
CAMEL FRAMEWORK
A Framework for Realizing Complete Separation of Developer’s and Designer’s

Work in Rich Internet Application

Hiroaki Fukuda and Yoshikazu Yamamoto
Graduate School of Science and Techinology, Keio University

3-14-1, Kohoku-ku, Hiyoshi, Yokohama Kanagawa 223-8522, Japan

Keywords: Framework, Rich Internet Application, Web Engineering, Software Engineering, Flex, Web Application.

Abstract: This paper provides a framework called Camel which is able to separate developer’s and designer’s work
completely in developing Rich Internet Applications. In the last years, web becomes one of the most popular
methods to transfer information such as search contents, advertise information and online shopping. We
usually use an appropriate web application to achieve our requirement. In the development process of current
web applications, designers design interfaces of an application by using HTML, CSS, image and developers
not only implement business logics but also modify the interface for dynamic generation of HTML tags based
on the executed logic. Therefore, not only designers but also developers have to work every time when design
of the interface is changed.
This paper describes camel framework and its implementation, which is based on Flex, and then demonstrate
its usage and utility by implementing a real application.

1 INTRODUCTION

Web has become not only basic infrastructure to open
and refer information but also development platform
of all sorts of integrated business solutions. In the
last years, a large number of web applications exist
on the internet. Due to the increasing complexity of
these application, current web technologies are start-
ing to show usability and interactivity limits. The
user experience in thin-client web applications is not
comparable to desktop applications, responsiveness
is lower due to network overhead and unnecessary
round-trip server access, and disconnected usage is
not supported (Driver et al., 2005).

Rich Internet Application (RIA) has been recently
proposed in order to solve the problems of current
web applications described above (Duhl, 2003). They
provide sophisticated interfaces for representing com-
plex processes and data, while minimizing client-
server data transfer.

On the other hand, when we think about the devel-
opment process of current web applications, design-
ers design all interfaces by using HTML, CSS and at-
tractive objects (e.g., image, swf, movie). Meanwhile,
developers implements server-side logics that are in-
voked base on the requests from clients by server-side
technologies such as Java, PHP, ASP. In this process,

they have to modify codes of interfaces created by de-
signers in order to include logics for validation and/or
dynamic creation of HTML tags as a result of server-
side logics. Therefore, if a requirement to modify
the design of interface happens, not only designers
but also developers have to work for the modification,
testing, and re-deployment.

This paper proposes a RIA framework, called
Camel, which can realize complete separation of de-
veloper’s and designer’s work in development pro-
cesses. It uses and extends Flex (Adobe Systems
Inc., 2007b), which is one of the RIA development
tools, and can separate client-side logics from inter-
face source codes, so that developers and designers
do not need share any source codes in an application.
In Flex, we basically have to specify event handlers
as an attribute of each interface component directly in
order to execute logics correspond to events that are
dispatched by user’s operations. However, Camel in-
jects logics into interface components dynamically at
runtime so that it can separate logics from interface
components completely by source code level. By us-
ing Camel framework, developers do not care about
the design of an application and can concentrate on
logic implementation.

This paper is organized as follows. We describe
the background and overview of RIA technologies in

137
Fukuda H. and Yamamoto Y. (2008).
CAMEL FRAMEWORK - A Framework for Realizing Complete Separation of Developer’s and Designer’s Work in Rich Internet Application.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 137-143
DOI: 10.5220/0001684401370143
Copyright c© SciTePress

section 2. We then describe basic ideas of this frame-
work and related technologies in section 3. In addi-
tion, we explain the implementation of runtime sys-
tem and basic rules to use this framework in section
4 and application behavior in section 5. In section
6, We also show a real application implemented by
using this framework to show the usability and then
describe related work in section 7. In section 8, we
conclude by providing summary and discussing fu-
ture issues.

2 BACKGROUND

This section briefly describes the background of this
framework.

2.1 Development Process

Web applications have become important tools for
companies to advertise themselves. In addition to the
usability of an application, interface design, includ-
ing base color, location of each component (e.g., im-
ages, swfs, movies), becomes important because it in-
fluences user’s mind. Therefore in case of developing
a web application for consumers, designers design en-
tire interfaces and then developers implement logics.
We briefly explain this process in Fig.1

1. Designers design each page as an image by using
appropriate tools (e.g., photoshop and illustrator).

2. Clients who order the website confirm entire de-
sign and ask designers to modify some parts.

3. Once the entire design is fixed, designers (or
HTML coders) divide the image based design into
each image object (e.g., titles, buttons and icons)
and then create HTML based interfaces.

4. Developers implement business logics.They have
to modify HTML based interface created by de-
signers to generate HTML tags dynamically.

Designer

Developer

(1) Create Images< Photoshop etc. > (2) Confirm Design (3) Create HTML
< Java, PHP etc. >(4) Create Logics(5) Testing

Figure 1: Development process of current web applications.

5. Developers make unit and/or integrated tests of an
applications. If they find bugs in this process, they
go back to step 4 and fix them.

Current web applications are implemented based
on MVC architecture, therefore, server-side logics are
independent from interfaces. However, developers
need to include program codes in HTML based in-
terfaces for generating appropriate HTML tags based
on the Model. This is a quite difficult process for de-
velopers because HTML based interfaces created by
designers are difficult to understand. Moreover, if the
clients require to modify the design after step 3, de-
signers and developers have to redo from step 2 to step
5. This takes quite a little cost and time, however, the
change of design or specification during development
processes is usually happened because the client can
not image usability (including design) of the applica-
tion from the beginning. In the development process
of current web applications, it is impossible to sepa-
rate programs from interfaces completely. Therefore,
this limitation forces to share interface codes between
designers and developers.

2.2 Overview of RIA Technology

The term “Rich Internet Application” was introduced
in a Macromedia whitepaper(Allaire, 2002). Several
technologies have been proposed to support RIA de-
velopment and they can be classified into four cate-
gories as shown below

• Scripting based
The client side logic is implemented by script-
ing language such as JavaScript and interfaces are
based on traditional HTML and CSS.

• Plug-in based
Advanced rendering and event processing engine
should be installed as a browser’s plug-in (e.g.,
Flash,(Adobe Systems Inc., 2007a) Flex, Las-
zlo(Laszlo Systems Inc., 2007)).

• Browser based
Rich interaction is natively supported by some
browser that interpret declarative interface defini-
tion language (e.g., XUL(Mozilla.org, 2007)).

• Web based desktop technology
Applications are downloaded from the web, how-
ever, executed outside the browser (e.g., Java
Web Start(Sun Microsystems Inc., 2007), Smart
Client(Microsoft Inc., 2007)).

2.3 Flex Framework

Flex is a framework released by Adobe Systems for
the development and deployment of cross platform

ICEIS 2008 - International Conference on Enterprise Information Systems

138

<mx:Button label=”test” click=”Alert.show (‘Hello’)”/> (a)< mx:Script > private function initialize () : void { id.addEventListener (MouseEvent.Click, hello); } private function hello () : void { Alert.show(“Hello”); }</mx:Script>< mx:Button label=”test” id=”testButton”/ >
(b)

Figure 2: Flex Programming.

Rich Internet Applications based on Adobe Flash
platform. It has two languages named MXML and
ActionScript3.0 (AS3). MXML is a XML based lan-
guage that designers/developers use to define the in-
terface of an application. In the deployment process
of Flex applications, designers design interfaces with
MXML and images. In addition, developers imple-
ment client-side logics with AS3 and server-side log-
ics with server-side technologies.

3 APPROACH

This section briefly outlines the basic concept of
Camel framework presented here.

3.1 Flex Programming Model

Applications created by Flex are working by event-
driven architecture. When the user interacts with the
interface, and also when important changes happen
in the appearance or life cycle of a component, such
as creation or destruction of a component or its re-
sizing, appropriate events are dispatched and event
handlers handle the events. In Flex, there are two
ways to associate events and event handlers. First, in
Fig.2(a), every MXML component owns its dispatch-
able events as attribute names and handler functions
which will handle the events are defined as the val-
ues of attribute. Secondly in Fig.2(b), we use “addE-
ventListener” method for these associations. Every
MXML component has “id” attribute so that we can
identify each component and we can refer every com-
ponent by using value of “id”. Therefore as shown in
Fig.2(b), we can add a function as an event handler
to a component in which the first argument represents
event name and the second is the reference of func-
tion. In addition, all processes are working on Flash
player in some browsers except RPC calls. When the
user require further information/data, an application
will get it from server via RPC components prepared

in Flex. When these components complete their pro-
cesses, they dispatch result/fault events, therefore, de-
velopers also add event handlers to handle the results.

3.2 Loosely Coupled Components

As we explained before, almost all web applications
are constructed by MVC (Model View Control) archi-
tecture to maintain their scalability and adaptability.
Therefore, Flex applications should be constructed by
the same architecture. In MVC architecture, View
will be changed based on the values of Model, that
is, there is strong dependency between them. On the
other hand, Control will dispatch appropriate business
logics based on the type of received requests. We be-
lieve the dependency between logic and View should
be weak because a business logic can be dispatched
by several requests.

As we explained above, in traditional web appli-
cations, we can not separate View sources from logic
sources completely because of the strong dependency
between View and Model and there is no way to sep-
arate them in development and execution processes.

On the other hand, Camel makes it possible to sep-
arate View from other components e.g., Model and
logic in development processes and join them in ex-
ecution process introduced by dependency injection
concept explained next section.

3.3 Dependency Injection

Dependency injection (DI) aims to solve a particular
problem in designing and constructing data structures
dependent on other pieces of code. For example in
Fig.3(a), class A has codes to create class B and use
methods of class B That is, class A can not be run
without class B, in other words, class A depends on
class B. On the other hand in Fig.3(b), class A has
only codes to use methods of class B and the codes
to create class B are included in DI Container. That
is, class A does not care about the creation process
of class B and DI Container injects the dependencies
between class A and B at runtime. As a result, the de-
pendency between class A and class B becomes weak.

In the context of this paper, the definition of
event handler in MXML tags and “addEventListener”
method in ActionScript make these dependency be-
tween View and Model.

4 IMPLEMENTATION

Camel makes use of tree structure of display objects
and reflection mechanism in ActionScript. We de-

CAMEL FRAMEWORK - A Framework for Realizing Complete Separation of Developer’s and Designer’s Work in
Rich Internet Application

139

Class A Class B
Class A Class BDI Containerusecreate

createinject use
(a)
(b)

Figure 3: Dependency Injection.

scribe them first and show the structure of Camel run-
time system. Secondly, we explain basic rules when
we use this framework.

4.1 Display Object Tree

“Application” is a root object of a Flex application
and every visible component, which must extend
“UIComponent” class, is added. In addition, there
are two ways to add an object to its parent. First,
we can invoke “addChild” method of the parent ob-
ject where the first argument is an added object. Sec-
ondly, we can specify not only visible component but
also invisible component (e.g., Model or logic class)
as MXML tags in MXML file. The nested structure of
MXML file represents tree structure of Flex compo-
nents. Therefore, we can get all references of added
objects by traversing this tree.

4.2 Reflection Mechanism

Like Java and Ruby, AS3 has powerful reflection
mechanism. In the reflection mechanism of AS3, an
object is translated to a XML object which includes
its properties, methods, parent classes etc. and we can
access them by EX4(Ecma International, 2005) style.
Therefore, it is easy to invoke a method by using only
method name and its arguments at runtime if we can
get the reference of the target object.

4.3 Runtime System

Fig.4 outlines the basic structure of a runtime system
and its entire architecture. As we explain next sec-
tion, developers have to prepare Listener class that
has handler functions for dispatched events from visi-
ble component in View. A runtime system consists of
five components as follows.

• Component Manager registers/removes the ref-
erences of View and Model components. It also
manages hierarchical composition of View, Lis-
tener and their parent. A Listener component

Application

OS/HardwareFlash Player/Web BrowserFlex FrameworkRuntime System
DI Manager

ComponentManagerEventControllerRPC Manager
Binding Manager

ModelViewBusiness Logic EventListener
ViewView ModelModelEventListenerEventListener

Binding
Injection

Figure 4: Runtime system and architecture.

should be located at the same level of the corre-
sponded View, so that “DI Manager” can get the
reference.

• EventController invokes an appropriate busi-
ness logic based on the dispatched event. This
is not a Flex event but an application specific
event defined by developers to invoke a business
logic. Therefore, developers have to register logic
classes and event types to the class which extends
EventController.

• RPC Manager stores Flex RPC components
such as HTTPService, WebService, RemoteOb-
ject, Producer and Consumer.

• DI Manager executes three types of dependency
injection at runtime. First, it injects not only han-
dler methods of Listener components into events
that are dispatched from visible components in
View but also the references of View and Model
component into Listener component as members.
Secondly, it injects logic methods in business
logic components into application specific events
mentioned above. Finally, it also injects call-
back methods in business logic component into
the events which are dispatched from RPC com-
ponents.

• Binding Manager binds values between visible
components in View and members in Model. This
binding is based on the name of visible com-
ponents and members in Model. For example
in Fig.5, a member “dataGrid” in Model will
be bound to the visible component named “data-
Grid”. In addition, the type of member in Model
such as String, Number, Date, etc. is predefined in
Camel, e.g., String for TextInput, ArrayCollection
for DataGrid etc.

ICEIS 2008 - International Conference on Enterprise Information Systems

140

Parent
fooView fooViewListener

fooView

testButton
public class FooViewListener { public var fooView:FooView; public var fooModel :FooModel ; public function testButtonClickHandler(e:Event) { // do something }

publlic class FooModel { public var dataGrid:ArrayCollection; public function FooModel () { }}

dataGrid
(a)

(b)
(c)

Figure 5: Relationship between View, Model and Listener.

<ServiceRepository> <mx:WebService id=”myserv” url=”http://aaa.bbb/”/></ServiceRepository>public class FooLogic { public var myserv:WebService public function loginEventHandler(e:Event) { // do something } public function myserv_doLoginResultServiceHandler { // do success process } public function myserv_doLoginFaultServiceHandler { // do fault process }}
Figure 6: Relationship between RPC component and Logic.

4.4 Basic Rules

Camel is inspired by convention over configura-
tion concept introduced by Ruby on Rail (37signals,
2007). Therefore, it has several name based rules in-
stead of XML formalized configuration files. Basi-
cally, we need four components (e.g., Model, View,
Listener and Logic) to develop an application and
one View corresponds to one Model and one Lis-
tener. Based on this, we explain these rules to sup-
port abovementioned injections and the binding as
follows.

1. Every component defined as MXML tag must
have id attribute and value.

2. A View and its corresponded Listener should
have the same parent in the display object tree

(Fig.5)(a).
3. View name must end “View” character and Lis-

tener name must end “Listener” character in ad-
dition to corresponding View name(e.g., fooView
and fooViewListener) (Fig.5)(a).

4. The name of methods in Listener, which han-
dles dispatched event from visible components in
View, must be defined as “component id” + “event
name” + “Handler” characters. For example in
Fig.5(b), a button component named “testButton”
dispatches “click” event and then we have to de-
fine the method to handle it as “testButtonClick-
Handler” in the Listener.

5. Listener must have the references of correspond-
ing View and Model inside it. In addition, The
reference name of View must be the same as View
name described above (fooView) and also the ref-
erence of Model must be named as “fooModel”
where the suffix is replaced with “Model” from
View name Fig.5(c).

6. Model must have the reference of values that are
bound to visible components in View. The refer-
ence type is based on the visible component type
which is predefined by Camel as we mentioned
section 4.3.

7. The name of methods in Logic, which handles ap-
plication specific events dispatched by develop-
ers must be defined as “event name” + “Even-
tHandler” characters. For example, a devel-
oper must define “loginEventHandler” method
in Logic for handling “login” event. In addi-
tion, if we use RPC components in Logic, the
Logic must have the reference of the RPC com-
ponent and two types of methods (success or
fault) to handle the result. For example in Fig.6,
when we use a WebService component, we have
to define the component as MXML tag with id
as a child of ServiceRepository tag, and then
define the reference in Logic where the name
must be the same as the id in ServiceReposi-
tory. Then, we have to define callback methods as
“component id” + “ ” + “method name” + “Re-
sult/Fault” + “ServiceHandler”. In Fig.6, “my-
serv doLoginResultServiceHandler” and “my-
serv doLoginFaultServiceHandler” are callback
methods for “doLogin” service invoked by Web-
Service component named “myserv”.

5 APPLICATION BEHAVIOR

This section describes about application behavior in-
cluding when and how the dependencies are injected

CAMEL FRAMEWORK - A Framework for Realizing Complete Separation of Developer’s and Designer’s Work in
Rich Internet Application

141

TextInput component

TextArea component
Button component

ComboBox component

<?xml version="1.0" encoding="utf-8"?><mx:Canvas xmlns:mx="http://www.adobe.com/2006/mxml" width="400" height="698" cornerRadius="5" borderStyle="solid" borderColor="#F1F1F1" backgroundColor ="#D7D7D7"><mx:Label x="10" y="60" text="Create dispatch URL " fontSize="12" fontWeight="bold"/><mx:Label x="10" y="348" text="Select Target " fontSize="12" fontWeight="bold"/><mx:Label x="10" y="11" text="Air Space" fontSize="14" fontFamily="Arial" fontWeight="bold"/><mx:Button x="341" y="11" label="Back" id="urlBacktoMainButton "/><mx:Label x="84" y="11" text="CMS Tool" fontSize="12" fontFamily="Arial" fontWeight="bold"/><mx:HRule x="10" y="43" width="378" height="2" strokeColor ="#888888"/><mx:Label x="32" y="90" text="Title"/><mx:Label x="32" y="120" text="Contents Title "/><mx:Label x="84" y="146" text="URL"/><mx:Label x="57" y="175" text="Map URL"/><mx:TextInput x="120" y="88" width="260" id="usSetTitleInput "/><mx:TextInput x="120" y="116" width="260" id="usContentsTitleInput "/><mx:TextInput x="119" y="144" width="260" id="usUrlInput"/><mx:TextInput x="119" y="173" width="260" id="usMapUrlInput "/><mx:TextArea x="120" y="203" width="260" height="90" id="usCommentArea "/><mx:TextInput x="120" y="300" width="208" id="usThumbNailInput "/><mx:Label x="50" y="204" text="Comment"/><mx:Label x="45" y="302" text="ThumbNail"/><mx:Label x="148" y="369" text="Year"/><mx:Button x="336" y="300" label="Open" id="usOpenThumbnailButton "/><mx:Label x="10" y="403" text="Prefetch Date " fontSize="12" fontWeight="bold"/><mx:Label x="10" y="479" text="OpenDate" fontSize="12" fontWeight="bold"/><mx:Label x="10" y="554" text="EndDate" fontSize="12" fontWeight="bold"/><mx:Label x="28" y="369" text="Gender"/><mx:Label x="275" y="369" text="Area"/><mx:ComboBox x="74" y="367" id="usGenderBox " width="62"></mx:ComboBox><mx:ComboBox x="181" y="367" id="usAgeBox" width="80"></mx:ComboBox>
(a) (b)

Label component

Figure 7: Screenshot of CMS and View code.

by using an application introduced in Fig.5 and 6.
First of all, a developer has to use “CamelApplica-
tion” as a root tag instead of “Application”. Based on
this, dependencies are injected as follows.

1. An application starts.

2. Camel catches all “creationcomplete” events of its
child components by “CamelApplication” class.
This event is dispatched by Flex when a compo-
nent completes its initializating process.

3. Camel gets the references of FooView by compo-
nent id (fooView). As we described section 4.4,
the name of View must end “View” characters.

4. Camel also gets the reference of FooViewListener
corresponding to the FooView by using compo-
nent id and tree structures in Fig.5(a).

5. Camel parses XML of FooView and FooListener
by using reflection mechanism of AS3 and injects
“testButtonClickHandler” method in FooListener
into “testButton” component in FooView based on
the naming rules explained in section 4.4. In addi-
tion, Camel also injects the references of FooView
and FooModel into fooView and fooModel in
FooListener. If Model is not created, Camel cre-
ates and registers it to “ComponentManager” to
keep each Model singleton.

6. Camel binds “dataGrid” in Model to dataGrid
which is visible components in View based on
the naming rule. This binding uses “BindingUtil”
class in Flex.

7. When an application dispatches “login” event,
Camel create FooLogic and parses it to in-
ject an “loginEventHandler” method in FooLogic
into “login” event. In addition, Camel injects
the reference of WebService component named

“myserv” into FooLogic and then injects “my-
serv doLoginResultServiceHandler” and “my-
serv doLoginFaultServiceHandler”methods into
callback events dispatched by WebService com-
ponent.

6 EXPERIMENT

We developed a real application which is a content
management system by using Camel. It has 15 View
and Listener components in addition to 5 Logic com-
ponents. In addition, it has create, update, delete,
search functions for management of data and can up-
load/download contents from/to servers. It uses Re-
moteObject as RPC components in Logic to serialize
application specific data in database on a server.

As shown in Fig.7(a), View has several visible
components such as TextInput, TextArea, Button,
ComboBox, DataGrid and Label. On the other hand,
as shown in Fig.7(b), there is no programming codes
in View component. This means that Camel can real-
ize complete separation we focus on and is adaptable
for real applications.

7 RELATED WORK

There are various frameworks in current web appli-
cations. Zend framework (Zend Technologies, 2007)
and Mojavi (Major Computing, 2007) are PHP based
frameworks for supporting to develop web application
based on MVC architecture. These frameworks adopt
name based rules for dispatching business logics de-
pending on received requests. We can also implement

ICEIS 2008 - International Conference on Enterprise Information Systems

142

a web application easily by using Smarty (New Digi-
tal Group Inc., 2007), which is a template engine for
PHP. However, it is impossible to separate View from
Model or Logic completely because these are HTML
based frameworks.

Struts (Apache Software Foundation, 2007c) is a
famous framework for supporting Java based web ap-
plication development. It also enables us to develop
a MVC based web application easily by collaborat-
ing with JSTL (Apache Software Foundation, 2007b)
and Velocity (Apache Software Foundation, 2007a).
However, we have to manage a XML formalized con-
figuration file called struts-config.xml to define dis-
patching rules, including requested URLs, Actions
and JSPs. In addition, Struts does not support depen-
dency injection. Therefore, unit testing and manage-
ment of this configuration file are difficult in a large
scale application development. Spring (Source, 2007)
is a framework which includes DI container, libraries
for presentation layer and database access layer.

However, we have to manage XML based configu-
ration files like struts-config.xml in Struts framework.
Seasar2 (The Seasar Foundation, 2007) is a DI Con-
tainer which introduces convention over configuration
concept. Therefore we do not have to manage config-
uration files even in a large scale application.

However, these frameworks and containers can
not separate View completely by source code level.

On the other hand, Cairngorm (Adobe Labs, 2007)
is a framework for supporting to develop Flex appli-
cations based on MVC architecture, however, it does
not support dependency injection. Therefore devel-
opers have to define binding values or event handler
directly in visible component tags, that is it does not
support complete separation of View component.

8 CONCLUSIONS

We have presented a framework called Camel for de-
velopment of RIAs. Camel has made it possible to
separate View completely from any other components
in source code level. That is, designers and develop-
ers do not have to share any source codes in applica-
tion development processes, and it becomes easy not
only to modify designs or logics separately but also
to do testing an application.In addition, we have also
introduced convention over configuration concept to
reduce any configuration files to use this framework
and shown the usage and utility of this framework by
implementing a real application.

Finally, we would like to point out further issues to
be resolved. In current implementation, Camel lacks
validation mechanism for values bound to Model. We

plan to introduce to extend validation mechanism of
Flex with dependency injection. In addition, we usu-
ally make a mistake to type rule based names in de-
velopment process. Therefore, we plan to provide a
tool to complement these names as a Eclipse plug-in.

REFERENCES

37signals (2007). Ruby on Rail. http://
www.rubyonrails.org/.

Adobe Labs (2007). Cairngorm Framework.
http://labs.adobe.com/wiki/index.php/Cairngorm.

Adobe Systems Inc. (2007a). Adobe Flash CS3 Profes-
sional. http:// www.adobe.com/products/flash/.

Adobe Systems Inc. (2007b). Adobe Flex2.
http://www.adobe.com/products/flex/.

Allaire, J. (2002). Macromedia flash mx-a next-generation
rich client. In Technical report, Macromedia.

Apache Software Foundation (2007a). Apache Velocity
Project. http://velocity.apache.org/.

Apache Software Foundation (2007b). JSTL.
http://jakarta.apache.org/taglibs/.

Apache Software Foundation (2007c). Struts.
http://struts.apache.org/.

Driver, M., Valdes, R., and Phifer, G. (2005). Rich inter-
net applications are the next evolution of the web. In
Technical report, Gartner.

Duhl, J. (2003). White paper: Rich internet applications. In
Technical report, IDC.

Ecma International (2005). Ecma script for xml specifica-
tion.

Laszlo Systems Inc. (2007). Laszlo.
http://www.laszlosystems.com.

Major Computing (2007). Mojavi Framework.
http://www.mojavi.org/.

Microsoft Inc. (2007). Smart Client Developer Center.
http://msdn.microsoft.com/smartclient/.

Mozilla.org (2007). XUL.
http://www.mozilla.org/projects/xul/.

New Digital Group Inc. (2007). Smarty.
http://smarty.php.net/.

Source, S. (2007). Spring Framework.
http://www.springframework.org/.

Sun Microsystems Inc. (2007). Java Web Start Technology.
http://java.sun.com/products/javawebstart/index.jsp.

The Seasar Foundation (2007). Seasar.
http://www.seasar.org/.

Zend Technologies (2007). Zend Framework.
http://framework.zend.com/.

CAMEL FRAMEWORK - A Framework for Realizing Complete Separation of Developer’s and Designer’s Work in
Rich Internet Application

143

