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Abstract: Tree pattern matching is one of the most fundamental tasks for XML query processing. Prior work has 
typically decomposed the tree pattern into binary structural (parent-child and ancestor-descendent) 
relationships or paths, and then stitch together these basic matches by join operations. In this paper, we 
propose a new algorithm that explores both the document tree and the twig pattern in a bottom-up way and 
show that the join operation can be completely avoided. The new algorithm runs in O(|T|⋅|Q|) time and 
O(|Q|⋅leafT) space, where T and Q are the document tree and the tree pattern query, respectively; and leafT 
represents the number of leaf nodes in T. 

1 INTRODUCTION 

In XML, data is represented as a tree; associated 
with each node of the tree is an element type from a 
finite alphabet ∑. The children of a node are ordered 
from left to right, and represent the content (i.e., list 
of subelements) of that element.  
To abstract from existing query languages for XML 
(e.g. XPath, XQuery, XML-QL, and Quilt), we 
express queries as twig patterns (or say, tree 
patterns) where nodes are types from ∑ ∪ {*} (* is a 
wildcard, matching any node type) and string values, 
and edges are parent-child or ancestor-descendant 
relationships. As an example, consider the query tree 
shown in Fig. 1, which asks for any node of type b 
(node 2) that is a child of some node of type a (node 
1). In addition, the b type (node 2) is the parent of 
some c type (node 4) and an ancestor of some d type 
(node 5). Type b (node 3) can also be the parent of 
some e type (node 7). The query corresponds to the 
following XPath expression: 
 a[b[c and //d]]/b[c and e//d].  

In this figure, there are two kinds of edges: child 
edges (c-edges) for parent-child relationships, and 
descendant edges (d-edges) for ancestor-descendant 
relationships. A c-edge from node v to node u is 
denoted by v → u in the text, and represented by a 
single arc; u is called a c-child of v. A d-edge is 
denoted v ⇒ u in the text, and represented by a  
double arc; u is called a d-child of u. 
 

 
Figure 1: A query tree. 

Definition 1. An embedding of a tree pattern Q into 
an XML document T is a mapping f: Q → T, from 
the nodes of Q to the nodes of T, which satisfies the 
following conditions: 
(i) Preserve node type: For each u ∈ Q, u and f(u) 

are of the same type. (or more generally, u’s 
node test is satisfied by f(u).) 

(ii) Preserve c/d-child relationships: If u → v in Q, 
then f(v) is a child of f(u) in T; if u ⇒ v in Q, 
then f(v) is a descendant of f(u) in T. 

If there exits a mapping from Q into T, we say, Q 
can be imbedded into T, or say, T contains Q. In 
addition, if label(T’s root) = label(Q’s root), we say 
that the embedding is root-preserving. 

As an example, see the document tree and the 
tree pattern query shown in Fig. 2(a).  

There exits a mapping from Q to T as illustrated 
by the dashed lines, by which each node of Q is 
mapped to a different node of T. However, 
according to the definition, an embedding could map 
several nodes of Q (of the same type) to the same 
node of T, as shown in Fig. 2(b), by which nodes q2 
and q5 in Q are mapped onto a single node v2 in T, 
and q3 and q4 are mapped onto a single node v3 in T. 
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Figure 2: Illustration for tree embedding. 

For the purpose of query evaluation, either of the 
mappings is recognized as a tree embedding. 

In fact, almost all the existing strategies are 
designed to work in this way. 
In this paper, we discuss a new algorithm, which 
works in a bottom-up way and shows that the join or 
join-like operations can be completely avoided. The 
algorithm works in O(|T|⋅|Q|) time and O(|Q|⋅leafT) 
space, where leafQ is the number of the leaf nodes of 
Q. 

The remainder of the paper is organized as 
follows. In Section 2, we review the related work. In 
Section 3, we discuss our main algorithm. In Section 
4, we extend this algorithm to general cases that ‘∨’ 
and ‘¬’ logic operators are included. Finally, a short 
conclusion is set forth in Section 5. 

2 RELATED WORK 

With the growing importance of XML in data 
exchange, the tree pattern queries over XML 
documents have been extensively studied recently. 
Most existing techniques rely on indexing or on the 
tree encoding to capture the structural relationships 
among document elements, such as the methods 
discussed in (Li and Moon, 2001; Goldman and 
Widom, 1997;  Cooper and et al., 2001; Chung and 
et al., 2002; Kaushik and et al., 2002; Wang and et 
al., 2003; Wang and Meng, 2005). 

All the above mentioned methods need to 
decompose a tree pattern into a set of binary 
relationships between pairs of nodes, such as parent-
child and ancestor-descendant relations, or into a set 
of paths. The sizes of intermediate relations tend to 
be very large, even when the input and final result 
sizes are much more manageable. As an important 
improvement, TwigStack was proposed by Bruno et 
al. (Bruno and et al., 2002), which compress the 
intermediate results by the stack encoding, which 
represents in linear space a potentially exponential 

number of answers. However, TwigStack achieves 
optimality only for the queries that contain only d-
edges. In the case that a query contains both c-edges 
and d-edges, some useless path matchings have to be 
performed. In addition, in the worst case, TwigStack 
needs O(|D||Q|) time for doing the merge joins as 
shown by Chen et al. (see page 287 in (Chen and et 
al., 2006)), where D is a largest data stream 
associated with a node q in Q, which contains all the 
document nodes that match q. Since then, several 
methods that improve TwigStack in some way have 
been reported. For instance, iTwigJoin (Chen and et 
al., 2005) exploits different data partition 
possibilities while TJFast (Lu and et al., 2005) 
accesses only leaf nodes of document trees by using 
Dewey IDs. But both of them still need to do some 
useless matchings as shown by the theoretical 
analysis made in (Choi and et al., 2003). Twig2Stack 
(Chen and et al., 2006) is the most recent method 
that improves TwigStack. By this method, the stack 
encoding is replaced with the hierarchical stack 
encoding, by which each stack associated with a 
query node contains an ordered sequence of stack 
trees. In this way, the path joins are replaced by the 
so called result enumeration. In (Chen and et al., 
2006), it is claimed that Twig2Stack needs only 
O(|D|⋅|Q| + |subTwigResults|) time. But a careful 
analysis shows that the time complexity of the 
method is actually bounded by O(|D|⋅|Q|2 + 
|subTwigResults|). It is because each time a node is 
inserted into a stack associated with a node in Q, not 
only the position of this node in a tree within that 
stack has to be determined, but a link from this node 
to a node in some other stack has to be constructed, 
which requires to search all the other stacks. The 
number of these stacks is |Q| (see Fig. 4 in (Chen 
and et al., 2006) to know the working process.) The 
bottom-up method discussed in (Chen, 2007) needs 
no join operations. 

In this paper, we improve the method proposed 
in (Chen, 2007) by removing all the merging 
operations, which are needed by that method to form 
matching sets associated with each node in T. In 
addition, the method is extended to handle general 
cases. 

3 ALGORITHM 

In this section, we discuss our algorithm according 
to Definition 1. The main idea of this algorithm is to 
search both T and Q bottom-up and checking the 
subtree embedding by generating dynamic data 
structures. In the process, a tree labeling technique is 
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used to facilitate the recognition of nodes’ 
relationships. Therefore, in the following, we will 
first show the tree labeling in 3.1. Then, in 3.2, we 
discuss the main algorithm. 

3.1 Tree Labeling 

Before we give our main algorithm, we first restate 
how to label a tree to speed up the recognition of the 
relationships among the nodes of trees.  

Consider a tree T. By traversing T in preorder, 
each node v will obtain a number (it can an integer 
or a real number) pre(v) to record the order in which 
the nodes of the tree are visited. In a similar way, by 
traversing T in postorder, each node v will get 
another number post(v). These two numbers can be 
used to characterize the ancestor-descendant 
relationships as follows. 

Proposition 1. Let v and v’ be two nodes of a tree T. 
Then, v’ is a descendant of v iff pre(v’) > pre(v) and 
post(v’) < post(v). 
Proof. See Exercise 2.3.2-20 in (Knuth, 1969). 

If v’ is a descendant of v, then we know that 
pre(v’) > pre(v) according to the preorder search. 
Now we assume that post(v’) > post(v). Then, 
according to the postorder search, either v’ is in 
some subtree on the right side of v, or v is in the 
subtree rooted at v’, which contradicts the fact that 
v’ is a descendant of v. Therefore, post(v’) must be 
less than post(v). The following example helps for 
illustration. 

Example 1. See the pairs associated with the nodes 
of the tree shown in Fig. 3. The first element of each 
pair is the preorder number of the corresponding 
node and the second is its postorder number. With 
such labels, the ancestor-descendant relationships 
can be easily checked.  

 
Figure 3: Illustration for tree encoding. 

For instance, by checking the label associated 
with v2 against the label for v6, we see that v2 is an 
ancestor of v6 in terms of Proposition 1. Note that 
v2’s label is (2, 6) and v6’s label is (6, 3), and we 
have 2 < 6 and 6 > 3. We also see that since the pairs 
associated with v8 and v5 do not satisfy the condition 
given in Proposition 1, v8 must not be an ancestor of 
v5 and vice versa. 

Definition 2. (label pair subsumption) Let (p, q) and 
(p’, q’) be two pairs associated with nodes u and v. 
We say that (p, q) is subsumed by (p’, q’), denoted 
(p, q)  (p’, q’), if p > p’ and q < q’. Then, u is a 
descendant of v if (p, q) is subsumed by (p’, q’).  

In the following, we also use T[v] to represent a 
subtree rooted at v in T. 

3.2 Algorithm for Twig Pattern 
Matching 

Now we discuss our algorithm for twig pattern 
matching. During the process, both T and Q are 
searched bottom-up. That is, the nodes in T and Q 
will be accessed along their postorder numbers. 
Therefore, for convenience, we refer to the nodes in 
T and Q by their postorder numbers, instead of their 
node names. 

In each step, we will check a node j in T against 
all the nodes i in Q. 

In order to know whether Q[i] can be embedded 
into T[i], we will check whether the following two 
conditions are satisfied. 
1.  label(j) = label(i). 
2.  Let i1, ..., ik be the child nodes of i. For each ia (a 

= 1, ..., k), if (i, ia) is a c-edge, there exists a child 
node jb of j such that T[jb] contains Q[ia]; if (i, ia) 
is a d-edge, there is a descendent j’ of j such that 
T[j’] contains Q[ia]. 
To facilitate this process, we will associate each j 

in T with a set of nodes in Q: {i1, ..., ij} such that for 
each ia ∈ {i1, ..., ij} Q[ia] can be root-preservingly 
embedded into T[j]. This set is denoted as M(j). In 
addition, each i in Q is associated with a value β(i), 
defined as below. 
i) Initially, β(i) is set to φ. 
ii) During the computation process, β(i) is 

dynamically changed. Concretely, each time we 
meet a node j in T, if i appears in M(jb) for some 
child node jb of j, then β(i) is changed to j. 
In terms of above discussion, we give the 

following algorithm. 

Algorithm tree-matching(T, Q) 
Input: tree T (with nodes 0, 1, ..., |T|) and tree Q 
(with nodes 1, ..., |Q|) 
Output: a set of nodes j in T such that T[j] contains 
Q. 
begin 
1. for j := 1, ..., |T| do 
2. {let j1, ..., jk be the children of j;  
3. for l := 1, ..., k do 
4.  {for each i’ ∈ M( jl) do β(i’) ← j; 
5.   remove Μ( jl);} 
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5.  for i := 1, ..., |Q| do 
6.  if label(i) = label(j) then 
7. {let i1, ..., ig be the children of i; 
8. if for each il (l = 1, ..., g) we have 
9.  (i, il) is a c-edge and β(il) = j, or 
10.  (i, il) is a d-edge and β(il) is subsumed by j; 
11.  then {insert i into M(j); 
12. if i is the root of Q, then report the 

subtree rooted at j as an answer;} 
13. } 
end 

In the above algorithm, each time we meet an j in 
T, we will establish the new β values for all those 
nodes of Q, which appear in Μ(j1), ..., Μ(jk), where 
j1, ..., jk represent the child nodes of j (see lines 1 - 
4). Then, all Μ(jl)’s (l = 1, ..., k) are removed. In a 
next step, we will check j against all the nodes i in Q 
(see lines 5 - 13). If label(i) = label(j), we will check 
β(i1), ..., β(ig), where i1, ..., ig are the child nodes of i. 
If (i, il) (l ∈ {1, ..., g}) is a c-edge, we need to check 
whether β(il) = j (see line 9). If (i, il) (l ∈ {1, ..., g}) 
is a d-edge, we simply check whether β(il) is 
subsumed by j (see line 10). If all the child nodes of 
i survive the above checking, we get a root-
preserving embedding of the subtree rooted at i into 
the subtree rooted at j. In this case, we will insert j 
into M(j) (see line 11) and report j as one of the 
answers if i is the root of Q (see line 12). 

The time complexity of the algorithm can be 
divided into two parts: 
1. The first part is the time spent on generating β 

values (see lines 2 - 5). For each node j in T, we 
will access M(jl) for each child node jl of j. 
Therefore, this part of cost is bounded by 

  O( ∑
=

⋅
||

1
|)(|

T

j
j jMd ) ≤ Ο( ∑

=
⋅

||

1
||

T

j
j Qd ) = O(|T|⋅|Q|), 

where dj is the outdegree of j. 
2. The second part is the time used for constructing 

M(j)’s. For each node j in T, we need O( ∑
i

ic ) 

time to do the task, where ci is the outdegree of i 
in Q, which matches j. So this part of cost is 
bounded by 

  O( ∑ ∑
j i

ic ) ≤ O( ∑
=

||

1
||

T

j
Q ) = O(|T|⋅|Q|). 

The space overhead of the algorithm is easy to 
analyze. During the processing, each j in T will be 
associated with a M(j). But M(j) will be removed 
later once j’s parent is encountered and for each i 
∈ M(j) its β value is changed. Therefore, the total 
space is bounded by O(leafT⋅|Q| + |T| + |Q|), where 
leafT represents the number of the leaf nodes of T. It 

is because at any time point for any two nodes on the 
same path in T only one is associated with a M. 

4 GENERAL CASES 

In this section, we extend the algorithm discussed in 
the previous section to handle queries containing 
‘∧’, ‘∨’ and ‘¬’ logic operators. 
Without loss of generality, we assume that in an 
XPath expression a predicate is a path, or a 
conjunctive normal form. As an example, consider 
the following XPath expression: 
 a[b[c and .//f]]/b[c or e//*]/g[not c]. 

This expression can be represented as an And-Or 
tree Q shown in Fig. 4.  

 

 
Figure 4: A query tree with different logic operators. 

In such a tree, we distinguish between two kinds 
of nodes: 
- name nodes: nodes corresponding to the node 

test. 
- operator nodes: nodes labeled with ∧ or ∨. 

As with a simple twig pattern, it may contain two 
kinds of edges: /-edges and //-edges; but an edge 
may be labeled with ‘¬’. If an edge (q, q’) is labeled 
with ‘¬’, q’ is called a negative node; otherwise, q’ 
is called a positive node. 
In an And-Or tree Q, the following conditions 
always hold: 
1. The child nodes of any ∨-node are name nodes. 
2. The child nodes of any ∧-node are ∨-nodes. 
3. Any name node has no children or has only one 

node which is a ∧-node. 
According to the above properties, the tree 

embedding of Q into a document tree T can be 
defined as follows. 
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Let i be a node in Q with child nodes i1, ..., ik. Let 
j be a node in T with child nodes j1, ..., jl. 
(i) If i is a ∨-node, T[j] contains Q[i] if one of the 

following conditions holds: 
 - There exists a positive //-child qa (1 ≤ a ≤ k) 

such that T[j] contains Q[ia]. 
 - There exists a positive /-child ia (1 ≤ a ≤ k) such 

that T[j] contains Q[ia] and label(j) = label(ia). 
 - There exists a negative //-child ia (1 ≤ a ≤ k) 

such that T[j] does not contain Q[ia]. 
 - There exists a negative /-child ia (1 ≤ a ≤ k) such 

that T[j] does not contain Q[ia] or T[j] contains 
Q[ia] but label(j) ≠ label(ia). 

(ii) If i is a ∧-node, T[j] contains Q[i] if the 
following conditions hold: 

 - for every positive node ia (1 ≤ a ≤ k), there 
exists a jb (1 ≤ b ≤ l) such that T[jb] contains 
Q[ia]. 

 - for every nagative node ia (1 ≤ a ≤ k), there 
exists no jb (1 ≤ b ≤ l) such that T[jb] contains 
Q[ia]. 

(iii) If i is a name node, T[j] contains Q[i] if the 
following conditions hold: 

 - T[j] contains Q[i1] (i has only one child node i1.) 
 - label(j) = label(i). 

In the following, we give an algorithm to check 
the embedding of an And-Or tree Q into a document 
tree T. For this purpose, we associate with each j in 
T two sets: (j) and H(j). F(j) contains all those name 
nodes i in Q such that Q[i] can be imbedded into 
T[j]; and H(j). contains all those ∨-nodes i in Q such 
that Q[i] can be imbedded into T[j]. Besides, in order 
to calculate H(j), we maintain an array NQ containing 
all the negative nodes in Q. 
With F(j) and H(j), we design our general algorithm, 
in which three functions are called: 
- general-node-check(j, i): It checks whether T[j] 

contains Q[i]. If it is the case, return {i}. 
Otherwise, it returns an empty set ∅. 

- leaf-node-check(j): It returns a set of leaf nodes in 
Q: {i1, ..., ik} such that for each ia (1 ≤ a ≤ k) 
label(j) = label(ia). 

- calculate-H(j, F(j)): It compute H(j) based on F(j) 
and NQ. It is done exactly according to the 
conditions given above for checking ∨-node 
containment. Especially, in the presence of ‘¬’, 
we have to check each negative node in NQ to see 
whether it appears in F(j).~ 

Algorithm general-tree-embedding(v) 
Input: tree T (with nodes 0, 1, ..., |T|) and tree Q 
(with nodes 1, ..., |Q|) 
Output: a set of nodes j in T such that T[j] contains 
Q. 

begin 
1. for j := 1, ..., |T| do 
2. {if j is not a leaf node in T then 
3.  {let j1, ..., jk be the children of j;  
3.   for l := 1, ..., k do 
4.   {for each i’ ∈ H( jl) do β(i’) ← j;} 
5.   F ← merge(F(j1), ..., F(jk)); (*See (Chen, 
 2007) for the definition of the merge operation.*) 
6.   assume that F = { i1, ..., ic}; 
7.   S1 := ∅; S2 := ∅; 
5.   for i := 1, ..., |Q| do 
6. S1 := S1 ∪ general-node-check(j, i); 
15. } 
16. S2 := leaf-node-check(j); 
17. F(j) := merge(F, S1, S2); 
18. call calculate-H(j, F(j));  
end 
Function leaf-node-check(j) 
begin 
1. S2 := ∅; 
2. for each leaf node i in Q do 
3.  {if label(i) = label(j) then {S2 := S2 ∪ {i}; 
4. if i is root then mark j;} 
5. return S2; 
end 
Function general-node-check(j, i) 
begin 
1. S1 := ∅; 
2. if label(i’s parent) = label(j) then 
 (*If i is *, the checking is always successful.*) 
3. { let i1, ..., ik be the child nodes of i; 
4. if for each ia (a = 1, ..., k) β(ia) is equal to j  
5. then {S1 := {i};  
6.  if i’s parent is root then mark j;}} 
7. return S1; 
end 
Function calculate-H(j, F) 
begin 
1. H := ∅; A := ∅; 
2. for each i ∈ F do { 
3. if ((i is a /-child and label(i) = label(j)) or 
4.  i is a //-child) 
5.  then H := H ∪ {i’s parent}); 
6. }  
7. for each i’ ∈ NQ do { 
8. if (i’ ∉ F or (i’ ∈ F and 
 i’ is a /-child with label(i’) ≠ label(j))) 
9. then A := A ∪ {i’s parent};} 
10. return merge(H, A); 
end 
Algorithm general-tree-embedding( ) is similar to 
Algorithm tree-embedding( ). The only difference is 
that M(j) in tree-embedding( ) is replaced with F(j) 
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in general-tree-embedding( ). In F(j), we maintain 
all those query nodes i such that Q[i] can be 
embedded (not only root-preservingly embedded) in 
T[j]. Although more time is needed for this, the 
whole time complexity remains unchanged. See line 
5, in which the merge operation is first introduced in 
(Chen, 2007). The time complexity of 
merge(F(j1), ..., F(jk)) is bounded by O(k⋅leafQ). 
Special attention should be paid to Function general-
node-check( ). It is used to check ∧-nodes in Q. 
Since each name node has only one ∧-node as its 
child, the checking of name nodes is integrated into 
this process to simplify the procedure (see line 2 in 
this function.) 
In Function calculate-H(j, F(j)), we compute H(j) 
based on F(j). It is done exactly according to the 
conditions given above for checking ∨-node 
containment. Especially, in the presence of ‘¬’, we 
have to check each negative node in NQ to see 
whether it appears in F(j). (see lines 7 - 9 in this 
function). It needs O(|NQ|⋅log|F(j)|) time. So the total 
time of the algorithm is bounded by O(|T|⋅leafQ + 
|NQ|⋅|T|⋅logleafQ). 

5 CONCLUSIONS 

In this paper, a new algorithm is proposed to 
evaluate twig pattern queries in XML document 
databases. The algorithm works in a bottom-up way, 
by which an important property of the postorder 
numbering is used to avoid join or join-like 
operations. The time complexity and the space 
complexity of the algorithm are bounded by 
O(|T|⋅|Q|) and O(|Q|⋅leafT), respectively, where T is 
the document tree and Q the twig pattern query, and 
leafT represents the number of leaf nodes in T. 
Experiments have been done to compare our method 
with some existing strategies, which demonstrates 
that our method is highly promising in evaluating 
twig pattern queries. 
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