
DISTRIBUTED SYSTEM FOR DISCOVERING SIMILAR
DOCUMENTS

From a Relational Database to the Custom-Developed Parallel Solution

Jan Kasprzak, Michal Brandejs, Miroslav Křipač and Pavel Šmerk
Faculty of Informatics, Masaryk University, Botanická 68a, Brno, Czech Republic

Keywords: University, Plagiarism, Similar Documents, Cluster, Information System, Theses.

Abstract: One of the drawbacks of e-learning methods such as Web-based submission and evaluation of students’ papers
and essays is that it has become easier for students to plagiarize the work of other people. In this paper
we present a computer-based system for discovering similar documents, which has been in use at Masaryk
University in Brno since August 2006, and which will also be used in the forthcoming Czech national archive
of graduate theses. We also focus on practical aspects of this system: achieving near real-time response to
newly imported documents, and computational feasibility of handling large sets of documents on commodity
hardware. We also show the possibilities and problems with parallelization of this system for running on a
distributed cluster of computers.

1 INTRODUCTION

1.1 About IS MU

At Masaryk University, the study administration is
being supported by a web-based Information System
(http://is.muni.cz/, IS MU), which has been in
development since 1999. See (Pazdziora and Bran-
dejs, 2000) for detils about IS MU. Since then, IS
MU has become the central part of the study admin-
istration and communication at Masaryk University.
Among others, it handles e-learning tasks like submit-
ting essays, and it stores various documents such as
students’ theses. The in-house developed distributed
storage subsystem is used for these tasks.

1.2 Handling Plagiarism

One of the problems of storing (and making available)
documents in an electronic form is that documents
can be easily plagiarized. This is by no means a prob-
lem specific to IS MU: students often have their own
WWW sites for exchanging documents like essays or
written exams, so disallowing document sharing in-
side IS MU would not help to mitigate the problem.

Instead, we actively encourage document sharing, and
using old essays as basis for new ones, provided that
the source is correctly cited. However, we must
provide tools to detect similar documents, so that
the teacher (or a thesis reviewer) can easily discover
copied sections in students’ essays. The actual deci-
sion whether the document is plagiarized or not relies
on human work. The machine can only serve as a
tool.

In this paper, we will discuss the inner workings
of our system for discovering similar documnets in its
original prototype SQL database-backed form (which
has been in use inside IS MU since August 2006), and
in its new implementation, which will be more than an
order of magnitude faster, while allowing it to be dis-
tributed to a set of commodity computers in a Linux
cluster. This system will be used also in the forthcom-
ing Czech national archive of graduate theses.

2 SIMILAR DOCUMENTS

Firstly let us describe which documents we consider
similar and how to calculate similarity in documents.
There are various approaches in discovering similar
documents (Monostori et al., 2002). We use a chunk-

437
Kasprzak J., Brandejs M., Kripač M. and Šmerk P. (2008).
DISTRIBUTED SYSTEM FOR DISCOVERING SIMILAR DOCUMENTS.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - DISI, pages 437-440
DOI: 10.5220/0001687604370440
Copyright c© SciTePress



based approach: the document in its plain text form is
split into chunks of text, and the system then tries to
find these chunks inside other documents.

2.1 Document Similarity

For two documents A and B we define the similarity
of the document A to the document B as a percentage
of chunks of the document A which can also be found
inside the document B. Using this definition, the sim-
ilarity is a real number between 0 and 100 inclusively.

Note that similarity is not symmetric (for example,
when the document A as a whole is contained inside
a bigger document B). The actual similarity of the
document B to the document A can be computed as

number of common chunks in A and B
total number of chunks in B

·100%

2.2 Current Data Set

We have approximately 250,000 documents in IS
MU which enter the similarity search process. This
set of documents can be transformed to about
600,000,000 (chunk, document-ID) pairs. There are
circa 445,000,000 unique chunks in the data set. For
the Czech national archive of graduate theses, it is ex-
pected that the total volume will be at least two times
bigger.

3 PROTOTYPE SYSTEM

In the first implementation, we have used Oracle as
the database back-end. We have not stored the chunks
themselves, but a concatenation of word ID numbers
from the dictionary instead, which has saved us some
space.

3.1 Resource Requirements

The data needed for calculating the similar documents
has been stored in the following database tables:

dictionary—for converting betwen the word and its
ID. The table had 900,000 rows in 19 MB of disk
space, and both indexes in another 36 MB.

chunk table—mapping the document ID to the
chunk. The table data has about 30 GB, the in-
dex which maps the chunk to the document ID
has about 46 GB, and the reverse index 17 GB.

The system runs on a SGI Altix 350 with 14 Itanium2
CPUs and 28 GB of RAM. The big amount of RAM

is significant, but the data set is still bigger than the
available memory.
Generating chunks from all the documents takes
about two hours, inserting them to the chunk table
takes another two hours (both using all 14 CPUs).
Computing similarities from the chunk table takes
about 50 hours also using all 14 CPUs.

3.2 Pros and Cons

Interestingly enough, the Oracle representation of the
chunk table was not much bigger than expected—
their metadata size did not add any substantial over-
head. To obtain a significant speed improvement, the
different data structures will have to be used. Also
the solution with SQL database and Perl/DBI can be
easily prototyped, so we could put the system into the
production use relatively fast.

On the other hand, the ACID properties of SQL
database have been a bottleneck of the system. For
most of the tasks we did not need a strictly isolated
transactions.

4 DISTRIBUTED APPROACH

In the next step, we have decided to reimplement this
system outside the database, in the tightly packed and
customized data structures. The requirements to the
new system were the following:

• Usability on a commodity hardware with much
less resources than our Altix system.

• Scalability by by adding computing nodes, not ex-
panding the single server.

• Speed. Users are not willing to tolerate several
hours or even a day of delay for newly added doc-
uments.

4.1 Chunk Table

The biggest barrier which prevents the system from
being used on commodity hardware is the size of the
chunk table. Even our mid-range server cannot fit the
data set into its memory. The estimated size limits of
this approach are:

We have about 1 milion words in the dictio-
nary. So we need about 20 bits to encode a word.
With average five-word chunks, we need 100 bits,
i.e. 12.5 bytes, to encode the chunk itself. With
450,000,000 different chunks, we would need about
5.2 GB to store just the chunk IDs in this extremely
tightly packed encoding, not counting the documents
in which those chunks appear, and the index needed

ICEIS 2008 - International Conference on Enterprise Information Systems

438



for fast searching inside this data. Thus We need to
shrink the data in the chunk table even more.

4.2 Chunk as its Hash

We propose that the chunk identification should be
stored not as the exact set of word identifications, but
as some kind of the hash value of the words them-
selves. This gives us a lower number of bits needed
for expressing the chunk identification. Moreover, by
using different hash functions we can even choose the
number of bits used for expressing the chunk ID. In
other words, we can set the various levels of tradeoff
between the data size and the accuracy of the data (the
probability of hash collisions).

The hash function does not matter, we can for ex-
ample take the highest n bits of MD5(chunk). As for
the value of n, we have tried values of 24 and 28 bits.
Note that the total number of different chunks in our
data set is between 228 and 229. The results were in-
teresting: with 24 bits of hash value size, the absolute
difference between the computed and exact similari-
ties were up to 5 %, but only for documents which had
their similarity already at most 5 %. So we have got
only few false positives for the document pairs which
have already been different enough. For n = 28, the
absolute difference was at most 1 %.

Should the exact results be needed, we can use
this approach as an upper estimate of the similarity,
and compute the exact similarities only for document
pairs which are preselected by this algorithm, and
only after the user looks at these documents (so not
precompute the exact values).

Also note that using hash from the words them-
selves relaxes the need of unique word ID numbers.
The dictionary table then can be transformed into a
set (i.e. we will not have to look up the word ID, but
instead only ask whether the word is present in the
dictionary or not). This can lower the resource re-
quirements for the dictionary table, altough this re-
duction is not significant in the whole picture.

4.3 Data Structure

The hash function we use has the range of values
from 0 to 2n − 1 for some n. Unlike the database
approach, we actually do not need the whole chunk
table, searchable both by chunk ID and the document
ID. In fact, we only need one of these two directions:
for discovering similar documents to a given one, we
need to split the new document into the chunks, and
then look up in which other documents those chunks
are. So in the database speech, we only need the in-
dex mapping the chunk ID to the list of document

0

1

2

2^n−1

chunk

2^n

5013

14

9123

5431

8550

649

2108

1043

1041

2

2

0

offset array document ID array

Figure 1: Data structure mapping chunk ID to the document
IDs.

IDs. The proposed data structure for this task is
described in the Figure 1. The data structure contains
two arrays:

• The array of document IDs (in the Figure 1 the
rightmost one). This is an array of values of the
“document ID” data type. It contains the list of
documents in which the ID 0 appears, then the list
of documents in which the chunk ID 1 appears,
and so on. The size of this array is approximately
equal to sizeof(document id) multiplied by the
total number of all chunks in all documents. For
600,000,000 chunks and three bytes for the docu-
ment ID, it is about 1.7 GB. There is nothing sim-
ple we can do to reduce the size of this array.

• The array of offsets (in the Figure 1 the leftmost
one). This array describes where in the array of
document IDs we should look, when we want to
find all documents, in which a given chunk occurs.
The entry i of this array gives the offset of the first
document ID for the chunk with the hash value
i, and the entry i + 1 gives the offset of the first
document ID, in which this chunk does not occur.
It is an array of the integer data type, indexed by
all possible values of the chunk ID. So for 24-bit
hash function value space and 4-byte integer, this
array has 224 · 4 bytes, i.e. 64 MB, and for 28-bit
hash function value space it has 1 GB. So the size
of this array is proportional to the number of bits
of the hash value.

For example, in the Figure 1, the chunk with hash
value of 0 occurs in documents 5431 and 9123, the
chunk with hash value 1 is not anywhere in the whole
data set, the chunk with hash value 2 is in documents
14, 5013, 8550 and maybe others. The 2n-th entry is
used to terminate the array of document IDs.

DISTRIBUTED SYSTEM FOR DISCOVERING SIMILAR DOCUMENTS - From a Relational Database to the
Custom-Developed Parallel Solution

439



4.4 Algorithm

1. Construct a set of hash-based chunk IDs of all not
yet added (i.e. new) documents.

2. Construct the array of document IDs and the array
of offsets as described in Section 4.3.

3. Merge the data structure from the previous step
with the same data structure describing the previ-
ously added documents, possibly removing data
about documents, which has been deleted from
the system.

4. Using the merged data structure, for each newly
added document find all documents similar to it.
If similarities are found in the documents which
already had been in the database from previous
runs of this algorithm, also compute the inverse
similarity (as described in Section 2.1).

4.5 Properties of the Algorithm

• As for transforming the plain text form of the doc-
ument to the set of chunks, there is not much to
be improved speed-wise. This is an easily par-
allelized task, and id does not need any network
communication (other than retrieving the docu-
ment itself and storing the computed results).

• In the step 2 we want to compute an “inverted in-
dex”. I.e. from the document ID to list of chunk
IDs mapping, we need to compute the opposite
direction. We can use a bucket sort especially as
the data can be pre-sorted into a given number of
buckets in the step 1.

• Merging the two data structures from Section 4.3
can be done sequentially, in a linear time. This
step cannot be parallelized. However, we can split
the whole data structure to the cluster nodes giv-
ing each node its own range of the chunk IDs.
Then each node can merge only its own part of
the data structure.

• Finding similar documents: the complexity of this
step is proportional to the number of chunks in the
newly added documents. We can distribute this
task so that each cluster node handles only part of
the document ID range. So by adding more nodes,
we lower the memory requirements on each node.

• Incremental runs: the incremental runs are fast,
we expect them to be run in a one- to five-minute
period on a production system.

4.6 Practical Results

We have implemented this algorithm, and we are able
to present some practical results:

• The step 1 took about 2 hours, including pre-
sorting different chunk ranges to separate files, in
order to do a radix sort in the next step. The time
taken is about the same as in the prototype solu-
tion.

• The step 2, i.e. merging the pre-sorted ranges,
took about three hours on a single CPU. Further
speed improvements by using multiple nodes or
multiple CPUs are possible by, for example, giv-
ing each node its own range of chunk IDs to sort.

• The resulting data structure takes less than 2 GB
of memory for 24-bit hash value, and less than
3 GB of memory for 28-bit hash value.

• Finding similar documents using this data struc-
ture can be done in slightly over two hours on 14
CPUs.

Thus the total run time of this new system for the ini-
tal recomputing all similarities in the given data set is
about 7 hours. Preliminary results with the fully dis-
tributed implementation on a cluster of 22 dual-core
nodes shows that the total run time should fit into one
hour.

5 CONCLUSIONS

We have described two generations of a system for
finding similar documents in the real-world informa-
tion system.

The new implementation runs much faster than the
prototype one (7 hours versus 54 hours for an initial
step), with more speedup possible. No part of the new
system require more than 4 GB of RAM, and it can be
distributed on a cluster of commodity computers.

So far we are not aware of any other system
for finding similarities in documents, which uses the
hash-based approach for approximating the actual
chunk identification. This approach can provide sig-
nificant savings in the total memory needed.

REFERENCES

Monostori, K., Finkel, R. A., Zaslavsky, A. B., Hodász, G.,
and Pataki, M. (2002). Comparison of overlap de-
tection techniques. In ICCS ’02: Proceedings of the
International Conference on Computational Science-
Part I, pages 51–60, London, UK. Springer-Verlag.

Pazdziora, J. and Brandejs, M. (2000). University infor-
mation system fully based on www. In ICEIS 2000
Proceedings, pages 467–471. Escola Superior de Tec-
nologia do Instituto Politcnico de Setbal.

ICEIS 2008 - International Conference on Enterprise Information Systems

440


