described using
AVDL Vulnerability Probe Structure (VPS) (Figure
2b).

3.3 Front End

Commercially available static analysis tools and
utilities, shareware and freeware (Insecure.org 2007)
will be used here for extendability. These tools
enable detection coverage of a wider web
technology spectrum or even applications that are
cooperative. Outputs of these utilities/tools will be
mined to form a language-neutral data model that
serves as the data interface to a rule-based inference
engine. The design of the data model with this
approach is sufficiently generic to support future
rule-learning in an adaptive rule-based inference
engine. Code vulnerability and data integrity rules
based on standard vulnerability descriptions would
form the core of the prototype rule-base.

REALIZING WEB APPLICATION VULNERABILITY ANALYSIS VIA AVDL

261

3.4 Inference Engine

The design will incorporate a suitable combination
of forward and/or backward chaining techniques. As
a consideration for extension to support learning is
the incorporation of a fuzzy-neuro network to update
the rules after conductance of appropriate training.

This rule-based approach has the following
advantages:

a) It will have inherently lower execution
overheads compared to a run-time
monitor that is loaded together with the
suspect/compromised program.

b) It can also flexibly handle programs based
on an arbitrary programming language
and suspected malware/compromised
application(s).

c) It avoids the need to compress large
execution control traces and the use of
pattern matching techniques.

d) More tractable approach than defining a
high-level specification language.

4 CASE STUDIES

We conducted case study with Acunetix Cross Site
Scripting scanner (Free edition) (Acunetix 2007) and
IBM Rational AppScan evaluation version
(Watchfire 2007) to test whether web application
scanners can cover the same amount of
vulnerabilities and provide equivalent outputs. Then,
we used AVDL to provide a descriptive format to
specifying the architectural views of real
vulnerabilities. Because both scanners do not
support AVDL we make use of an AVDL schema to

describe the scanner outputs and evaluate if the
AVDL formatted outputs deliver the same effective
description as the original outputs.

The case study is performed on
http://demo.testfire.net/ website (Microsoft IIS 6.0
server, APS.NET) provided by IBM Rational
AppScan evaluation version. Acunetix Free edition
can only detect Cross Site Scripting vulnerabilities
on demo website.

Results from test cases show that IBM Rational
AppScan detects 79 Security issues in which 7 are
XSS vulnerabilities (Figure 3 in Appendix) while
Acunetix discovered 73 XSS vulnerabilities (Figure
4 in Appendix). However, Acunetix counts the total
instance of vulnerabilities according to variants of
each exploit was tested while AppScan counts on the
vulnerable positions in file which was scanned. The
number of variants of same vulnerability is also
different in two scanners. AppScan found
vulnerabilities in more files than Acunetix did. This
result (Table 2) may indicate that different scanners
do not cover same vulnerabilities and they do not
provide complete scanning solution even within the
same application. Moreover, the vulnerability
outputs of each of the two scanners are specific to
itself and do not provide equivalent and relevant
information.

Users often have a vague idea on how to
approach a vulnerability description when
referencing the output of more than one scanner. In
this experiment, we use AVDL schema (OASIS
2003) to describe the XSS vulnerability extracted
from scanners output. First, we list all files which
contain XSS vulnerabilities. Then, we compare and
select exploit variants together with detail
description of vulnerability. The result is a generic
XSS vulnerability description of tested website.

AVDL
Session

Traversal

Request

Response

AVDL
Session

Vulnerability probe

Request

Response

Vulnerability
Description

Summary
Classification
Target
Test Script
Remediation

(a)

(b)
Figure 2: AVDL: (a) Traversal structure and (b) Vulnerability Probe structure.

ICEIS 2008 - International Conference on Enterprise Information Systems

262

Table 2: XSS vulnerabilities detected.

 Vulnerable files Variants # vulnerabilities
Acunetix 4 73 73
AppScan 6 76 7

During the case study, we discovered that the use of
AVDL is highly effective in making the concept of
vulnerability concrete and tangible. With the aid of
AVDL, web application vulnerability is no longer an
abstract, overlapping and error-prone idea but a
tangible object of modeling and analytical
specification process.

5 CONCLUSIONS

Web applications having become popular, wide
spread and rapidly proliferated raises many security
issues and exacerbates the demand for practical
solutions. Manual security solutions targeted at these
vulnerabilities are language-dependent, type-
specific, labor-intensive, expensive and error-prone.
In this paper, we have evaluated the use of a
language-neutral data model as part of a new
framework for web application vulnerability
analysis. Our framework is extendible being based
on existing web application scanners and AVDL as a
uniform vulnerability description format.

At the current stage, we conduct case studies
with different web application scanners and
evaluating their outputs using AVDL. We continue
with the unified data model as a data interface for
the rule-based inference engine which incorporates
vulnerability analysis and prediction capability. In
due course, we hope to provide a commercializable
tool to web site administrators and web developers
to actively secure their applications.

ACKNOWLEDGEMENTS

This work is funded by Centre for Strategic
Infocomm Technologies, Ministry of Defence
Singapore.

REFERENCES

Acunetix. (2007). "Acunetix Cross Site Scripting
Scanner." from http://www.acunetix.com/cross-site-
scripting/scanner.htm.

Bazaz, A. and J. D. Arthur (2007). Towards A Taxonomy
of Vulnerabilities. Proceedings of the 40th Annual

Hawaii International Conference on System Sciences,
2007. HICSS 2007. Waikoloa, HI: 163a - 163a.

Berghe, C. V., J. Riordan, et al. (2005). A Vulnerability
Taxonomy Methodology applied to Web Services.

Bishop, M. (1999). Vulnerabilities Analysis. Web
proceedings of the 2nd International Workshop on
Recent Advances in Intrusion Detection (RAID'99),
West Lafayette, Indiana, USA.

Cova, M., V. Felmetsger, et al. (2007). Vulnerability
Analysis of Web-based Applications. Test and
Analysis of Web Services, Springer Berlin Heidelberg:
363-394.

CVE. (2007). "CVE - Common Vulnerabilities and
Exposures (CVE)." from http://cve.mitre.org/.

Dowd, M., J. McDonald, et al. (2006). Chapter
1,2,3,4,8,13,17,18. The Art of Software Security
Assessment: Identifying and Preventing Software
Vulnerabilities, Addison Wesley Professional.

Fong, E. and V. Okun (2007). Web Application Scanners:
Definitions and Functions. Proceedings of the 40th
Annual Hawaii International Conference on System
Sciences, 2007. HICSS'07, Waikoloa, HI, IEEE.

Ghosh, A. K., T. O'Connor, et al. (1998). An Automated
Approach for Identifying Potential Vulnerabilities in
Software. Proceeding of the 1998 IEEE Symposium on
Security and Privacy: 0104.

Grossman, J. (2007). WhiteHat Website Security Statistics
Report, WhiteHat Security.

Halfond, W. G. J., A. Orso, et al. (2006). Using positive
tainting and syntax-aware evaluation to counter SQL
injection attacks. Proceedings of the 14th ACM
SIGSOFT international symposium on Foundations of
software engineering SIGSOFT '06/FSE-14 Portland,
Oregon, USA, ACM Press: 175-185.

Halfond, W. G. J., J. Viegas, et al. (2006). A Classification
of SQL Injection Attacks and Countermeasures.
Proceedings of the IEEE International Symposium on
Secure Software Engineering (ISSSE 2006) Arlington,
VA, USA.

Huang, Y.-W., S.-K. Huang, et al. (2003). Web
application security assessment by fault injection and
behavior monitoring. Proceedings of the 12th
international conference on World Wide Web.
Budapest, Hungary, ACM Press: 148-159.

Huang, Y.-W., F. Yu, et al. (2004). Securing web
application code by static analysis and runtime
protection. Proceedings of the 13th international
conference on World Wide Web. New York, NY,
USA, ACM Press: 40-52.

Hurst, D. (2007, 09 Feb 2007). "Asking the Right
Question: Penetration Testing vs. Vulnerability
Analysis Tools, Which Is Best?" from http://
www.infosecwriters.com/texts.php?op=display&id=537.

IBM (2007). Cyber Attacks On The Rise: IBM 2007
Midyear Report, IBM Corporation. IBM Internet
Security Systems™ X-Force® Research and
Development.

Insecure.org. (2007). "Top 10 Web Vulnerability
Scanners." Retrieved September, 2007, from http://
sectools.org/web-scanners.html.

REALIZING WEB APPLICATION VULNERABILITY ANALYSIS VIA AVDL

263

Jovanovic, N., C. Kruegel, et al. (2006). Pixy: A Static
Analysis Tool for Detecting Web Application
Vulnerabilities (Short paper). Proceedings of the 2006
IEEE Symposium on Security and Privacy (S&P'06):
258-263.

Kals, S., E. Kirda, et al. (2006). SecuBat: A Web
Vulnerability Scanner. Proceedings of the 15th
international conference on World Wide Web (WWW
2006). Edinburgh, Scotland: 247 - 256.

Le, H. T. and P. K. K. Loh (2007). Unified Approach to
Vulnerability Analysis of Web Applications. The
International e-Conference on Computer Science 2007
(IeCCS 2007). T. E. Simos.

Livshits, B. and M. S. Lam (2005). Finding Security
Vulnerabilities in Java Applications with Static
Analysis. USENIX Security Symposium: 16.

Minamide, Y. (2005). Static approximation of
dynamically generated Web pages. Proceedings of the
14th International World Wide Web Conference.
Chiba, Japan ACM Press: 432 - 441.

Nguyen-Tuong, A., S. Guarnieri, et al. (2005).
Automatically Hardening Web Applications Using
Precise Tainting. Proceedings of the 20th IFIP
International Information Security Conference.
Makuhari-Messe, Chiba, Japan.

NT Objectives, I. (2007). "NTOSpider." Retrieved
October, 2007, from http://www.ntobjectives.com/
products/ntospider.php.

OASIS. (2003). "AVDL XML Schema." Retrieved
December, 2007, from http://www.oasis-
open.org/committees/download.php/5065/avdl.xsd.

OASIS (2004). Application Vulnerabilty Decription
Language v1.0.

OASIS (2004). Technical Overview of the Application
Vulnerability Description Language (AVDL) V1.0.
Version 1.0, 22 March 2004, OASIS Open.

OASIS. (2007). "Application Security Standards."
Retrieved November, 2007, from http://
xml.coverpages.org/appSecurity.html.

OASIS. (2007). "OASIS homepage." Retrieved 18
November 2007, from http://www.oasis-
open.org/home/index.php.

Raina, K. (2004). "Trends in Web Application Security."
Retrieved September, from http://
www.securityfocus.com/print/infocus/1809.

SecurityFocus. (2007). "Bugtraq Mailing list." Retrieved
31/10/2007, from http://www.securityfocus.com/archive/1.

SecurityFocus. (2007). "Vulnerabilities list." Retrieved
31/10/2007, from http://www.securityfocus.com/
vulnerabilities.

Siddharth, S. and P. Doshi. (2006, 1/11/2007). "Five
common Web application vulnerabilities." Retrieved
1/11/2007, from http://www.securityfocus.com/infocus/
1864.

SPIDynamics. (2007). "WebInspect." Retrieved
September, from http://www.spidynamics.com/
products/webinspect/.

Stamp, M. (2006). Information Security: Principles and
Practice, John Wiley & Sons.

Steffan, J. and M. Schumacher (2002). Collaborative
attack modeling. Proceedings of the 2002 ACM
symposium on Applied computing SAC 2002. Madrid,
Spain ACM: 253-259.

Suto, L. (2007, October, 2007). "Analyzing the
Effectiveness and Coverage of Web Application
Security Scanners." from http://ha.ckers.org/
blog/20071014/web-application-scanning-depth-statistics/.

Watchfire. (2007). "AppScan." Retrieved September 2007,
from http://www.watchfire.com/.

Woo, S.-W., O. H. Alhazmi, et al. (2006). An Analysis Of
The Vulnerability Disovery Process In Web Browsers.
10th IASTED International Conference SOFTWARE
ENGINEERING AND APPLICATIONS, Dallas, TX,
USA.

Xie, Y. and A. Aiken (2006). Static Detection of Security
Vulnerabilities in Scripting Languages. Proceedings of
the 15th USENIX Security Symposium (USENIX'06).
Vancouver, B.C., Canada: 179–192.

APPENDIX

Figure 3 and figure 4 are listed in this section due to
their over size.

ICEIS 2008 - International Conference on Enterprise Information Systems

264

Figure 3: AppScan result screen shot.

Figure 4: Acunetix Cross Site Scripting results screen shot.

REALIZING WEB APPLICATION VULNERABILITY ANALYSIS VIA AVDL

265

