
A METADATA-DRIVEN APPROACH FOR ASPECT-ORIENTED
REQUIREMENTS ANALYSIS

Sérgio Agostinho, Ana Moreira, André Marques, João Araújo
CITI / Departamento de Informática, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

Isabel Brito
Dep. de Engenharia, Instituto Politécnico de Beja, 7800-050 Beja, Portugal

Ricardo Ferreira, Ricardo Raminhos, Jasna Kovačević, Rita Ribeiro
UNINOVA – Instituto de Desenvolvimento de Novas Tecnologias, 2829-516 Caparica, Portugal

Philippe Chevalley
ESA/ESOC P.O. Box 299, 2201 AZ Noordwijk, The Netherlands

Keywords: XML, Metadata Repository, Aspect-Oriented Software Development, Requirements Analysis, Early
Aspects.

Abstract: This paper presents a metadata-driven approach based on aspect-oriented requirements analysis. This
approach has been defined in cooperation with the European Space Agency in the context of the “Aspect
Specification for the Space Domain” (ASSD) project. ASSD aims at assessing the applicability and
usefulness of aspect-orientation for the space domain (ground segment software projects in particular),
focusing on the early stages of the software development life cycle. This paper describes a rigorous
representation of requirements analysis concepts, refines a method for handling early aspects, and proposes
a client/server architecture based on a metadata repository.

1 INTRODUCTION

Aspect-Oriented Software Development (AOSD)
aims at providing improved modularisation and
composition techniques to handle crosscutting
concerns (Kiczales et al., 1997). Crosscutting
concerns are encapsulated in separate modules,
called aspects, and composition (or weaving)
mechanisms are later used to weave them back to the
base modules.

The ASSD approach proposed in this paper is an
application of the metadata concepts introduced in
previous work (Marques et al., 2007). The approach
itself is a refinement of the Aspect-Oriented
Requirements Analysis (AORA) framework (Brito
& Moreira, 2003a, 2003b), a pioneer method in the
domain. The ASSD approach addresses the
identification, separation, representation and

composition of crosscutting concerns at the
requirements level. This early identification can
provide a way to take into account options, tradeoffs
and other decisions before the implementation or
even the architectural design is derived.

The architecture and client tools that provide an
actual concretization of the ASSD method are a
refinement of previous work (Ferreira, Raminhos &
Moreira, 2005). The architecture of the system relies
on a Metadata Repository (Ferreira, Moura-Pires,
Martins & Pantoquilho, 2005; Ferreira & Moura-
Pires 2007) for supporting the approach definitions,
to automatically generate specific documentation,
and to provide the means for creating reusable
catalogues (Chung, Nixon, Yu, & Mylopoulos,
2000).

This paper is organized as follows. Section 2
introduces the ASSD project and the base concepts
that support the approach. Section 3 describes the

129
Agostinho S., Moreira A., Marques A., Araújo J., Brito I., Ferreira R., Raminhos R., Kovačević J., Ribeiro R. and Chevalley P. (2008).
A METADATA-DRIVEN APPROACH FOR ASPECT-ORIENTED REQUIREMENTS ANALYSIS.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 129-136
DOI: 10.5220/0001684101290136
Copyright c© SciTePress

ASSD model including the automatic document
generation. Section 4 discusses the architecture
implemented, i.e., infrastructure and client tools.
Section 5 reports related work in the area and
Section 6 discusses the case studies used in the
validation of ASSD and draws some conclusions.

2 ASSD PROJECT AND MAIN
CONCEPTS

The ASSD project (UNINOVA, 2007) aims at
assessing the applicability and usefulness of aspect-
orientation, focusing on the early stages of the
software development life cycle. The project was
developed for ESA in the scope of space domain,
ground segment systems in particular, namely ESA
Contract 19556/06/NL/JD/na.

ASSD was tested with two operational projects
of the ground segment which followed a
“traditional” object-oriented requirements analysis
for their specification. A previous version of the
Metadata Repository employed in the ASSD
architecture was also analysed using the ASSD
method. In order to exemplify some of the ASSD
system functionalities and graphical capabilities the
performed aspect analysis for the Metadata
Repository component will be briefly described. A
full analysis of this software component is outside
the scope of the paper due to space limitations.

The ASSD approach is supported by XML
technologies, namely XML Schema, which is used
in the rigorous and non-ambiguous representation of
supporting metadata concepts: Stakeholder,
Stakeholder Requirement, System Requirement,
Concern, Decomposition Node, System, and Test
Case (Figure 1).

A Stakeholder describes an entity (e.g. person,
company, university) responsible for defining the
main capabilities (Stakeholder Requirements) of a
software application, usually during elicitation
meetings. The concept’s metadata is mainly
descriptive regarding the contacts of the entity, e.g.
address(es) and email(s).

A System Requirement refers to a technical
requirement that allows an efficient mapping
between a possible non-technical Stakeholder
Requirement to a requirement that is non-ambiguous
in its interpretation and can be understood by the
development team. Depending on the elicited
Stakeholder Requirements, these may be collapsed
in one, or expanded in multiple System
Requirements. Both concepts contain prioritization

attributes that classify the requirement’s importance
within the devised System.

A Concern groups similar, or closely, related
System Requirements. A concern refers to a
property which addresses a certain problem that is of
interest to one or more stakeholders and which can
be defined as a set of coherent requirements. The
concern’s metadata contains a textual description,
specifies navigation relations to similar concerns and
some may have negative and positive contributions
to others. Since concerns may be as abstract as
required (e.g. Security, Performance), concerns can
be decomposed based on the definition of
Decomposition Node. The Decomposition Node
concept is used to define a tree-based structure
where the root node indicates a possible
operationalization – an actual concretization of a
possible abstract concern (Chung et al., 2000) – and
where each child node indicates a refinement for that
node. Simple logic operators may be used for
defining the operationalization tree.

System

Stakeholder

Decomposit ion
Node

Concern

System
Requirement

Stakeholder
Requirement

Test Case

Figure 1: Concept’s main relations.

The System concept represents an abstraction
for a real software application or component,
functioning as an integrator concept within ASSD; it
joins together information about the concerns the
application responds to, the stakeholders involved
and the concern priorities defined by each
stakeholder. Other metadata describes the context in
which the system is applicable, the consequences
resulting from the system usage and presents a set of
examples whether the system had been previously
applied with success. Furthermore, the System
concept holds information describing how the
system will be tested and validated using the Test
Case concept.

A Test Case defines the tests to be performed to
guarantee that the System Requirements and
Stakeholder Requirements have been correctly

ICEIS 2008 - International Conference on Enterprise Information Systems

130

implemented. It specifies the profile for the tester as
well as the requirements that shall be validated by
the test execution. In spite of being successfully used
in the project, this concept is out of the scope of
early aspects, and therefore it is no further discussed
in this paper.

The main relations for the proposed concepts
are depicted in Figure 1, where each arrow
represents a reference relation. The System concept,
representing a collection of interacting and
interrelated elements, links together Concern,
Stakeholder, Stakeholder Requirement and System
Requirement, making all system dependent
information stored in the main System concept. All
references linking the System concept to the
independent concepts are intended to promote
reusability.

3 PROPOSED APPROACH

The proposed ASSD approach model is composed
by the following tasks. The development approach is
iterative. The main tasks and respective subtasks are
explained in the next sub-sections. This model is an
evolution of AORA, with some differences and
extensions that are explained at Section 5. The
resulting specification from the proposed approach
is stored in an XML-based Metadata Repository
(Ferreira & Moura-Pires, 2007). XML was chosen as
the document format since it provides flexibility to
represent any kind of information.

3.1 Identify Stakeholders
and Requirements

The analyst obtains stakeholders and their
requirements from the provided documentation and
interview transcripts with the involved entities in the
project.
Identify Stakeholders. A stakeholder may be any
person, organization and application with an interest
in the system. Stakeholders may have different roles;
those with a direct interaction with the system
correspond to UML Use Case actors.
Identify Stakeholder Requirements. Stakeholders
define their requirements for the system, which
should be addressed and implemented by the
developers. Requirements can be classified
according to Sommerville (2006) and have assigned
priorities, using the MoSCoW rules (Stapleton,
1997). These artefacts are usually referred in the
literature as “user requirements”.

3.2 Elicit System Requirements

System requirements detail the services provided by
the system and also the constraints that the system
must satisfy. They are classified according to their
visibility (internal or public to the analysis and
development teams), and have a priority. A system
requirement may comply with one or more
stakeholder requirements and a stakeholder
requirement may comply with one or more system
requirements. These requirements are summarized in
a System Requirements Document (Sommerville,
2006) that serves as a contract between developer
and client. It is a good practice to fulfil all
Stakeholder Requirements with at least one System
Requirement, unless properly justified. This
mapping is sometimes expressed in a requirements
traceability matrix.

3.3 Identify Concerns

This task is divided in two parallel steps: Elicit
concerns, and Reuse catalogues. Concerns are
elicited based on the understanding of the system
domain, interview transcripts and existing
documentation. Concerns can be specialized into
sub-concerns, if necessary, and classified as
functional or non-functional (Sommerville, 2006).
To promote reusability, the use of concerns
catalogues (Chung et al., 2000), is proposed.

3.4 Specify Concerns

This task is divided into six sub-tasks. Most of the
analysis results will be based on the outcome of this
task.
Identify Responsibilities. Responsibilities are
knowledge or proprieties the concern must maintain
and offer. A concern without responsibilities
indicates that either the system requirements are
missing or that the concern is not needed in the
analysis.
Identify Contributions. A concern may contribute
positively (‘+’) or negatively (‘-’) to another
concern, depending if it helps or damages (Wiegers,
2003). Contributions may be unidirectional, meaning
that if a concern has a negative contribution to
another concern, the inverse is not mandatory. If the
contribution from one concern to another one is
ambiguous, the concern shall be specialized or
decomposed in two or more sub-concerns to
describe each of the situations, and contributions
shall be set from these concerns to the target
concern.

A METADATA-DRIVEN APPROACH FOR ASPECT-ORIENTED REQUIREMENTS ANALYSIS

131

Identify Required Concerns. This step identifies
concern dependencies for functional concerns. For
example, if the “Update” concern requires the
“Persistence” concern, it is not possible to achieve
“Update” without “Persistence”. Two concerns
requiring each other indicate an analysis error, or
that perhaps they should be merged together.
Identify Stakeholder Priorities. Different
stakeholders may allocate different priorities to the
same concerns: Very Important, Important, Medium,
Low, Very Low, or Don’t Care – the default value.
Decompose Concerns. Functional concerns can be
decomposed, as in object-oriented or component-
based software development. Non-functional
concerns, on the other hand, can be decomposed
using a softgoal dependency graph (Chung et al.,
2000) with a set of softgoals or operationalizations.
When performing the system analysis, the choice of
which softgoals and operationalizations are to be
implemented is based on the graph analysis.
Build Concern Models. Concern models can be
built using UML 2.0. A simple set of rules help to
generate a use case diagram: (i) for each stakeholder,
map to an actor; (ii) for each functional concern,
map to an use case and link to the actors
(stakeholders) that have an interest on it; (iii) for
each “required” relationship, create an <<include>>,
<<extend>>, or <<constrain>> (for non-functional
concerns) relationship in the diagram; (iv) for each
concern decomposition, create a <<part of>>
relationship between the concern and its
decomposed concerns.

3.5 Analyse Match Points

The purpose of this task is to compose the concerns
to allow the identification and resolution of
conflicting situations. This task is supported by
automatically generated documentation from the
analysis specification.
Review Stakeholders. This review is made through
a table composed of three columns: Name,
Description, and Role, where the stakeholder related
information is presented.
Review Concerns. This review is accomplished
through the use of two tables, showing functional
and non-functional concerns. Both tables share three
columns: Name, Description, and Stakeholders. The
non-functional concerns table has an extra column,
Classification according to Stapleton (1997).
Concerns are grouped according to their hierarchy.
For concerns with a parent concern, the parent(s)
path of specialization is depicted, where “Security >
Performance”, for example, means that the concern
“Security” is specialized by the concern

“Performance”, following the same convention as
OCL.
Review Concern Contributions. A table “concerns
vs. concerns” is built to provide a global view of the
concerns contributions. This table can be simplified
by pruning the unused rows and columns, but even
doing that, in some cases it may not be a scalable
visualization. For these cases, it is preferable to view
this information using lists. An example is shown in
Figure 2 for a test case.
Review Required Concerns. To achieve this, a
table “concerns vs. required concerns” is proposed.
Again, a scalability problem may occur, so it is also
proposed to use lists as an auxiliary visualization of
this content. A cell with a checked mark (“√”)
means that the concern in the row requires the
concern in the column.
Identify Crosscutting Concerns. A concern is
crosscutting if it is required by more than one
concern. Crosscutting concerns, or candidate
aspects, represent functionalities and constraints that
are scattered among other concerns. These can be
mapped into architectural design choices, functions
or implementation aspects (Rashid, Moreira &
Araújo, 2003).
Identify Match Points. A match point is a set of
concerns that need to be composed together to
accomplish certain functionalities. In a match point,
one of the concerns plays the role of base concern to
which the behaviour of the remaining concerns
needs to be weaved. Match points are specified
based on the required relationship between concerns
in the Specify Concerns step. This task is performed
by (i) produce a list of match points and their
respective concerns; (ii) analyse match points table
with concerns and stakeholder priorities.

Figure 2: Concern contributions for a test case.

ICEIS 2008 - International Conference on Enterprise Information Systems

132

Figure 3: Match points identified for a test case.

Identify Conflicts. A conflicting situation is
detected whenever two or more concerns that
contribute negatively to each other need to be
composed into the same match point. Conflicts can
be classified according to their severity: simple
resolution conflicts (if their stakeholder priorities are
different) and requiring negotiation conflicts (if the
stakeholder priorities for the concern are the same).
For conflicts requiring negotiation, the stakeholders
must agree on the dominant concern. This is
analysed at two levels: concern and stakeholder. As
such, a list of match points and respective conflicts
is produced, at both levels of analysis. Additionally,
the match point identification table is used to
identify the conflicts, by highlighting the match
points and concerns that are involved in conflicts
(yellow for conflicts of simple resolution and red for
conflicts requiring negotiation). An example is
shown in Figure 3.
List unused Concerns. This is an analysis
validation step to identify concerns that do not
participate in any relation.

3.6 Analyse Requirements Traceability

With this document an analyst can perform the
following.
Review Stakeholders. This is analogous to the
Analyse Match point step.
Review Stakeholder Requirements. This step
produces a table showing the stakeholder
requirements in the system.
Review system requirements. Build a table that
shows the system requirements in the system.
Map Concerns. Produce a list of concerns to system
requirements mappings. Concerns that are not
mapped into any system requirement are highlighted
in yellow. The analyst should take those into
account, as they may be unnecessary for the system.
Map Stakeholder Requirements. Build a list with
the mappings from stakeholder requirement to
system requirements. Stakeholder requirements that
are not mapped into system requirements are

highlighted. The analyst should take this into
account, as those are an indication that the
stakeholders may not be fully satisfied with the
resulting system.

4 PROPOSED ARCHITECTURE

The Metadata Repository provides a framework
where the knowledge of the analysis can be stored,
queried and validated (Ferreira et al, 2005; Ferreira
& Moura-Pires, 2007). This framework facilitates
the construction of tools to support the approach
described in the previous section, providing a user
interface for structuring knowledge, detecting
inconsistencies, validating the user input, and
generating documentation. By using XML
internally, the proposed tools can store all the
analysis specification in the Metadata Repository,
guaranteeing its validation, and taking advantage of
the automatic document generation capabilities of
the repository (as exemplified in sections 3.5 and
3.6).

A high-level architecture of the system consists
into three main components: the Metadata
Repository, the Client tools, and a Concern
Catalogue (Chung et al., 2000). Future tool or
services’ extensions can be developed through the
use of External Applications.

4.1 Metadata Repository

Information Model and Technologies. The
Metadata Repository stores information of various
types, each one classified according to a certain
terminology. Each type of information is considered
as a different layer, as shown in
Figure 4.

The lowest abstraction level (zero level) refers to
the source objects in a certain reality, being either
physical or non-physical (e.g., persons, or
information stored in a database). These objects are
considered external, therefore not being represented
in the Metadata Repository. In this work, the objects
are the systems to be analysed according to the
proposed approach.

The first level defines models for the previous
level. A model is a finite description of a source
object for a specific purpose. In the Metadata
Repository context, models are called instances and
are represented by XML documents, where relations
can be established to other instances by using a
specific syntax. Examples can be Stakeholders (e.g.

A METADATA-DRIVEN APPROACH FOR ASPECT-ORIENTED REQUIREMENTS ANALYSIS

133

“Owner”, “Developer”), concerns (e.g.
“Performance”, “Security”) or systems.

The second level defines metamodels for the
various types of models in the first level. In the
Metadata Repository, metamodels are called
concepts and are defined using XML Schema and
SchemaTron. Therefore, a concept is the definition
of a structured language that describes a certain type
of instances, as presented in Section 2.

The third level defines meta-metamodels that
describe style rules and common structure
definitions for all metamodels in the second level. In
the Metadata Repository these are called rules and
include styling and predefined structures to be used
in every concept, for concept structure consistency
and standardization.

Objects

Instances

Concepts

Rules M3

M2

M1

M0

Technologies Java
Schematron

XML Schema
Schematron

XML

Figure 4: Metadata Repository technologies and
abstraction levels.

The Metadata Repository supports a set of basic
functionalities for storing and querying metadata
information, and a simple interface for easy
integration among external systems. Additional
features, like instance relations and versioning,
provide added functionality and capabilities to the
repository.
Storage. The Metadata Repository stores both
instances and concepts. As these are represented as
XML and XML Schema documents, they are stored
in eXist, a native XML database
(http://exist.sourceforge.net).
Validation. Validation is an important task for
maintaining coherence in the repository. Concepts
and instances are validated according to their syntax
and structure, and reference integrity is checked.
Instance Relations. The Metadata Repository
supports relations among instance versions, keeping
and ensuring integral referencing, i.e. the target
instance version of a relation always exists.
Querying. Once metadata is stored in the repository,
querying mechanisms are provided to retrieve
metadata in various formats. By using XQuery, it is
possible to write queries to be performed over the
stored instances and/or concepts by the definition of
an output document, being possible to return XML

or non-XML results, as shown in Figure 5. If the
query results are XML, it is possible to transform
them into other formats by using either a single
XSLT (Transform), or a sequence of XSLT
(Transform Pipeline). These are commonly used to
generate HTML documentation from the query
results.

eXist
XML

Database

Query
(XQuery) XML

TXT /
HTML /
other

Query
(XQuery)

Transform
(XSLT) XML /

HTML /
other

Transform
Pipeline
(XSLT[1])

XML
XML /

HTML /
other

...

Transform
Pipeline
(XSLT[n])

Figure 5: Metadata Repository querying capabilities.

Web Service. The Metadata Repository interface is
a web service, providing a set of management
methods, invoked by client applications.

4.2 Client Tools

For user interface, a set of client tools is developed,
the Aspect Development Assistant Tools (ADAT).
The client tools architecture is based on previous
work (Ferreira et al. 2005) and include: (i)
Stakeholder Library, for maintaining and managing
the stakeholders to be used by the systems. (ii)
Concern Library, for maintaining and managing the
concerns to be supported by the systems. With this
application, concerns are defined system
independently so that they can be reused by several
systems (Chung et al., 2000). (iii) Decomposition
Library, for maintaining and managing the concern
decompositions, by creating reusable decomposition
graphs. (iv) System Editor, the main ADAT
application (screenshot in Figure 7). It maintains and
manages systems to be analysed by the proposed
approach, allowing the specification of stakeholders
and concerns from the Stakeholder Library and
Concern Library applications and defining
Stakeholder Requirements, and System
Requirements. This application also outputs analysis
documentation, as previously described.

The client tools share a similar user interface, as
shown in Figure 6. Two panes compose it: the
navigation pane and the content pane, marked as 1
and 2 respectively. The navigation pane (1) contains
two tabs: the tree tab and the search tab. The tree tab
allows navigating through the grouper and instance
nodes, allowing node expansion and access to the
available features for the corresponding instance
type. The search tab allows finding instances by
their descriptive fields. The selected item in the

ICEIS 2008 - International Conference on Enterprise Information Systems

134

navigation pane is visualized in the content pane (2).
This pane allows several tabs, depending on the
current application and node type. Although usually
the tabs correspond to edition forms, they can also
have source XML and analysis output.

Figure 6: ADAT layout.

5 RELATED WORK

This work presents an extension to the AORA
approach (Brito & Moreira, 2003a, 2003b) and a
software engineering tool to support it. Similar work
has been done before with the creation of the AORA
tool, for supporting an early version of the AORA
methodology (Brito, Moreira & Araújo, 2006). The
work described in this paper can be considered as an
extension to it, since it presents a more complete
approach, covering stakeholder and system
requirements, and an enhanced set of tools to
support it. The ASSD model differs on the AORA
model regarding some extensions and changes: (i)
concepts were added for requirements and tests; (ii)
parent relations were added to some concepts,
allowing the formation of hierarchies; (iii) the
Review requirements step was added, allowing
requirements traceability analysis; (iv) concern
contributions are unidirectional, instead of
bidirectional.

The approach proposed by Rashid et al. (2003)
uses templates to represent candidate aspects and to
show the impact of concerns over others and is
based on separating the specification of aspectual
requirements, non-aspectual requirements and
composition rules in modules representing coherent
abstractions and following well-defined templates.
The approach is supported by a tool called ARCaDe.

The Theme approach provides support for
aspect-oriented development at analysis and design
levels (Baniassad & Clarke, 2004). At the analysis
level, Theme/Doc is carried out by first identifying a

set of actions in the requirements list which are, in
turn, used to identify crosscutting behaviours. At the
design level, Theme/UML allows a developer to
model features and aspects of a system, and specifies
how they should be combined.

Our approach differs from the above approaches
by offering a more complete concern template and a
tool that help tracing the concerns from requirements
to the specification, composition of concerns,
management of changes of concern specifications
and compositions, and a concern repository within a
project. Regarding Theme, it does not offer a well-
defined concern specification language neither does
it offer the possibility of composing themes together
to study the impact of each crosscutting concern on
the system. Moreover, Theme does not offer a
concern repository.

6 CONCLUSIONS AND FUTURE
WORK

The ASSD project presented an approach that has
successfully applied to real-world case studies that
were validated by DEIMOS Space
(http://www.deimos-space.com/). The software
architecture and client tools were validated by
EADS Test & Services (http://www.ts.eads.net/).
The analysis on the case studies was performed
iteratively with the design of the approach, allowing
its improvement and consequently obtaining
interesting results in the case studies, such as the
detection of some trade-offs that had to be
performed. However, since the case studies were
nearly complete projects, it was not possible to
integrate the approach in their full development
cycle; a task that would allow further validation of
the approach. The use of a Metadata Repository
solution for managing knowledge, ensuring its
validation, consistency and providing querying
mechanisms is a major advantage comparing with
traditional documentation supports.

REFERENCES

Baniassad E., & Clarke S. (2004). Theme an Approach for
Aspect-Oriented Analysis and Design. International
Conference on Software Engineering, Edinburgh,
Scotland.

Brito, I., & Moreira, A. (2003a). Advanced Separation of
Concerns for Requirements Engineering. VIII
Jornadas de Ingeniería de Software y Bases de Datos
(JISBD), Alicante, Spain.

A METADATA-DRIVEN APPROACH FOR ASPECT-ORIENTED REQUIREMENTS ANALYSIS

135

Brito, I., & Moreira, A. (2003b). Towards a Composition
Process for Aspect-Oriented Requirements. Early
Aspects 2003: Aspect-Oriented Requirements
Engineering and Architecture Design, AOSD 2003,
Boston, USA.

Chung, L., Nixon, B., Yu, E., & Mylopoulos, J. (2000).
Non-Functional Requirements In Software
Engineering. Kluwer Academic Publishers.

Ferreira, R., Moura-Pires, J., Martins R., & Pantoquilho,
M. (2005). XML based Metadata Repository for
Information Systems, 12th Portuguese Conference on
Artificial Intelligence (EPIA 05), Portugal.

Ferreira, R., Raminhos, R., & Moreira, A. (2005).
Metadata Driven Aspect Specification. ACM/IEEE 8th
International Conference on Model Driven
Engineering Languages and Systems, Montego Bay,
Jamaica.

Ferreira, R., & Moura-Pires, J. (2007). Extensible
Metadata Repository for Information Systems and
Enterprise Applications. 9th International Conference
on Enterprise Information Systems (ICEIS), Funchal,
Portugal.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C. Videira, Loingtier, J.-M., & Irwin, J. (1997).
Aspect-Oriented Programming. European Conference
on Object-Oriented Programming (ECOOP), Finland.

Marques, A., Raminhos R., Ferreira, R., Ribeiro R.,
Agostinho S., Moreira, A., & Araújo J. (2007).
Aspect-Oriented Analysis Applied To The Space
Domain. 9th International Conference on Enterprise
Information Systems (ICEIS), Madeira, Portugal.

Rashid, A., Moreira, A., & Araújo, J. (2003).
Modularisation and Composition of Aspectual
Requirements, AOSD 2003, Boston, USA.

Sommerville, I. (2006). Software Engineering (8th
edition). Addison-Wesley.

Stapleton, J. (1997). Dynamic Systems Development
Method. Addison-Wesley.

UNINOVA (2007). ASSD – Aspects Specification for the
Space Domain. Retrieved March 8, 2008 from
http://www2.uninova.pt/ca3/en/project_ASSD.htm.

Wiegers, K. (2003). Software Requirements (2nd edition).
Microsoft Press

ICEIS 2008 - International Conference on Enterprise Information Systems

136

