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Abstract: This paper focuses on the development of a dynamic system model in unsupervised learning environment. 
This adaptive dynamic system consists of a set of energy functions which create valleys for representing 
clusters. Each valley represents a cluster of similar input patterns. The system includes a dynamic parameter 
for the clustering vigilance so that the cluster size or the quantizing resolution can be adaptive to the density 
of the input patterns. It also includes a factor for invoking competitive exclusion among the valleys; forcing 
only one label to be assigned to each cluster. Through several examples of different pattern clusters, it is 
shown that the model can successfully cluster these types of input patterns and form different sizes of 
clusters according to the size of the input patterns.   

1 INTRODUCTION 

As stated in (Jain, 1988), "Cluster analysis is the 
process of classifying objects into subsets that have 
meaning in the context of a particular problem." In 
other words, clustering is a process of grouping a set 
of unlabeled data. As shown in Figure 1, in general, 
clustering can be grouped into two types: non-
overlapping (exclusive) and overlapping 
(nonexclusive). In non-overlaping, each object input 
will be assigned to only one cluster whereas in 
overlapping an object can be assigned to more than 
one cluster. In this paper we only consider non-
overlapping clustering. Non-overlapping clustering 
could lie either intrinsic or extrinsic. In the intrinsic 
approach, also called unsupervised learning, a 
proximity matrix is the only criteria used. (Proximity 
matrix represents relationship between the objects; if 
the objects are patterns such matrix could represent 
the distance between the patterns). The extrinsic 
approach, also called supervised learning, in 
addition to proximity matrix, it also uses category 
labels on the objects. To notice the difference 
between these two approaches, let’s consider a set of 
data representing health condition of normal and 
overweight children. Using intrinsic approach, we 

can group these children based on these factors and 
then try to determine whether overweight plays a 
role in academic status. Taking an extrinsic 
approach allow us to study the way of separating 
normal and overweight children by considering their 
health conditions.  

We consider intrinsic approaches only. The 
intrinsic methods can be divided into five types: 
hierarchical, partitional, grid-based, artificial neural 
networks, and evolutionary (Jain, 1988; MacQueen, 
1967; Grossberg, 1976; and Kohonen, 1982).  

Comparison of these clustering methods is hard 
to do using simulation because of different 
implementation of the methods and the data that is 
used. It is also hard to do theoretically comparison 
of them because they are almost impossible to model 
mathematically (Jain, 1988).  Furthermore, the 
existing models impose architectural complexity 
and/or time complexity which prevent them of 
having real time response time. To overcome the 
real time mathematical modeling problems, we have 
proposed a new method which depends solely on 
ordinary differential equations (ODE) (Cheng, 2006). 
There is no need for IF/THEN logical statements. 
Therefore it can be easily implemented on the 
analog type devices to take advantage of high-speed 
electronics or photonics technologies.  
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Figure 1: Different Clustering Methods. 

The organization of this paper is as follows: 
Section 2 describes the adaptive dynamical model 
and devise an additional state for the dynamics of 
vigilance parameter λ , which plays an important 
role in our system; Section 3 illustrates the 
performance of the proposed model on several 
examples; Finally, Section 4 presents the conclusion. 

2 THE CLUSTERING MODEL  

The idea behind our model is to store input patterns 
on the surface of an energy function of a dynamic 
system.  The clusters are represented as valleys on 
the surface of an energy function. To demonstrate 
this concept, let’s consider an input U in one 
dimensional space as shown in Figure 2. Also let W 
be a representative of a cluster and is randomly 
placed on the surface of the energy function as 
shown in Figure 2 by a black dot. The energy 
function is represented by the black line, and the 
input U is denoted by a gray dot. As the dynamic 
progresses, the W moves toward U and forms a 
complete valley when it reaches to U. Similarly, in 
cases where there are more than one input pattern, 
the valleys are created for patterns that are close to 
each other.  

 
Figure 2: One-Dimensional Example of Process of 
Clustering forming by our model. 

Generally, considering an N dimensional space 
for input patterns, the V energy function is 
constructed to represent M valleys centered at 
locations ( )TNjjjj wwwW ...,,2,1= , for 1=j  to M, 

representing M clusters for P  input patterns.  The 
V energy function is represented as 
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where   • is the Euclidean norm, 

( )TNjjjj wwwW ...,,2,1= , for 1=j  to M, represent 
center of valley j, 

pU is the input pattern p, 
M is the number of clusters, and 
P is the number of input patterns. 
W and U refer to vectors when N >1. 

The constant γ encourages a number of valleys 
(clusters) to be formed and the factor λ (vigilance 
parameter) approximately reflects the radius of the 
generated valley.  

In order to invoke competitive exclusion among 
the valleys, the following competitive C-energy 
function is used 
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This function guarantees only one of the valleys 
encodes the patterns by achieving its minimal value. 

Based on the above two functions, the total R-
energy function is constructed, which is the 
summation of the V-energy function and C-energy 
function. 
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where ρ is a balancing factor. 
The jλ , j= 1,..,M, (vigilance parameter) 
approximately reflects the radius of the generated 
valley j. As jλ  gets smaller, valley j becomes wider. 

The ),,...,1( Mjx jp =
 
which has a value between 0 

and 1, represents the depth of valley j. As the 
distance between pU  and jW decreases, the value 

of jpx  moves toward 1 indicating jW  as a cluster 

for pU . This model is a gradient dynamical system 
with R; thus  
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where jpx  is explicitly given as 

Thus, the dynamics of the system can be expressed 
as: 
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Now let’s consider system state for the vigilance 
parameter λ so that the cluster size can be adaptive 
to the size of the input patterns; λ adjust  is a 
function which can be expressed as 
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Here, initialλ  is the initial value of λ , usually 
specified by the user.  

The λ dynamics can be derived as 
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3 CLUSTERING PERFORMANCE 

This section demonstrates simulation results of our 
model on two sets and four sets of 2D input patterns 
as shown in figures 3, 5, 7, and 10. In Figure 3, there 
are two sets of input patterns where each one 
includes10 inputs patterns. In Figure 5, there are two 
sets of input patterns, one contains 20 and the other 
contains10 inputs. In Figures 7 and 10, there are four 
sets of input patterns, containing 5, 10, 15 and 20 
inputs. Figures 3, 5, and 7 include 4 Ws while Figure 
10 includes 6 Ws. Input patterns are denoted as 
squares (gray color) and Ws represented as diamonds 
(black color). The coordinate one and coordinate 
two represent the first and second coordinates of 
input patterns (U) and weights (W). Each set of 
inputs are randomly generated having a value 
between 0 and 1, while weights are placed at some 
specific points. Figures 4(a), 6(a), 8(a), 9(a), and 
11(a) demonstrate tracking paths and final positions 
of the Ws in figures 3, 5, 7, 7 and 10, respectively.  
The small circles represent the final position of Ws; 
the ones with grey color represent the center of the 
clusters formed by winner Ws; and the ones with 
white color represent final position of  Ws, which 
cannot win the competition.  Figures 4(b), 6(b), 8(b), 
9(b), and 11(b) are the final contour images of the 
energy function for each of these cases.  The 
surfaces of these images represent the V-energy 
function in terms of different input values.   Each 
generated valley is represented by a set of nested 
rings with different shades representing different 
levels of valley’s depth (black represents the deepest 
point and the dark gray represents the surface).  
Figure 4 (a) demonstrates the set of obtained clusters 
for initial λ equal to 20, and γ equal to 2. As can be 
seen, two Ws win the competition to form clusters 
for each set of inputs and the other two Ws move 
away from the input patterns. As can be observed 
from the contour image in Figure 4 (b), two valleys 
are formed representing two different clusters.  
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Figure 3: Two clusters; there are 20 input patterns 
(represented by squares) and 4 Ws (represented by the 
diamonds) positioned at the bottom of the inputs. 
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(a)  Moving path and final position of Ws. 

 
(b) Contour representation. 

Figure 4: Final positions of Ws and contour representation 
of the V-energy function. 

Figure 5 (a) demonstrates the set of obtained clusters 
for initial λ equal to 20, and γ equal to 2. As can be 
seen, two Ws win the competition and form clusters. 
The other two Ws move away. In this simulation, λ 
values from initial value 20 change to 15.7, 351.5, 
260.2, and 29.3 for each of four Ws. Two winning 
Ws have two different λ values 15.7 and 29.3 since 
the two sets of input patterns have different size. The 
other two runaway Ws have λ values as 351.5 and 
260.2.  The bigger set of input patterns corresponds 
to smaller λ values (resulting bigger cluster), and the 
smaller set of input patterns corresponds to bigger λ 
values (resulting smaller cluster). 
Figure 8 (a) demonstrates the set of obtained clusters 
for initial λ equal to 20, and γ equal to 4. As can be 
seen, four Ws form clusters for each set of inputs. 
After simulation stops, λ values from initial value 20 
change to 10.1, 11.9, 29.7,   and 17.5 forming four 
different size clusters. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Dimension One (U & W)

D
im

en
si

on
 T

w
o 

(U
 &

 W
)

 
Figure 5:  Two clusters; there are 30 input patterns 
(represented by squares) and 4 Ws (represented by the 
diamonds) positioned at the bottom. 
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(a)  Moving path and final position of Ws. 

 
(b) Contour representation. 

Figure 6:  Final positions of Ws and contour representation 
of the V-energy function. 
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Figure 7: Four clusters; there are 50 input patterns 
(represented by squares) and 4 Ws (represented by the 
diamonds) positioned at the bottom. 
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              (a)  Moving path and final position of Ws.                 

 
(b) Contour representation. 

Figure 8: Final positions of Ws and contour representation 
of the V-energy function. 

Figure 9 (a) demonstrates the same experience as 
Figure 8 (a) except in this case the initial value for λ 
is set equal to 40. After simulation stops, λ values 
from initial value 40 change to 24.2, 30.0, 84.4 and 
43.8.   
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(a)  Moving path and final position of Ws 
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(b) Contour representation 

Figure 9: Final positions of Ws and contour representation 
of the V-energy function. 

Figure 11 (a) demonstrates the set of obtained 
clusters for initial λ equal to 25, and γ equal to 4. As 
can be seen, out of 6 Ws, four Ws win and form 
clusters. After simulation stops, λ values for these 
wining Ws become 13.3, 41.1, 15.9, and 23.4. 
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Figure 10: Four clusters; there are 50 input patterns 
(represented by squares) and 4 Ws (represented by the 
diamonds) positioned at the right lower corner. 
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(a) Moving path and final position of Ws.       

  
(b)  Contour representation. 

Figure 11: Final positions of Ws and contour 
representation of the V-energy function. 

4 CONCLUSIONS 

The main purpose of this paper was the introduction 
of a novel dynamical system for clustering which 
has potential for real-time device realization.  We 
also devise an additional system state for the 
vigilance parameter λ so that the cluster size or the 
quantizing resolution can be adaptive to the size of 
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the input patterns.  This reduces the burden of re-
tuning the vigilance parameter for a given input 
pattern set and it will also better represent the input 
pattern space. These discussions are furthermore 
visualized by simulation examples. As shown from 
simulation results, our dynamic system can 
successfully cluster different input patterns by 
dynamically adjust λ values according to the size of 
the input patterns in order to form different sizes of 
clusters.  In this system, self-organizing properties 
can be implicitly coded within the system trajectory 
structure using only ODE’s. These ODE’s can be 
directly implemented in hardware through feed-back 
networks by analog electronic or optical 
implementation.   
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