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Abstract: Workflow problems generally require the coordination of many workers; machines and computers. Agents 
provide a natural mechanism for modelling a system where multiple actors operate, but they do not 
explicitly support coordination schemes. Efficient task allocation to these actors is a fundamental 
coordination prerequisite. A competent allocation policy should address both system performance issues and 
users’ quality demands. Since these factors are often contradictory, an efficient solution is hard to be 
identified. In this study, we suggest a task delegation strategy that jointly optimizes system performance (as 
expressed by workload balancing) and quality demands (as expressed by minimum task overlapping). A 
consistent modelling approach allows us to transform data of both these factors into a matrix format. The 
next step is to exploit the Ky-fan theorem and the notion of generalized eigenvalues to optimally solve the 
task allocation problem. A simple scheduling policy and an experimental setup were applied to test the 
efficiency of the proposed algorithm.   

1 INTRODUCTION 

Workflow Management Systems (WfMS)  manage 
business processes through Process Definitions 
(WfMC, 1999). A process definition consists of a 
network of activities, while it specifies not only 
which tasks are performed and their order, but also 
those who perform them as well. In fact, what is 
commonly specified is the performer’s organization 
role rather than the actual actor. This information is 
to be defined by the process modeller during the 
build time. Yet, during run-time, the actual actor 
who will finally be in charge of the activity must be 
decided. Such decisions are configured by the task 
allocation policies of the system and their execution 
is a critical workflow enactment service. It is 
through a task allocation policy that an initial order 
on workflow participants is imposed and that 
process instances are executed in accordance with 
their definitions. 

An efficient task allocation policy should address 
performance criteria (such as throughput; computing 
speed, etc.) and quality criteria, as being defined by 
the customers. Three general evaluation criteria are 
proposed to assess the allocation decision, Quality; 

Cost and Time (O'Brien & Wiegand, 1998). A 
slightly different set of criteria replaces the 
“Quality” with “Constraints” and “Success” 
(Debenham, 2002). Although these criteria outline a 
comprehensive framework, their interpretation into 
measurable factors could be rather ambiguous. To 
overcome this ambiguity, (O'Brien & Wiegand, 
1998) and (Debenham, 2002) use an agent 
negotiation context. The incorporation of Service 
Level Agreements (SLA’s) to bind the negotiation 
process is an intuitive way to quantify the evaluation 
criteria (Jennings, Norman, Faratin, O'Brien, & 
Odgers, 2000; Shepherdson, Thompson, & Odgers, 
1999). 

A different approach concerning agent-based 
WfMS is to use a hierarchical structure to dispatch 
tasks. A central entity is responsible to decide an 
allocation plan that is later notified to the task 
executors. The coordination agent of (Madhusudan, 
2005) is enabled to dynamically allocate tasks; while 
a central “Judging Machine” matches agents and 
work items in (Qiu, Wang, & He, 2005). Manager 
agents may also assign task as one of their ordinary 
duties (Aye & Tun, 2005; Manmin & Huaicheng, 
1999). A special decision-making agent in (Xu, Qiu, 
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& Xu, 2003) combines data from its peer agents 
according to the business rules; workflow 
specification; and workflow process definition to 
give a list of optimal advices for its own 
organization. In (Cao, Wang, Zhang, & Li, 2004) the 
assignment decision (service calling) is based on 
services’ QoS.  

Following (Zur Muehlen, 2004), the property 
that classifies the above methodologies into different 
categories is with respect to their synchronization 
mechanism. According to his classification scheme, 
workflow coordination is a property of 
synchronization, and three alternatives for 
coordinating an allocation policy can be identified: 
the hierarchical mode; the negotiation mode and the 
scheduling-oriented one. Methods of the first 
category are not scalable as they are prone to 
bottlenecks, while methods of the second category 
can operate only in a fully automated environment.  

In this paper, we will advocate that a 
methodology of the third category (a scheduling-
oriented one) can overcome these pitfalls, while 
providing an efficient and optimized allocation 
scheme. Most of the methods proposed for 
scheduling-oriented allocation in agent-based WfMS 
exploit simplified techniques, such as the First-
Come-First-Served (FCFS); Earlier-Deadline-First 
(EDF); and Least-Laxity-First (LLF). However, the 
aforementioned schemes determine the order in 
which the tasks are considered for assignment to 
agents and they cannot be used to determine the 
specific agent on which the selected tasks are 
assigned to. Besides, these rules do not optimize the 
user’s quality requirements as far as the tasks are 
concerned (e.g., tasks’ deadlines). 

User’s requirements, however, are often 
contradictory. Meeting the requirements of one user 
should not be achieved by sacrificing the 
requirements of another user. When the desired 
users’ requirements cannot be fulfilled, we should 
assign the tasks to the available agents in order to 
minimize degradation of the user’s quality demands.  

On the other hand, a successful scheduling 
scheme should maximize the overall system 
performance (i.e., workload balancing) so that the 
system design is not wasteful. To the authors’ 
knowledge, there is not any optimal strategy which 
dispatches tasks to the available agents in a way that 
the a) degradation of user’s quality requirements is 
minimized while simultaneously b) the workload 
optimally balanced. In this paper, such an optimal 
strategy is proposed exploiting concepts from the 
Ky-Fan theorem (Nakic & Veselic, 2003). The Ky-
Fan theorem states that the two above mentioned 

criteria can be solved by the use of a generalized 
eigenvalue problem.  

The optimization criteria and the modelling of 
our approach are presented in the next section. In 
section 3 & 4 we present the proposed algorithm and 
discuss its efficiency. Experimental results and 
further discussion conclude the paper. 

2 MODELLING APPROACH 

2.1 The Task Dispatching Process 

We adopt the concept and terminology of WfMC 
(WfMC, 1999) that defines a business process as a 
network of atomic activities. Each activity is a 
logical piece of work that can be executed 
individually by one actor. In this paper, the terms 
“activity” and “task” will be used interchangeably. 
Since a process is a directed graph, each activity 
may or may not have dependencies with other ones. 
These dependencies are explicitly described in the 
process definition, thus they are considered a priori 
known. 

We consider a Time Window T when P 
processes demand for execution. This time window 
can be considered as a time interval after which a 
new dispatching procedure is activated. The system 
can decompose these processes into atomic tasks 
through the available process definitions, so it is 
equivalent to say that a set of tasks demands for 
execution. Let us denote these tasks as p

iT , 
i=1,2,..,N, p=1,2,…,P. Variable N denotes the 
number of tasks, belonging to P process instances, 
that ultimately request to be executed by an agent in 
the system. An agent may be either a software entity 
or a human. In any case, they must hold the 
following critical assumption: all agents are capable 
of executing all tasks. This assumption is necessary 
for letting us focus on the scheduling-orientation of 
the proposed allocation scheme. In a later section, 
we discuss how this limitation can be tackled. 

Let us also denote as pST the desired Start Time 
for the process instance p and as pFT  the desired 
Finish Time for the respective process instance. 
Activities’ Start Times and Finish Times are denoted 
similarly as p

iST and p
iFT  respectively. Assuming 

that we know (or we can estimate) the execution 
duration id of each activity and the Start Time for 
every process, the system can easily calculate the 
Start Time and the Finish Time for every task in the 
system. For the sake of simplicity, we may ignore 
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the p index of the task notation for the rest of the 
paper, as we address the allocation issue globally 
and not respective to a process-level. 

In this paper, we assume that the tasks are 
assigned in a non-preemptable, non-interruptible 
way. A task is said to be non-preemptable if once it 
begins execution by an agent, it has to be completed 
by that agent. Additionally, a task is said to be non-
interruptible if once it starts execution it cannot be 
interrupted by other tasks and resume execution 
later. Under this assumption, once a task has been 
assigned to an agent for execution and another task 
requests for service during the execution time 
interval, then, the latter task should be assigned 
either to another agent (which is not reserved at the 
requested time interval) or undergo violation of its 
quality requirement, i.e., its deadline. To prevent this 
from happening, we define as ijz  the non-
overlapping measure between tasks iT  and jT  
(Tasks iT  and jT  may or may not belong to the 
same process instance). Since non-overlapping is the 
desired situation, we define ijz  as  

 
  ,  non-overlapped

0         ,  overlapped
i j

ij
i j

a T T
z

T T
⎧⎪= ⎨
⎪⎩

 (1) 

where 0>α  any positive non-zero value. 
Finally, we need to denote as mA  the set of all 

tasks executed by the mth agent. Sets mA , for 
different agents m, m=1,2,…,M, are mutually 
exclusive, meaning that a task cannot be split and 
executed collectively by different agents, assuming a 
non-interruptible scheduling scenario. 

2.2 Optimization Criteria 

Recalling from section 1, an efficient allocation 
policy is the one that maximizes i) the percentage of 
the active agents (optimizes the workload balancing) 
while ii) simultaneously minimizes the distortion of 
the tasks’ quality requirements. The first condition is 
of critical importance for the system performance, 
since, otherwise, resources are wasted (agent 
idleness) or not properly used (task overloading).  
The second condition states that the allocation policy 
should respect user’s quality parameters as much as 
possible. We evaluate violation of deadlines and 
non-dedicated execution of tasks as quality metrics. 
When an agent executes at the same time more than 
one activity, it will inevitably split his capacity 
across the activities. This will lead to broken 
deadlines and potentially to reduced quality of the 
deliverable. 

Based on the above mentioned requirements, we 
infer two optimization criteria: a) Workload 
balancing as the minimization of the non-
overlapping measure among tasks of different agents 
and b) Quality of Service (QoS) as the maximization 
of the same non-overlapping measure among all the 
tasks dispatched to a specific agent. Using equation 
(1), one can express the non-overlapping degree 
among tasks of different agents as the sum of the 
non-overlapping degrees of all tasks assigned to the 
mth agent with the rest ones, normalized over the 
sum of non-overlapping degrees between tasks in the 
mth and all tasks, pending in the system. The 
corresponding equation is:  

 ,

,

m m

m

ij
i A j A

m
ij

i A j V

z

W
z

∈ ∉

∈ ∈

=
∑
∑

 (2) 

where V is the set of the pending tasks. 
Low values of mW  mean that many other agents 

in the system are concurrently active with the mth 
agent. On the contrary, as mW  increases, the number 
of concurrently active agents with the mth one 
decreases. In the same way, we can express QoS as: 

 ,

,

m m

m

ij
i A j A

m
ij

i A j V

z

Q
z

∈ ∈

∈ ∈

=
∑
∑

 (3) 

The numerator of (3) expresses the sum of the 
non-overlapping degrees for all tasks of the mth 
agent. The denominator of equations (2) and (3) 
expresses the non-overlapping values of the tasks 
executed by agent m with all the N tasks including 
the ones that are executed by the mth. The 
denominator is used in (2) and (3) for normalization 
purposes. Instead, optimizing only the numerator of 
(3) would favour the trivial solution of one task per 
processor. The mQ  expresses a measure of the 
overall QoS violation for the tasks’ assigned to the 
mth agent. As mQ  increases, tasks’ overlapping, thus 
QoS violation decreases for the mth agent. 

It is quite straightforward to generalize the above 
optimization metrics. The overall QoS violation 
measure will be  

 
1

M

m
m

Q Q
=

=∑  (4) 

while the global workload balancing index will be 
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The ultimate goal of our allocation policy will be 
to maximize Q while simultaneously minimize W. 
Combining equations (2), (3), (4) and (5), we get 

 W Q M+ =  (6) 
recalling from section 2.1 that M stands for the 
number of available agents.    

 Since M is a constant number, equation (6)
means that maximization of Q simultaneously yields 
a minimization of W and vice versa. Hence, in our 
problem, the two aforementioned optimization 
requirements are in fact identical and they can be 
satisfied in parallel. Therefore, it is sufficient to 
optimize only one of the two criteria. In our case, 
and without loss of generality, we select to minimize 
W, estimating an optimal task assignment to the M 
agents, that is a dispatching policy which minimizes 
the following equation 

 ,

1
,

ˆ : min min ,m M

m

ijM
i A j A

m
ijm

i A j V

z

A W m
z

∈ ∉

=
∈ ∈

= ∀
∑

∑ ∑
 (7) 

where ˆ
mA , is the estimated set of tasks executed by 

the mth agent 

3 THE TASK DISPATCHING 
ALGORITHM 

Optimization of equation (7) is a NP-complete 
problem. Even for the toy case of two agents, 
(M=2), the optimization of (7) is practically 
impossible to be implemented for large number of 
tasks. However, we can overcome this difficulty by 
transforming the problem of (7) into a matrix based 
representation. Then, an approximate solution in the 
discrete space can be found using concepts derived 
from eigenvalue analysis.   

3.1 Matrix Representation 

Let us denote as [ ]ijz=Z  a matrix which contains 

the values of the non-overlapping measure ijz  for 

all tasks iT and jT . Let us also denote an Νx1 

indicator vector [ ]u T
m me=e L L  whose elements u

me  
are given by 

 
1 if task  is executed by agent  

0                                  Otherwise
uu

m
T m

e
⎧

= ⎨
⎩

 (8) 

The indicator vector me  points out which tasks 
are allocated to whom. M different indicator vectors 
exist, one per agent. Therefore, the optimization 
problem of (7) is equivalent to the estimation of the 
optimal indicators vectors ˆ ,m m∀e  which minimize 
equation (7). Consequently, equation (7) can be 
written as  

 ,

1
,

ˆ , : min min m M

m

ijM
i A j A

m
ijm

i A j V

z

m W
z

∈ ∉

=
∈ ∈

∀ =
∑

∑ ∑
e  (9) 

The main difficulty in (9) is that its right part is 
not expressed as a function of the indicator vectors 

me . Since direct minimization is not 
straightforward, we need to re-write the right part of 
equation (9) in a form of vectors me . For this 
reason, let us denote as )( LL ildiag=L  a diagonal 
matrix, whose elements il , i=1,2,..N express the 
cumulative non-overlapping degree of the task iT  
with all the remaining tasks. That is 

 i ij
j

l z=∑  (10) 

Using matrices L and Z, we can express the 
numerator of (9) as a function of vectors me . In 
particular, 

 
,

( )
m m

T
m m ij

i A j A

z
∈ ∉

− = ∑e L Z e  (11) 

In a similar way, the denominator of (9) is 
related with the indicator vector me  as follows  

 
,m

T
m m ij

i A j V

z
∈ ∈

= ∑e Le  (12) 

Using (11) and (12), we can re-write (9) as 

 
1

( )ˆ , : min min
M T

m m
m T

m mm

m W
=

−
∀ = ∑ e L Z e

e
e Le

 (13) 

3.2 Optimization in the Continuous 
Domain  

Assuming non-interruptible tasks, we allow agents 
either to undertake the whole task; or let another 
agent do the work. That means that the me vectors 
take binary values (1 for assignment, 0 otherwise). 
In other words, we can form the indicator matrix 
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[ ]= 1 ME e eL , the columns of which refer to the M 
system agents, while the rows to the N tasks. Then, 
the rows of E have only one value equal to one 
while all the rest values are zero. Optimization of 
(13) under the binary representation of the indicator 
matrix E is still a NP hard problem. However, if we 
relax the indicator matrix E to take values in 
continuous domain, then we can solve the problem 
in polynomial time. We call ME  the relaxed version 
of the indicator matrix E. The elements of the 
relaxed matrix take real values. 

It can be proven that in the continuous domain 
the right part of (13) can be written as 

 1/2 1/2( )TW M trace − −= − Y L Z L Y  (14) 
Subject to  
 T =Y Y I  (15) 

where Y is a matrix which is related with the matrix 
ME  through the following equation   

 1/2
M

− =L Y E Λ  (16) 
and Λ any MM ×  matrix. In this paper, we select Λ 
to be equal to the identity matrix, Λ=I. Then, the 
relaxed indicator matrix ME , which is actually the 
matrix we are looking for, is calculated as 

 1/2
M

−=E L Y  (17) 
Minimization of the problem (14)-(15) is 

obtained through the Ky-Fan theorem (Nakic & 
Veselic, 2003). The Ky-Fan theorem states that the 
maximum value of the 1/2 1/2( )Ttrace − −Y L Z L Y  

subject to the constraint of IYY =T  is equal to the 
sum of the M (M<N) largest eigenvalues of matrix 

1/2 1/2− −L Z L . Consequently, 

 1/2 1/2

1

max{ ( )}
M

T
i

i

trace λ− −

=

=∑Y L Z L Y  (18) 

where iλ  refers to the ith large eigenvalue of matrix 
1/2 1/2− −L Z L . However, maximization of (18) leads 

to minimization of W in (14). Thus, it is clear that 
the minimum value of W will be  

 
1

min
M

i
i

W M λ
=

= −∑  (19) 

The Ky-fan Theorem also states that this 
minimum value of W [equation (19)] is obtained 
through the matrix 

 = ⋅Y RU  (20) 
where  U is a MN ×  matrix the columns of 

which are the eigenvectors of the M largest 
eigenvalues of matrix 1/2 1/2− −L Z L  and R an 

arbitrarily rotation matrix (i.e., orthogonal with 
determinant of one).  Again, a simple approach is to 
select matrix R as the identity matrix, i.e., R=I, so 

 =Y U  (21) 
Finally, we calculate the optimal relaxed 

indicator matrix  ˆ
ME  in the continuous domain as  

 1/2ˆ
M

−=E L U  (22) 

3.3 Discrete Approximation 

The optimal matrix ˆ
ME of (22) has not the form of 

the indicator matrix E since its values are 
continuous, while the elements of E [see (13)] are 
binary. We recall that binary values are the desired 
ones since we have assumed a non-interruptible, 
non-preemptable scheduling policy. Consequently, 
in order to accept the optimal solution of (22) as a 
solution for our problem, we have to round the 
continuous values of ˆ

ME  in a discrete form that 
approximate matrix E. 

One simple solution, regarding the rounding 
process, is to set the maximum value of each row of 
matrix ˆ

ME  to be equal to 1 and let the remaining 
values to be zeros. However, such an approach 
yields unsatisfactory performance in case that there 
is not any dominant maximum value at every row of 
ˆ

ME . Furthermore, it handles the rounding process 
as N independent problems, implying that each task 
is delegated without regarding the allocation of the 
others. An alternative approach, which is adopted in 
this paper, is to treat the N rows of matrix ˆ

ME  as M-
dimensional feature vectors. Each one of these 
feature vectors indicates the association degree of 
each task and the respective mth system’s agent. 

More specifically, after we have normalized the 
rows of ˆ

ME , we apply the k-means clustering 

algorithm, considering the rows of  ˆ
ME  as the 

population to be clustered in M  classes. The k-
means algorithm comprises three phases, the 
initialization; the clustering construction; and the 
updating phase.  

Initialization: In this phase, the algorithm 
arbitrarily selects a set of ˆ

ME  ‘s rows as centers of 
the classes that are to be constructed. The number of 
selected rows equals M. That means that each class 
will contain the tasks assigned to an agent. 

Clustering Construction: In this phase, the 
remaining rows of ˆ

ME  are clustered to the M 
classes using a metric distance. In particular, a row 
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(namely a task) is assigned to a class by comparing 
its vector with the class centers and selecting as the 
appropriate class, the one with the most proximate 
center. 

Updating: After the classification, new centers 
are created as the means of all vectors belonging to a 
class. In case that these centers are different from the 
previous ones, a new process takes place and the 
algorithm moves on to the clustering construction 
phase for further processing. On the contrary, if the 
new centers are exactly the same with the previous 
ones, meaning that the same task assignment have 
been concluded, no further processing is required 
and the clustering is terminated. 

The performance of the k-means algorithm 
highly depends on the initial selection of the class 
centers, even though it can be proven that the k-
means always converges to a solution. Thus, the 
effectiveness of the dispatching policy is actually 
influenced by the selection of the initial matrix rows. 
In this paper, to overcome such a drawback and 
simultaneously to search for new possible solutions 
that will yield, in relatively small time, a satisfactory 
approximation of the optimal solution in the discrete 
domain, we repeat the experiment by selecting each 
time different rows for the initialization, which in 
turn, will provide different solutions. Among all 
selections, the minimum is returned as the finest 
approximation. 

4 ALGORITHM EFFICIENCY 

We define the task arrival rate λ as the number of 
tasks, say N, requesting for execution within a time 
window T (see Section 2). We shall also notice that 
task arrival rate λ is calculated through the process 
arrival rate λ’. Finally, task arrival rate will be 

 N
T

λ =  (23) 

while the task average duration will be 

 
1

N

i
i

D d N
=

=∑  (24) 

An important aspect which determines 
dispatching efficiency is the task granularity g, 
measured as the ratio of the average task duration D 
over the time window T. 

 Dg
T

=  (25) 

It is expected that as granularity increases, 
dispatching performance decreases since more 
execution capacity is required. Given a granularity g 

and a rate λ, the lower bound of available agents 
required for achieving the two goals (workload 
balancing and QoS) is the lower bound of available 
agents required for achieving zero task overlapping. 
This bound is  

 opt
NDB N g M
T

= = ⋅ ≤  (26) 

where optM  refers to the minimum number of 
agents required for achieving no task overlapping 
under an exhaustive search allocation scenario. It 
should be mentioned that optM  cannot be reached in 
real life scenarios, since the exhaustive search 
algorithm is a NP-hard problem. The lower bound of 
(26) is achieved in the extreme case when the tasks 
arrive one right after the other, while their durations 
cover every gap within the time window T.  

Given the lower bound B of the agents required 
so that no tasks’ overlapping is encountered, we can 
define the allocation efficiency as 

 ( )
( )
Be S

M S
=  (27) 

where S refers to the algorithmic strategy adopted to 
approximate the exhaustive search policy, M(S) the 
minimum number of agents estimated through the 
algorithm S and e(S) the respective algorithm’s 
efficiency.  Using equation (26), it is clear that  

 ( )
( )
optM

e S
M S

≤  (28) 

As a result of (26), the lower bound B does not 
take integer values. Since, however, B expresses the 
minimum bound of the required individual agents; 
the real values of B should be rounded to the next 
integer so that they are strictly greater than B, that is 

 ( )
( )
B

S
M S

ε
⎡ ⎤⎢ ⎥=  (29) 

where as ⋅⎡ ⎤⎢ ⎥  we indicate the ceil operator and as 
( )Sε  the rounded efficiency for the algorithm S. 

5 EXPERIMENTAL RESULTS 

5.1 A Verifying Scheduling Policy 

In order to test our algorithm we apply the following 
workflow scenario: A central, manager agent 
receives a batch of process instances that demand for 
execution. The manager agent has access to the 
process definition repository, so it can decompose 
the processes into atomic tasks. As described in 
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Section 2.1, the manager agent can calculate the 
Start Time and Finish Time for every task. It also 
maintains a list of available agents. This list can be 
dynamically updated, through direct communication 
among agents or through brokers as discussed in 
section 6. The results of the proposed dispatching 
policy are communicated to the agents, who are 
committed to execute the assigned tasks. 
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Figure 1: Efficiency versus granularity for different tasks 
loads, (B values) for the proposed algorithm and the 
greedy one.  
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Figure 2: Ceil Efficiency ε  versus the number of tasks for 
different granularity values. 

Before starting task execution, every agent 
checks its assigned task for dependencies. If there 
are any precedence requirements, the agent must 
assure that the precedent tasks have indeed been 
accomplished. For this reason, we employ a special 
field in the agents’ architecture: a check board. A 
check board is actually a binary vector whose length 
equals the number of tasks assigned to the agent. 
Thus, check board elements are either 1 if the agent 
has successfully completed the task; or 0 otherwise.  
Since agents are notified about the allocation 
scheme, they know which agent is in charge of the 
precedents task, so they can directly query it. In 
case, that a task has one or more precedents, it can 
not be started, unless all the precedents are 
accomplished. 

In case of a task failure, the agent not only put a 
zero in the corresponding place at its check board, 
but it also informs the manager agent. The latter, 

cancels all the tasks that belong to the same instance 
and logs the process failure. This instance has to be 
assigned again during the next dispatching 
procedure. However, exception handling is a major 
issue that needs to be addressed more efficiently, yet 
it is out of the scope of this paper. 

5.2 Experimental Setup 

A process definition generator is created to provide 
us with simulation data. Every generated definition 
comprises a random number of activities, split into 
four blocks: A sequence, a parallel block, an OR 
gateway and a sequence again. Process instances and 
activities duration times are also randomly 
generated. We compare our approach with a greedy 
one, which selects a locally optimum choice for 
every task. In particular, the greedy algorithm 
assigns each task to an agent so that no task 
overlapping is encountered, by exploiting the current 
local load of each agent. If all agents are loaded with 
tasks, then the pending tasks undergo violation of 
their QoS requirements.  
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Figure 3: Gain defined as the ratio of N/M versus 
granularity.  

5.3 Simulation Results 

Figure 1 shows the efficiency measure e versus the 
variation of the granularity value D/T [see(27)] for 
two algorithmic strategies: the proposed one and the 
greedy approach. As is observed, the efficiency 
increases as granularity decreases, meaning that for 
tasks of relatively short duration compared to the 
window time better allocation can be achieved in 
accordance to the tasks’ load. However, the 
improvement is saturated for low values of 
granularity. Similarly, we observe a reduction of the 
efficiency e as B increases for the same granularity 
(i.e., an increase in tasks’ load), meaning that more 
agents are required for task execution to achieve no  
overlapping. In this Figure, we compare the results 
derived by the proposed algorithm, with the ones 
stem from the greedy scheduling approach. For all 
values, the proposed scheme outperforms the greedy 
approach, meaning that less agents are required to 
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efficiently schedule the same number of workflows 
using the proposed scheme than the greedy one.  

Figure 2 shows the discrete efficiency value 
denoted as ε  in (29) versus the number of tasks. 
The efficiency decreases, however, peaks are 
presented with a periodic order stemming from 
round function in (29).  

Finally, the gain, defined as the ratio of the 
number of tasks over the minimum number of agents 
required for achieving no overlapping versus 
granularity is shown in Figure 3. It is clear that, the 
gain is exponentially increases for low values of 
granularity, instead of the high ones.     

6 DISCUSSION 

In this paper we propose a scheduling-oriented task 
dispatching policy. The application context of the 
suggested algorithm is WfMS where agents operate. 
A major assumption that guided our approach is that 
all agents are capable of executing all tasks (see 
section 2.1). Apparently, this is not always the real 
situation. To overcome this limitation, we may 
integrate into the dispatching procedure a 
negotiation step. During that step the manager agent 
may call for bids and agents that fulfill the capacity 
requirements may answer. Then the manager agent 
can decide the allocation plan based on the available 
agents. Another way is to incorporate broker agents. 
Broker agents know the capacities of their teams, so 
they could be in charge for the negotiation process. 
Alternatively, the manager agent could dispatch 
tasks to brokers, considering them as similar entities, 
who in turn, will allocate their tasks to their agents. 

Concluding, as simulations results demonstrate, 
the task dispatching policy that we propose can 
efficiently optimize both system’s performance and 
user’s QoS requirements. Adopting optimization 
criteria based on measures of task overlapping, we 
approximate an NP-complete problem with an 
algorithm of polynomial order. The results of our 
algorithm can feed the workflow engines of a WfMS 
system and allow them an adequate task allocation. 
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