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Abstract: Test data generation approaches produce sequences of input values until they determine a set of test cases 
that can test adequately the program under testing. This paper focuses on a search-based test data generation 
algorithm. It proposes a dynamic software testing framework which employs a specially designed genetic 
algorithm and utilises both control flow and data flow graphs, the former as a code coverage tool, whereas 
the latter for extracting data flow paths, to determine near to optimum set of test cases according to data 
flow criteria. Experimental results carried out on a pool of standard benchmark programs demonstrate the 
high performance and efficiency of the proposed approach, which are significantly better compared to 
related search-based test data generation methods. 

1 INTRODUCTION 

As research focuses on software testing, studies 
show that this process is one of the key-attributes for 
delivery high quality end-systems within time and 
cost constraints. Existing challenges in this area 
involve the development of automatic software 
testing methods that can test, or generate the test 
data in order to test a program (McMinn, 2004). 
Testing adequacy, i.e. the effectiveness of a testing 
process on a program, as well as the testing 
termination criterion, i.e. when the testing process 
should be terminated, is determined by certain 
coverage criteria. Among these the most common 
are the control and data flow criteria, with the 
former being currently the most widely used 
(Kapfhammer, 2004).  

 
This paper extends previous work described in 

Sofokleous and Andreou (2007) where a dynamic 
testing framework based on control flow graphs has 
been proposed and demonstrated.  In this work the 
framework has been enhanced and now consists of a 
program analyser and a test case generator; the 
former analyses programs, creates control and data 
flow graphs, and evaluates test cases in terms of 
testing coverage.  The test cases generator utilises a 
specially designed GA to generate test cases with 
respect to a coverage criterion. The GA’s fitness 

function is guided by characteristics of the data flow 
graph of the program under test.  

 
The contribution of this work may be 

summarised to the following.  
• It proposes a new test data generation scheme 

based on evolutionary computing, which is 
simple, practical and fast. It integrates two 
systems for analysing the program under testing 
and determining the required set of test cases.  

• One of the novelties of this work is the 
integration of the control flow graph and data 
flow graphs. The program analyser utilises a 
dynamic code coverage module that determines 
the executed code directly on the control flow 
graph; in addition, it utilises the corresponding 
data flow graph with the related criteria for 
generating and evaluating test data. In this paper 
we use the All_DU_Paths data flow criterion.  

• The testing approach uses a novel mutation 
operator for mutating composite genes.  

• All these are encapsulated in a prototype proof 
of concept application, with which we 
performed experiments on a pool of standard 
programs. Preliminary results show that this 
approach outperforms other related studies 
which generate test data in relation to data flow 
criteria. 
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The rest of the paper is organised as follows. 
Section 2 presents related work including open 
challenges on the subject, section 3 describes the 
proposed testing framework and section 4 presents 
the experimental results. Section 5 concludes and 
suggests some steps for future work. 

2 RELATED RESEARCH 

Our approach focuses on dynamic software test 
cases generation, a search-based technique that uses 
feedback to adapt its behaviour and determine an 
adequate set of test cases according to a testing 
coverage criterion. Research literature classifies 
search based techniques to random, if it generates 
test data randomly, or dynamic, if it considers the 
results produced to adapt the testing processing 
(Korel, 1996; Michael et al., 2001). Studies have 
showed that random based-approaches, which are 
less resource consuming compared to dynamic ones, 
cannot determine efficiently the required test cases 
for complex programs (Korel, 1996).  

The most popular dynamic-based approaches 
utilise genetic algorithms for generating test cases, 
e.g. see Michael et al. (2001) and Michael and 
McGraw (1998). To evaluate the efficiency of the 
generated results, and guide the algorithm during 
searching,  researchers and practitioners use testing 
coverage criteria, the most popular of which are 
Control Flow and Data Flow based criteria 
(Kapfhammer, 2004; Zhu et al., 1997). Thus, 
dynamic testing systems repeat a testing cycle of 
three main steps: (i) generate n test cases, (ii)  utilise 
a coverage tool to evaluate each test case with 
respect to a coverage criterion and (iii) use the 
results to guide the next iteration. The use of a 
control flow criterion, e.g. statement or edge, implies 
analysis of the program’s structure, e.g. branches 
and loops, whereas for a data flow criterion, e.g. all-
edges and all-uses, it is necessary to examine the 
data part of the program, e.g. variable to value 
bounding relation and variable usage within the 
program. Examples of control flow criteria may be 
found in Andrews et al. (2006) and Zhao (2003). 
This paper focuses on test data generation using data 
flow criteria. The most relevant research studies 
explore the definition and usage of data flow 
coverage criteria which yield testing results 
comparable to those of control flow criteria, in terms 
of testing adequacy.   

Laski and Corel (1983) propose a strategy that 
uses the definition – use chain of a variable in order 
to guide the program testing. This approach defines 
two different criteria, which are both based on the 
observation that on any given node there might be 
uses of z variables, z>1, on which definition is made 
on previous z nodes. A definition at node-i is 
considered to be live at a node-j, if there are no 
redefinitions of this variable between node-i and 
node-j. The first criterion requires that each use of 
the variable in nodes where the definition is “live” is 
tested at least once. The second criterion requires 
that each elementary data context of every 
instruction is tested at least once. The elementary 
data context of an instruction k is defined as the set 
of definitions D(k) for the variables of k, such that 
there exists a path from the beginning of the 
program to k, where the definitions D(k) are live 
when the path reaches k. The authors also propose 
the modified version where each ordered elementary 
data context is tested at least once. A detailed 
presentation of the criteria can be found in Laski and 
Korel (1983), while improved definitions are given 
in Clarke et al. (1989).  

Ntafos also proposed a method for selecting 
paths, namely k-dr interactions (Ntafos, 1984; 
Ntafos, 1981). Interactions between different 
variables are captured in terms of alternating 
definitions and uses, called k-dr interactions. 
Variable x1 is defined at node n1 and then used in 
node n2. At node n2, variable x2 is defined and then 
used in node n3, where a third variable is defined. 
This sequence of definitions and uses can be noted  
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Note that between each definition and use for a 
variable, the path is def-clear. Such a sequence of k-
1 du-pairs, k>1, is called k-dr (definition/reach) 
(Ntafos, 1984). For the latter, it is necessary to test 
dr interactions of specific length. 

Rapps and Weyuker’s idea for path selection 
criteria is clearly derived from the set of criteria 
defined for control flow graphs and were originally 
defined in Rapps and Weyuker (1982). Starting by 
redefining all-paths, all-edges and all-nodes criteria, 
they extend the set of criteria by defining all-defs, 
all-uses, all-c-uses/some-p-uses, all-p-uses/some-c-
uses, all-p-uses and finally All-DU-Paths. The all-c-
uses criterion was added later on in the list of the 
aforementioned criteria (Frankl and Weyuker, 1988). 
The whole set is based on the definitions and uses of 
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the variable but uses are distinguished in c-uses and 
p-uses. The first term is used to define a use in a 
computation (at the right hand side of an 
assignment) and the second to define the use of the 
variable as a predicate in a Boolean calculation. The 
criteria are analytically presented in Clarke et al., 
(1989) and Rapps and Weyuker (1982). Rapps and 
Weyuker (1985) provide the “hierarchy” of the 
criteria with a robust proof. Data flow criteria were 
examined by different research teams from time to 
time, aiming at defining a partial order between all 
criteria or revealing their weaknesses and strengths, 
e.g. see Clarke et al. (1989) and Ntafos (1988)). 

This paper proposes a framework that uses 
genetic algorithms for searching the input space and 
determining a set of test cases for a program under 
testing. The genetic algorithm encodes the test 
inputs as genes and evolves test cases targeting 
specific paths. The paths are extracted according to a 
data flow graph criterion, the All-DU-Paths. Thus, 
by generating test data for each extracted path, the 
framework can achieve testing coverage according 
to the All-DU-Paths data flow graph criterion. This 
criterion will form the basis of the computational 
intelligent part of the testing framework and more 
specifically it will guide our genetic algorithm to 
evolve appropriate test data so as to achieve the 
highest possible coverage. This guidance is 
embedded in the fitness function of the algorithm as 
will be explained later on. In addition, in this paper 
we propose the use of intra-mutation genetic 
operator to mutate internally a gene, if it encodes a 
collection of items (e.g. an array) or an object.  

3 THE TESTING FRAMEWORK 

Our testing framework consists of a program 
analysis system, which analyses the code of a 
program under test and creates the control flow and 
data flow graphs, and a test case generation system 
that generates test cases using the program analysis 
system and based on each generation’s feedback. 
The design and usage of the two systems are 
explained in greater detail in the next sections.  

3.1 The Program Analysis System  

The program analysis system consists mainly of the 
static and dynamic analysis sub-systems; the former 
performs non-runtime analysis, i.e. without 
executing the program under study, while the latter 
simulates runtime behaviour, i.e. it simulates the 

execution of a program based on a pair of input 
values. 

The static module parses Java code, e.g. a class, 
and creates code representations, such as control 
flow and data flow graphs. Currently, this module 
first parses the program under test, then uses a 
module to visit each block of the program and build 
the control flow graphs, a graph for each method.  A 
control flow graph uses nodes and edges to represent 
the statement and the flow of the program code, 
respectively. However, a control flow graph captures 
only the flow of a method and each call to another 
method is shown as a call to a black-box, i.e. it takes 
input and provides output, which can be expanded 
upon request to another control flow graph. Then, 
each control flow graph is used to build its 
respective data flow graph, which presents the data 
flow and statements using nodes and edges, 
respectively.  

The dynamic analysis sub-system is mainly 
responsible for the runtime evaluation of the 
program code. Currently, this sub-system employs a 
dynamic code coverage module, which, compared to 
other code coverage tools, is able to determine the 
code coverage directly on the control flow graph, i.e. 
without using the program code. Specifically, using 
a pair of input values it can simulate the execution of 
the program under testing; thus, by evaluating the 
expressions of each vertex and following the 
directed edges, it can determine the executed code. 
The executed code is illustrated graphically on the 
control flow graph. In addition to the executed code, 
by selecting a path, the code coverage can determine 
how close a test case is, to executing this path. This 
allows the testing process to perform focused 
searching as we will see later on.   

The program analysis system advertises its 
functionality through an API, which can be used by 
other systems, such as the test case generation 
system. Such systems can utilise the program 
analysis system to obtain program information (e.g. 
variables types and usage, scope of variables), 
determine part of the code on a code representation 
(e.g. the control flow or data flow graphs), determine 
the coverage for a pair of input values, etc. In this 
paper, the test case generation system utilises the 
control flow-based code coverage module alongside 
with the data flow graph in order to assess the 
testing coverage of the program under test with 
respect to the All-DU-Paths.  
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3.2 The Test Cases Generation System 

The test data generation system houses a specially 
designed genetic algorithm, which, with the aid of 
the program analysis system, can determine a near to 
optimum set of test cases based on a certain 
coverage criterion.  

Initially, the program analysis system analyses 
the program under testing: it parses the program, 
determines the units of testing, for each of which it 
creates a control flow graph and a data flow graph 
(Sofokleous and Andreou, 2007; Sofokleous et al., 
2006). Focusing on each testing unit, the test data 
generation system uses the data flow graph to extract 
the All-DU-Paths, each representing a target to be 
tested. Then, the algorithm visits the Ith target path 
denoted as IP , initially I=1, and initiates the genetic 
algorithm (GA); the GA aims to produce a test case 
that can exercise each node in path IP .  

GAs have been widely used as optimization 
techniques. By maintaining and evolving a 
population of candidate solutions, GAs may 
determine a near to optimal solution. The evolution 
takes place through generations by mimicking 
natural evolution, that is, through crossover and 
mutation of each generation’s population. The 
fitness of each individual solution is calculated using 
special designed functions which capture the 
optimization constraint of each problem. GAs are 
used when the search input is huge and therefore 
evaluating each solution one by one is not feasible. 
Thus, instead of evaluating every solution in the 
search space, GAs’ design allows the direction to the 
optimal solution by only evaluating samples of the 
solution space. A value reflects how close an 
individual solution is to the optimum one; another 
advantage of GAs is that they allow evaluating the 
solution with respect to the rest of the population, 
i.e. the value assigned to each solution depends on 
its content and on what are the rest of the solutions 
in the set. This paper uses GAs to address the 
problem of generating test cases, a problem that 
encounters similar challenges to the aforementioned. 
For example, in our case the search space, which is 
the domain of the input space, is huge and therefore 
GA can assist in evaluating only a sample of the 
domain space and directing the search to a near to 
optimal solution.   

In this paper, a GA chromosome describes a test 
case and a gene encodes an input parameter of the 
testing unit. For example, if a method has three input 

parameters, say x, y and z, then each chromosome 
will have three genes, where each gene will encode 
one of these parameters. The design of the 
chromosome is illustrated in figure 1. A gene, which 
is implemented as a data structure, includes the type 
of the input variable and the initial value (input 
value). In addition, each chromosome’s fitness value 
reflects the value of the test case it offers, which is 
described in the following paragraphs.  

 
Figure 1: The Chromosome Design. 

The fitness function is expressed as follows: 

   ( )( , ) #K I exec jf C P nodes dist node= +    (1) 

where kC  is a chromosome that contains the 

KTC  test case, # execnodes  is the number of 

exercised nodes with respect to KTC , and 

( ) 0jdist node =  if KTC exercises every node of 

IP , otherwise ( )0 1jdist node< <  if using KTC  

cannot pass jnode and hence this value describes 

how close KTC  is to pass jnode . Part of our 
encoding scheme resembles the one reported in 
Michael et al. (2001); the authors of this study 
evaluate their chromosomes using the distance 
approach but only using the control flow graph. Our 
main differentiation, however, is that the searching 
and evaluation takes into account not only the 
control flow graph but also each path of the data 
flow graph. This way the search of a test case for a 
target path is more focused as it targets the nodes of 
a path and hence it is not biased by the 
chromosomes that can exercise nodes of other paths.  

To evaluate chromosome kC , GA passes its 

content, i.e. test case KTC , to the coverage module. 
The coverage module, which runs dynamically on 
the control flow graph, determines the executed 
control flow nodes, say CFGN . Suppose the data 

flow path IP  is the target path, then # execnodes is 

the number of IP  nodes which have been executed 
on the control flow graph, i.e. 
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CFG# Nexec Inodes P= I . If IP  consists of n 

nodes, n>1, and  # execnodes n< , it means that 

KTC covered only partially the path and that there is 
one or more predicate conditions at another node, 
e.g. at jnode , that prohibits the execution flow from 

traversing from jnode to some of its successor 
nodes. Thus, to direct the search towards the right 
test case that can satisfy jnode ’s condition(s), we 

add an extra value, i.e. ( )jdist node , the of which 

role is twofold: (i) to show how good KTC  is 
compared to the rest of the chromosomes that failed 
at node jnode , and (ii) to show how close KTC  is 

for successfully traversing jnode .  For example, 

x y> is the condition of jnode  that has to be 
evaluated to false then  

( ) - ,    
0,        j

x y if x y
dist node

if x y
>⎧

= ⎨ ≤⎩
            (2) 

Thus, the distance is progressively reduced as x  
approaches y , and becomes equal to zero if its value 
becomes equal or lower than y  as it evaluates the 
condition ( )x y> to the desired value.  

At each generation, the population is evolved by 
repeating a cycle of evaluating the population, 
selecting a pool of solutions (with respect to the 
evaluation results), and applying genetic operations, 
such as the mutation and crossover, on the selected 
pool of solutions. The crossover operation selects 
two chromosomes and swaps internal parts cut at a 
selected crossover point and produces offspring 
chromosomes. Offspring chromosomes are added to 
the list of chromosomes that pass to the next 
generation. Likewise, mutation operation mutates a 
gene: if a chromosome is selected for mutation, then 
the algorithm selects one or more genes to be 
replaced with new genes. A common mutation 
operation generates a new gene as a clone of the 
selected gene with new random values. In this paper, 
for primitive types, such as integer and float,  the 
mutation operation generates the new values using a 
stepwise approach, e.g. the new value of a variable 
is (min ,max )x random V V± , where x is the 
current value and (min ,max )random V V  

returns a number in the range defined by a minimum 
and a maximum value specific for that variable .  
The algorithm uses a crossover and mutation 
probability that define the likelihood that a 
chromosome is selected for crossover and mutation, 
respectively, and a mutation step probability which 
swaps between small mutation steps (e.g. 
min 2V = , max 2V = ) and large steps (e.g. 
minV = ∞ , maxV = ∞ ).  

As discussed above, a gene is an input variable 
while a chromosome is a set of genes and therefore 
it encodes a complete test case. A parameter can be 
of a primitive type, such as integer or float, an array 
or an object. Most of the test case generation 
approaches use input variables of either primitive 
types (integers or/and floats) or of arrays of 
primitive types (array of integers/floats). Thus, 
usually a gene encodes a primitive type, and in some 
cases, an array. However, program flow in the latter 
case depends not only on the values of the array but 
also on its size. A conventional mutation operator 
replaces the entire array with a new one; in this 
paper we propose a new type of mutation operator, 
which can act internally on composite genes. Thus, 
instead of only mutating the entire gene, the new 
operator may select and mutate one or more internal 
elements of the gene (see figure 2). For example, if a 
gene encodes an array of integers, then the mutation 
can either mutate the whole gene, which implies a 
new array (size and values of the array may vary), or 
mutate only a specific value of the array, which 
leaves the size of the array and the rest of the values  
  

 
Figure 2: Inner Mutation for composite Genes. 
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unchanged. For this operation we use the mutation-
switch probability rate which determines if the 
mutation will mutate the entire gene or part of the 
gene, while for the latter we use an additional 
probability to determine the part of the gene to be 
mutated.  

Figure 3 shows the proof of concept prototype 
application, which consists of the program analysis 
system, the test case generation system and a 
graphical user interface with which a user can set the 
configuration parameters and interact with the 
control flow and data flow graphs. Initially, the user 
activates the program analysis system for a program 
under testing; then the user can switch between the 
control flow graph and the data flow graph. 
Selecting to generate test cases, a pop-up dialog 
requests the parameters pertinent to the testing 
process; this includes the selection of a testing 
coverage criterion (e.g. control flow or data flow 
criteria) and the definition of the population size, the 
probabilities of the operators (mutation rate, 
crossover rate, the mutation step rate, the rate for 
switching between inner and outer mutation, etc). 
Also the selection operator (tournament or Roulette 
Wheel) is defined here, along with the maximum 
number of generations. Then, the algorithm 
generates test cases until it either achieves full 
coverage according to the All-DU-Paths criterion or 
reaches the maximum number of generations. The 
selected test cases are presented in a grid, whereas 
selecting a test case from the grid, triggers the 
graphical depiction of executed nodes (it does so by 
using a different colour) on the control flow graph.  

 
Figure 3: Prototype Application. 

 

4 EXPERIMENTAL RESULTS 

We evaluated the performance of the proposed 
framework on a pool of standard programs, which 
have been also used as benchmarks by other testing 
methods, most of which utilise on control flow graph 
criteria, e.g. see Michael et al. (2001). This pool of 
programs includes the Binary Search, the Bubble 
Sort, the Insertion Sort, the Quadratic formula 
solving, the Triangle Classification and the factorial 
program. Based on the best results of a preliminary 
empirical investigation, we set the GA’s population 
size equal to 100 chromosomes, the probabilities of 
crossover between 0.40 and 0.50, of mutation 
between 0.05 and 0.15, of switch-mutation step 
switching to 0.50, and the maximum generation 
number to 2000. The Roulette Wheel was defined as 
the selection operator and also the feature of elitism 
was activated, that is, the algorithm always passes 
the best chromosome unchangeable to the next 
generation.  

Basically the testing system invokes a new GA for 
each path extracted according to the All-DU-Paths 
data flow criterion. Thus, the algorithm terminates 
when all GAs terminate, where a GA terminates 
either when it determines a solution for its objective 
(i.e. a test case that can cover the target path) or 
when it reaches the maximum number for 
generations. Table 1 compares the coverage ability 
of four testing generation algorithms applied on 6 
standard programs. The algorithms are: the random, 
the gradient decent, a standard genetic algorithm 
which calculates the fitness function as a function of 
the executed nodes on the complete control flow 
graph and our approach as described in this paper. 
The results show that our approach can achieve full 
coverage for all of the programs tested, while the 
rest of the algorithms present weakness mostly in the 
quadratic formula and the triangle classification, 
with the best results confined to achieving less than 
90% coverage.  

Table 1: Testing Coverage Comparison of test data 
generation algorithms on a pool of standard programs.   

    Algorithm 
 
Program                  

Rand
om 

Gradien
t Decent GA-1 Our 

Approach 
Binary Search 78 100 77 100 
Bubble Sort 100 100 100 100 
Insertion Sort 100 100 100 100 
Quadratic 
Formula 74 70 73 100 

Triangle 
Classification 85 75 85 100 

Factorial 100 100 100 100 
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Figure 4: Performance over time. 

Table 2 presents experiments conducted on a set of 
Java programs varying in size and complexity.  The 
complexity is determined based on conditions, e.g. 
complexity is high (H) if there are conditions  
consisting of three or more predicates, medium (M) 
if predicates are only two, and simple (S) denotes 
conditions with only one predicate. Table 2 
describes LOC (lines of code), #TC (the size of the 
return set of test cases), the complexity of the 
program, the testing coverage in relation to the All-
DU-Paths data flow criterion and the number of 
runs, where a run is  the simulation of  a test case  so  

Table 2: Empirical results on a pool of sample programs 
varying in both size and complexity. 

ID LOC # TC Complexity Coverage #Runs 
1 20 2 S 100% 2000 
2 20 4 M 100% 2000 
3 20 4 H 100% 2000 
4 50 4 S 100% 2000 
5 50 8 M 100% 2000 
6 100 7 S 100% 2000 
7 100 7 S 100% 2000 
8 250 9 M 100% 3500 
9 250 10 M 100% 6400 

10 500 12 S 100% 12400 
11 1000 15 M 94% 16300 
12 1500 23 M 90% 19500 

as to determine its coverage. It is evident that the 
proposed approach is highly successful even in cases 
with large programs of considerable complexity. 

Figure 4 presents a graphical comparison of our 
approach against the random algorithm on a 
randomly generated program of 2000 LOC. The 
figure shows performance over time, where 
performance is measured by the corresponding 
testing coverage percentage and time is shown as a 
number of runs.  

The preliminary results reported show that the 
testing framework is efficient and capable of testing 
programs with respect to data flow criteria. 

Compared to other testing approaches, such as 
the random and the conventional usage of genetic 
algorithm (e.g. using the complete control flow 
graph for evaluating test cases and directing the 
search), our proposition can achieve better coverage, 
in shorter execution time and can test more  complex 
programs.  

5 CONCLUSIONS 

This paper described a search based test case 
generation approach which uses both the control 
flow and data flow graphs of a program under test  
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for searching and determining a near to optimal set 
of test cases according to the data flow criterion. 
Based on previous work, we extended a test case 
generation system by integrating and exploiting the 
functionality of the two graphs. Control flow graph 
assists in dynamic code coverage, i.e. determines 
executed code on the control flow on the fly. Data 
flow graphs assist in extracting the data flow paths 
according to the All_DU_Paths data flow criterion. 
A test case generator uses the control flow graph to 
identify the executed part of an All_DU_Path and 
evaluate the test case. The test case generator 
employs a genetic algorithm which uses the 
feedback to adapt its behaviour and hence to come 
closer to the appropriate set of test cases. In this 
work, we also addressed the challenge of the 
composite gene mutation and we proposed the 
switch-mutation operation, which can mutate not 
only the gene (i.e. a variable of the test case) as a 
complete unit but also an element of the gene (i.e. an 
element of an array which is treated as an input 
variable). Experimental results revealed the 
efficiency of our approach over a pool of standard 
programs. These results indicated better 
performance compared to similar studies, both in 
terms of testing coverage and execution time, the 
latter being calculated in terms of evaluation runs. 

Currently we are carrying out more experiments 
with larger and more complex programs which can 
assess the performance of our framework in more 
realistic environments. Future work will consider the 
extension of the framework to support control flow 
graph slicing so as to identify faulty parts of the 
code. Future work will consider the modification of 
the new mutation operator to support composite 
genes of objects, i.e. when one or more objects are 
given as input variables to a testing unit. In this case, 
the test case generator may need to exercise the 
following: (i) the object itself, e.g.  by generating a 
new object, (ii) the state of the object, e.g. by calling 
some methods of the object before assigning it to the 
gene and (iii) a descendent object (following 
heritage tree) and hence the late binding, by creating 
an object of a sub-class and up-casting it to the 
target object. Finally, we plan to investigate the 
incorporation of a new type of graph which will be 
able to capture both the control flow graph and the 
object oriented features.  
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