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Abstract: Financial diagnosis and prediction of corporate bankruptcy can be viewed as a pattern recognition problem. 
This paper proposes a novel approach to solution based on ARTMAP-IC - a general-purpose neural network 
system for supervised learning and recognition. For a popular dataset, with proper preprocessing steps, the 
model outperforms similar techniques and provides prediction accuracy equal to the best one obtained by a 
backpropagation MLPs. An advantage of the proposed model over the MLPs is the short online learning, 
fast adaptation to novel patterns and scalability. 

1 INTRODUCTION 

For a financial institution it important to evaluate 
correctly the risk profile of a debtor. Wrong credit 
decisions can have important consequences: the 
refusal of a good credit can cause the loss of future 
profit margins and the approval of a bad credit can 
cause the loss of the interests and the principal 
money. To estimate credit risk, banks usually apply 
scoring systems, which takes into account factors, 
such as leverage, earnings, reputation, etc. Due to 
lack of metrics and subjectiveness in estimates, 
sometimes decisions are unrealistic and not 
consistent. Financial research has lead to numerous 
studies and a variety of formal techniques for 
classification of potential debtors into different 
groups in terms of solvency. 

1.1 Previous Research 

Kumar and Ravi (2007) outline techniques for 
financial diagnosis and bankruptcy prediction, 
grouped into two broad categories - statistical and 
intelligent. The statistical techniques include: linear 
discriminant analysis; multivariate discriminate 
analysis; quadratic discriminant analysis; logistic 
regression (logit); and factor analysis. The group of 
intelligent techniques include different types of 
neural networks, most popular of which is the multi-
layer perception (MLP); probabilistic neural 
networks; auto-associative neural network; self-
organizing map; learning vector quantization; 

cascade correlation neural network; decision trees; 
case-based reasoning; evolutionary approaches; 
rough sets; soft computing (hybrid intelligent 
systems); operational research techniques including 
linear programming; data envelopment analysis; 
quadratic programming; support vector machine; 
fuzzy logic techniques, etc. 

In their study, (Balcaen and Ooghe, 2004) found 
many difficulties in performance of the statistical 
techniques due to data anomalies, inappropriate 
sample selection, matters related to non-stationarity 
and instability of the data, unreasoned faith and trust 
on the truth reflected within the financial statements 
of the firms under consideration, inappropriate 
selection of independent variables and wrong 
consideration of the influence of time in the 
modelling. 

(Zhang et al., 1999) use neural networks to 
model bankruptcy prediction and they illustrate links 
to traditional Bayesian classification theory. The 
study considers initially the five financial ratios 
proposed by Altman (1968), joining later on 
additional ones. The study also compares the 
accuracy of neural networks against that of logistic 
regression. The authors suggest that the neural 
networks outperform the logistic regression. Atiya 
(2001) concluded in his research that, in general, the 
neural networks outperform statistical techniques 
and suggested to try to improve the predictive ability 
of the networks. 
This paper proposed a novel approach to bankruptcy 
prediction based on the ARTMAP-IC neural 
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networks, a member of the family of neural 
networks based on the adaptive resonance theory 
(ART). The paper is organized as follows: 

Section 1 introduces the bankruptcy prediction 
problem and outlines previous research in that area. 

Section 2 presents the ART neural networks and 
discusses the ARTMAP-IC algorithm and features. 

Section 3 describes the experimental data and the 
preprocessing steps needed to transform data into a 
form proper for submission to the neural network. 

Section 4 discusses the experimental results and 
outlines advantages of the proposed model.  

2 ARTMAP-IC NEURAL 
NETWORK CLASSIFIER 

In an ART-based network, information reverberates 
between the network’s layers. Learning is possible 
in the network, when resonance of the neuronal 
activity occurs. ART1 was developed to perform 
clustering on binary-valued patterns. By 
interconnecting two ART1 modules, ARTMAP was 
the first ART-based architecture suited for 
classification tasks. ARTMAP- IC adds to the basic 
ARTMAP system new capabilities designed to solve 
the problem with inconsistent cases, which arises in 
prediction, where similar input vectors correspond to 
cases with different outcomes, (Carpenter, 
Grossberg, and Reynolds, 1991), (Carpenter and 
Markuzon, 1998). It modifies the ARTMAP search 
algorithm to allow the network to encode 
inconsistent cases (IC).  

Figure 1, adapted from (Carpenter and 
Markuzon, 1998), shows the architecture of an 
ARTMAP-IC network. It consist of fully connected 
layers of nodes: an M-node input layer F1, an N-
node competitive layer F2, an N-node instance 
counting layer F3, an L-node output layer F0

b, and 
an L-node map field Fab that links F3  and F0

b. In 
ARTMAP-IC an input a=(a1, a2, … , aM) learns to 
predict an outcome b=(b1, b2, …, bL), , where only 
one component bK=1, placing the input a in class K. 
With fast learning, β=1, ARTMAP-IC represents 
category K as hyper-rectangle ℜK that just encloses 
all the training set patterns a to which it has been 
assigned. A set of real weights W={wji: j=1,…,N; 
i=1,…,M} is associated with the F1 - F2 layer 
connections. Each F2 node j represents a category in 
the input space, and stores a prototype vector 
wj=(wj1, wj2, …,wjM). The F2 layer is connected, 
through associative links to F3, which in turn is 
connected to the map field Fab by associative links 

with binary weights Wab=(wjk
ab:j=1,…,N; k=1,…,L}. 

The vector wj
ab=(wj1

ab, wj2
ab, …,wjL

ab) relates F2 
node j to one of the L output classes. Instance 
counting biases distributed predictions according to 
the number of training set inputs classified by each 
F2 node. During testing the F2->F3 input yj is 
multiplied by the counting weight cj to produce 
normalized F3 activity, which projects to the map 
field Fab for prediction. 

2.1 ARTMAP-IC Algorithm 

The following algorithm describes the operation of 
an ARTMAP-IC classifier in learning mode:  

1. Initialisation: Initially, all the neurons of F2 
are uncommitted, all weight values wji are initialised 
to 1, and all weight values wjk of Fab are set to 0. 

2. Input pattern coding: When a training pair 
(a,b) is presented to the network, a undergoes pre-
processing, and yields pattern A=(A1,A2,…,A2M). The 
vigilance parameter ρ is reset to its baseline value. 

3. Prototype selection: Pattern A activates layer 
F1 and is propagated through weighted connections 
W to layer F2. Activation of each node j in the F2 
layer is determined by the choice function 
Tj(A)=|A∧wj|/(α+|wj|). The F2 layer produces a 
winner-take-all pattern of activity y=(y1,y2,…,yN) 
such that only node j=J with the greatest activation 
value remains active (yJ=1). Node J propagates its 
prototype vector wJ back onto F1 and the vigilance 
test |A∧wj|≥ρM is performed. This test compares the 
degree of match between wJ and A to the vigilance 
parameter ρ∈[0,1]. If this test is satisfied, node J 
remains active and resonance is said to occur. 
Otherwise, the network inhibits the active F2 node 
and searches for another node J that passes the 
vigilance test. If such a node does not exist, an 
uncommitted F2 node becomes active and 
undergoes learning (step 5).  

4. Class prediction: Pattern b is fed directly to 
the map field Fab, while the F2 activity pattern y is 
propagated to the map field via associative 
connections Wab. The latter input activates Fab nodes 
according to the prediction function 

∑
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=
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j

ab
jkj

ab
k wyyS
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and the most active Fab node K yields the class 
prediction (K=k(J)). If node K constitutes an 
incorrect class prediction, a match tracking signal 
raises vigilance just enough to induce another search 
among F2 nodes (step 3). This search continues until 
either an uncommitted F2 node becomes active 
(learning ensues at step 5), or a node J that has 
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Figure 1: Simplified ARTMAP-IC architecture. 

previously learned the correct class prediction K 
becomes active. 

5. Learning: Learning input a involves updating 
prototype vector wJ, and if J corresponds to a newly-
committed node, creating a permanent associative 
link to Fab. A new association between F2 node J 
and Fab node K (K=k(J)) is learned by setting 
wJk

ab=1 for k=K, where K is the target class label for 
a. Once the weights (W and Wab) have converged for 
the training set patterns, ARTMAP can predict a 
class label for an input pattern by performing steps 
2, 3 and 4 without any testing. A pattern a that 
activates node J is predicted to belong to the class 
K=k(J) 

3 DATA AND PREPROCESSING 

For experiments we used data taken from the 
Moody's Industrial Manual. The dataset contains 
financial information for a number of years for a 
total of 129 firms, of which 65 are bankrupt and the 
rest are solvent. The data entries have been 
randomly divided into two subsets: one for training, 
made up of 74 firms, of which 38 bankrupt and 36 
non-bankrupt; another set for testing, made up of 55 
firms, of which 27 bankrupt and 28 non-bankrupt. 

The dataset was used in other studies, e.g. 
(Odom and Sharda 1993), (Rahimian et al. 1993), 
(Serrano-Cinca 1996), (Wilson and Sharda 1994), 
which allows comparing our results with those from 
other techniques. 

As the raw data contains many features that 
describe financial health of firms, it is important to 
reduce their number by using few financial ratios, or 
variables, instead. Using few variables allows a 
prediction technique to reduce the effect of 
overfitting and to improve its ability to generalize 
and predict. The variables have to be some linear or 
nonlinear combinations of features. For our 
experiments we adopted the proposed by Altman 
(1968) set of five variables, namely:  

1) Working Capital / Total Assets (WC/TA). In 
general, a firm’s liabilities consist of current 
liabilities and long term debt. The current liabilities 
include short term loans (less than one year due), 
accounts payable, taxes due, etc. The working 
capital is current assets minus the current liabilities. 
The current assets can or will typically be turned 
into money fairly fast. The working capital is an 
indication of the ability of the firm to pay its short 
term obligations. A firm’s total assets are sum of the 
firm’s total liabilities and shareholder equity (capital 
raised in share offerings and the retained earnings). 
It can be viewed as an indicator of its size and 
therefore can be used as a normalizing factor.  

2) Retained Earnings / Total Assets (RE/TA). 
The retained earnings is the surplus of income 
compared to expenses, or total of accumulated 
profits since the firm commencement.  

3) Earnings Before Interest and Taxes / Total 
Assets (EBIT/TA). The firm’s earnings before 
interests and taxes is also an important indicator. 
Low or negative earnings indicate that the firm is 
losing its competitiveness, and that endanger its 
survival.  
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4) Market Capitalization / Total Debt (MC/TD). 
Market capitalization relative to the total debt 
indicates that a firm is able to issue and sell new 
shares in order to meet its liabilities. A large market 
capitalization indicates a high capacity to perform 
that. 

5) Sales / Total Assets (S/TA). Total sales of a 
firm, relative to the total assets, is an indicator of the 
health of its business, but without certainty as it can 
vary a lot from industry to industry.  

3.1 Data Preprocessing 

A problem with the dataset is that there are 
significant differences between the typical variable 
values. They differ by several orders of magnitude 
due to the different units in which each of these is 
expressed. Such an inconsistency would worsen the 
prediction accuracy as the variables with large 
values would dominate over those with small values. 
In our case, the variables MC/TD and S/TA have 
larger typical values than WC/TA, RE/TA, and 
EBIT/TA. To reduce the effect of the inconsistency 
we applied z-score transformation that returns a 
centered and scaled version of the datasets. In fact, 
the z-scoring returns the deviation of each variable 
from its mean, normalized by its standard deviation. 
The transformation considers each variable as 
independent and uses the formula: 
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Another problem with the original dataset or its z-
scored version is that both cannot be used directly as 
an ARTMAP-IC input as the input patterns have to 
be M-dimensional vectors of floating point numbers 
in the interval [0, 1]. The second preprocessing step, 
called normalization maps the dataset values into [0, 
1] using the formula: 
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where max
ix  and min

ix  are the max, and min values 
of the variable ix , respectively. The normalization 
additionally reduces the differences between values 
preserving the dataset information. 

4 EXPERIMENS 

The experiments explored how an ARTMAP-IC 
performs as a predictor of bankruptcy. The first goal 
was to see if a further reduction of the dimensions 
would improve the ability to predict and how. The 
second goal was to identify the role of the network 
parameters. Another goal was to measure the 
training and testing times on order to estimate its 
efficiency. 

A further reduction of the dataset dimensions has 
a potential to improve the predictions, as the 
Altman’s set of five financial ratios does not 
guarantee the best discrimination between the output 
classes (solvent / insolvent). This is due to the fact 
that a set of variables can overfit or overtrain the 
network reducing or destroying its ability to 
generalize. There are various techniques to estimate 
discriminatory power of variables. Using univariate 
F-ratio analysis, Serrano (1996) ranked the Altman’s 
ratios and suggested that the second and third 
variables have a greater discriminatory power in 
contrast to the fifth one. The analysis, however, does 
not provide information about the discriminatory 
power of combinations of variables and possible 
dependencies. 

It is also the case that the optimal variable 
selection is specific for each particular prediction 
technique. There is no guarantee that the optimal set 
for one technique would perform well with another. 
Ideally, the optimal subset for a model can be found 
by the exhaustive search approach that explores each 
possible subset. If there are d possible variables, 
then since each can be present or absent, we have a 
total of 2d possible subsets. The five Altman’s 
variables yield thirty one subsets, (all zeroes is 
ignored), which is not too much in terms of 
possibility to be explored. Taking into account the 
above, we decided to adopt the exhaustive search to 
analyze the variable subsets and figure 2 shows the 
results. Each bar presents a subset. The x axis shows 
the subset indexes: 1 to 5 correspond to subsets of 
individual variables; 6 to 15 – for pairs of variables; 
16 to 25 – for triples; 26 to 30 – quartets; and 31 is 
the whole set. Individual sub-bars within a bar 
present the prediction accuracies with different 
vigilance parameter values from 0 to 1 with an 
increment of 0.025. The figure shows that the subset 
with highest prediction accuracy is the 11-th one, 
which consists of the variables {RE/TA, MC/TD}. 
The figure also shows that these two variables are 
best individual performers for the ARTMAP-IC (see 
bars 2 and 4), so that when joined in a pair, the 
resulting subset provides a greater discriminatory 
power. 
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Figure 2: Prediction accuracy of each of the variable 
subsets using 41 values of the vigilance parameter. 

An additional explanation of this fact can be found 
from the correlation matrix of the dataset. If a 
correlation value for two variables is close to 0, they 
are uncorrelated, or independent, and combined 
together provide a greater ability for discrimination 
between the classes. The calculations show that the 
two variables have correlation 0.11, which is one of 
the lowest.  

The experiments show that the prediction 
accuracy of the 11th subset with certain values of the 
vigilance parameter ρ is 83.6% (see figure 3).  
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Figure 3: Prediction accuracy of subset {RE/TA, MC/TD} 
varying the vigilance parameter from 0 to 1 with 
inclement 0.025. 

This accuracy is equal to the best one obtained by an 
MLP neural network in (Serrano 1996). Both 
techniques used the same dataset. A comparison 
between the ATRMAP-IC model and other 
prediction techniques that have used the same 
dataset can be seen in table 1. The ARTMAP-IC and 
Serrano’s MLP misclassify 9 firms, all other 
techniques – 10, except the Odom & Sharda’s Liear 
Discriminant Analysis, which misclassifies 14.  

Another group of experiments aimed to 
determine the optimal network parameters. The 
results show that regardless of the subset, the 
optimal parameter values are: baseline vigilance 
parameter ρtest=0; signal rule parameter α=0.01; and 
learning fraction parameter β=1.0. The vigilance 

parameter ρ (Rhobar), which determines the level of 
details and granularity of the classes encoded into 
the system, has different optimal value for different 
subsets. The winning subset obtains best accuracy 
with 0≤ρ≤0.4 and 0.5≤ρ≤0.575. 

The experiments also showed that the network 
training and testing time do not exceed 0.02 sec for 
any variable subset and parameters’ values, which is 
an indication that the model is efficient and responds 
in a real time. 

Table 1: Misclassified patterns by the ARTMAP-IC model 
(€) and those from other models, all applied to the test 
dataset.  

# ARTMAP-
IC 

Other 
studies 

 # ARTMAP-
IC 

Other 
studies 

1    29  
2    30  
3    31  
4    32  
5    33  
6    34  
7    35  * % 
8 €   36  * % 
9    37  
10    38  
11    39  *#%&@$ 
12   #  @  40  *#%&@ 
13 €   41  
14    42  
15    43  
16    44  
17 € *#%&@$  45  
18 € *#%&@$  46  *#%&@$ 
19    47  * 
20 €   48  
21 €  #%& $  49  *#%&@$ 
22    50  *# &@$ 
23    51  * 
24 €   52  
25 € *#%&@$  53  
26    54  *#%&@$ 
27    55  * 
28 €      
       

* Misclassified by Odom and Sharda LDA – 14 
# Misclassified by Odom and Sharda MLP – 10 
% Misclassified by Rahimian et al MLP – 10 
& Misclassified by Perceptron Model – 10 
@ Misclassified by Athena Model – 10 
$ Misclassified by Serrano MLP – 9 
€ Misclassified by our ARTMAP-IC – 9 
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5 CONCLUSIONS 

This paper proposes a novel approach to the 
bankruptcy prediction problem based on a 
supervised ARTMAP-IC neural network. An 
advantage of using that type of neural network over 
the most popular MLPs is that it provides fast, one-
pass online learning, and it retains already acquired 
knowledge while learning from novel patterns. In 
contrast, the backpropagation MLP requires 
numerous iterations, or epochs, to learn a new 
pattern. This makes the ARTMAP-IC model 
efficient and scalable for a continuously changing 
input space, such as the bankruptcy prediction 
domain. 

Another advantage of the proposed model is the 
high prediction accuracy. Compared with different 
techniques over the same experimental data, the 
model achieves the highest accuracy obtained by an 
MLP, and outperforms all other techniques.  

In conclusion, we find that ARTMAP-IC neural 
network is suitable for application areas, such as the 
financial diagnosis and bankruptcy prediction. 
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