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Abstract: Nowadays there is a tendency to enhance the functionality of Information Systems by appropriate information
agents. Those information agents communicate through communication acts expressed in an Agent Commu-
nication Language. Moreover, the aim is to achieve interoperation of those agents through standard commu-
nication protocols in a distributed environment such as that supported by the Semantic Web.
In this paper we present a proposal to describe those protocols using a Semantic Web language. Two are the
main features of that proposal. On the one hand, the communication acts that appear in the communication
protocols are described by terms belonging to a communication acts ontology called COMMONT. On the
other hand, protocols are represented by state transition systems described using OWL-DL language. This
type of description provides the means to reason about the communication protocols in such a way that several
kinds of structural relationships can be detected, namely if a protocol is aprefix, asuffixor aninfix of another
protocol and that relationship taken in a sense ofequivalenceor specialization. Furthermore, equivalence and
specialization relationships can also be detected for complete protocols. Those relationships are captured by
subsumption of classes described with a Semantic Web language.

1 INTRODUCTION

NOWADAYS the need for interoperability among
agent based information systems in order to inter-
change information and services is increasing. But
it seems to be difficult to achieve it due to the hetero-
geneity in Agent Communication Languages (ACL).

Moreover, once the understanding of atomic com-
munication acts at a semantic level is achieved, the
next step is to deal with agent communication pro-
tocols. We consider a context where administrators
of information systems first, select protocols from ex-
isting repositories of protocols and then customize
them. Later, they assign those selected protocols to
their software agents. Therefore, when agents from
two different information systems want to interoper-
ate between them, it is relevant to see if the protocol
used by one of them has structural relationships with
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the protocol used by the other. We represent proto-
cols by state transition systems and describe them us-
ing the OWL-DL language (Bechhofer et al., 2005).
So, we can consider structural relationships in a sense
of equivalenceor specializationapplicable to com-
plete protocols or to parts of them (prefix, suffixand
infix). In a sense, our approach creates a classification
of protocols.

In relation to other related works, we can observe
two general aspects: 1) many of them also use tran-
sition systems for representing communication proto-
cols and, 2) they do not consider the structural rela-
tionships among protocols managed by our proposal.
In the following we show the main differences among
those works and our proposal.

The closer related work is (Mallya and Singh,
2007), where protocols are represented as transition
systems and subsumption and equivalence of proto-
cols are defined with respect to three state similarity
funtions. We share some goals with that work, but
the protocol description formalism used by them is
not considered in the paper and there is no references
to how protocol relationships are computed. In con-
trast, we describe protocols with a description logic
language and protocol relationships are computed by
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a description logic reasoner.
The works of (Yolum and Singh, 2002) and

(Fornara and Colombetti, 2003) are quite similar one
to each other. Both capture the semantics of commu-
nication acts through agents’ commitments and rep-
resent communication protocols using a set of rules
that operate on these commitments. Moreover those
rule sets can be compiled as finite state machines.
Nevertheless, they do not consider the study of rela-
tionships between protocols. In addition, in (Desai
et al., 2005), protocols are also represented with a set
of rules with terms obtained from an ontology, but
their main goal is protocol development and, in order
to reason about protocol composition, they formal-
ize protocols into theπ-calculus. Then, equivalence
through bisimulation is the only process relationship
considered. Notice that in our approach, reasoning
is made with protocols’ own representation, without
demanding another different formalism.

In the context of Web Services composition, (Be-
rardi et al., 2005) leads to a description logic based
specification of finite state machines that is very dif-
ferent in purpose to our approach. In their scenario,
states and transitions descriptions are not prepared to
be confronted in a comparison. In constrast, in our
case, state and transition descriptions are carefully
modelled as class descriptions such that subsumption
relation captures structural relationhips.

In (Kagal and Finin, 2007) protocols are defined
as a set of permissions and obligations of agents par-
ticipating in the communication. They use an OWL
ontology for defining the terms of the specification
language, but their basic reasoning is made with an
ad hoc reasoning engine. We share their main goal
of defining protocols in a general framework that al-
lows reutilization. Nevertheless, they do not consider
relationships between protocols.

Finally, (d’Inverno et al., 1998) and (Mazouzi
et al., 2002) use finite state machines and Petri
nets, respectively, but without taking into account
the meaning of the communication acts interchanged,
neither considering relationships between protocols.

In the rest of this paper we present first the main
features of a communication ontology called COM-
MONT. Then, in section 3 we show how we can de-
scribe protocols using OWL. Next, in section 4 we
explain the way we deal with cycles in protocols. The
structural relationships among protocols are presented
in section 5. We finish with some conclusions in sec-
tion 6.

2 COMMUNICATION
ONTOLOGY

Among the different models proposed for represent-
ing protocols one which stands out is that of State
Transition Systems (STS). In our proposal we use
STS where each transition is labeled with a communi-
cation act class described in a communication ontol-
ogy called COMMONT. Therefore, we present in the
following the main features of that ontology.

The goal of COMMONT ontology is to favour the
interoperation among agents belonging to different
Information Systems. The leading categories of that
ontology are: first,communication actsthat are used
for interaction byactorsand that have different pur-
poses and deal with different kinds of contents; and
second,contentsthat are the sentences included in the
communication acts.

The main design criteria adopted for the commu-
nication acts category of the COMMONT ontology is
to follow thespeech actstheory (Searle, 1969), a lin-
guistic theory that is recognized as one of the main
sources of inspiration for designing the most familiar
standard agent communication languages. Following
that theory, every communication act is the sender’s
expression of an attitude toward some possibly com-
plex proposition. A sender performs a communica-
tion act which is expressed by a coded message and
is directed to a receiver. Therefore, a communication
act has two main components. First, the attitude of
the sender which is called theillocutionary force(F),
that expresses social interactions such as informing,
requesting or promising, among others. And second,
the propositional content(p) which is the subject of
what the attitude is about. In COMMONT this F(p)
framework is followed, and different kinds of illocu-
tionary forces and contents leading to different classes
of communication acts are supported.

COMMONT is divided into three interrelated lay-
ers: upper, standardsand applications, that group
communication acts at different levels of abstraction.
Classes of the COMMONT ontology are described us-
ing the Web Ontology Language OWL (more specif-
ically the OWL DL sublanguage).

In the upper layer, according to Searle’s speech
acts theory, five upper classes of communication
acts corresponding toAssertives, Directives, Commis-
sives, ExpressivesandDeclarativesare specified. But
also the top classCommunicationAct3 is defined that
represents the universal class of communication acts.
Every particular communication act is an individual
of that class. In COMMONT, components of a class

3This type style refer to terms specified in the ontol-
ogy.

ICEIS 2008 - International Conference on Enterprise Information Systems

68



are represented by properties. The most immediate
properties ofCommunicationAct are the content and
the actors who send and receive the communication
act. There are some other properties related to the
context of a communication act such as the conver-
sation in which it is inserted or a link to the domain
ontology that includes the terms used in the content.

A standards layer extends the upper layer of
the ontology with specific terms that represent
classes of communication acts of general purpose
agent communication languages, like those from
KQML or FIPA-ACL. With respect to FIPA-
ACL, we can observe that it proposes four prim-
itive communicative acts (FIPA, 2005):Confirm,
Disconfirm, Inform and Request. The terms
FIPA-Confirm, FIPA-Disconfirm, FIPA-Inform
andFIPA-Request are used to respectively represent
them as classes in COMMONT. Furthermore, the
rest of the FIPA communicative acts are derived from
those mentioned four primitives. Analogously, com-
munication acts from KQML can be analyzed and
the corresponding terms in COMMONT can be speci-
fied. It is of vital relevance for the interoperability aim
to specify ontological relationships among classes of
different standards.

Finally, it is often the case that every single in-
formation system uses a limited collection of com-
munication acts that constitute its particular agent
communication language. The applications layer re-
flects the terms describing communication acts used
in such particular information systems. The applica-
tions layer of the COMMONT ontology provides a
framework for the description of the nuances of such
communication acts. Some of those communication
acts can be defined as particularizations of existing
classes in the standards layer and maybe some others
as particularizations of upper layer classes.

3 PROTOCOL DESCRIPTIONS

In order to represent protocols using OWL-DL, we
have defined three different classes:Protocol,
State, andTransition, which respectively repre-
sent protocols, states and transitions in protocols.

We consider propositions that can change their
truth values due to events. A state is described by the
propositions that holds in it plus the transitions that
can take place from it. Some states are declared final
states. A transition is associated to the communica-
tion act that is sent and to the state reached with that
transition. Only one communication act can be asso-
ciated to a transition and only one state is reached by a
transition. Then, with these descriptions, a protocol is

Figure 1: The KAMP protocol.

characterized by its initial state. An actual conversa-
tion following a protocol is an individual of the class
Protocol.

Following are some OWL axioms presented in a
logic notation4 instead of the more verboseOWL/XML

syntax.

Protocol ≡ ∃hasInitialState.State⊓

∀hasInitialState.State

State ≡ ∀hasTransition.Transition

∃hasPredicate.Proposition⊓

∀hasPredicate.Proposition

Transition ≡ =1 hasCommAct.CommunicationAct⊓

=1.hasNextState.State

FinalState ⊑ State

CommunicationAct ⊑ ∀hasSender.Actor⊓

∀hasReceiver.Actor⊓

∀hasContent.Content⊓

∀hasSubject.Subject

Following, we introduce one example using the
previous kind of description to represent a con-
crete protocol, in particular the KAMP protocol.
This KAMP protocol is our specialization of the
well-known protocol Request conversation policy of
KAoS (Bradshaw et al., 1997)(KAoSAppointment-
ModifyProtocol(KAMP)) and its graphical represen-
tation can be seen in Fig. 1.

Two agents take part in our protocol: Patient, la-
belled withp, and Doctor, labelled withd. First, agent
p requests agentd to modify the date of an appoint-
ment, using the communication act Appointment-
Modify, or shortly,AM (described in the COMMONT

ontology). Then, several situations can arise: On the
one hand, some communication acts can lead us to
a final state. This happens whend agrees to modify
the date (AppointmentInform,AI), whend declines to
modify the date (AppointmentModifyDecline,AMD)
or whenp withdraws the request (AppointmentMod-
ifyWithdraw,AMW). On the other hand, both agents
can keep countering one to another (Appointment-
ModifyCounter,AMC) until they reach an agreement
in the date of the appointment.

4This notation is common in the Description Logics
(DL) field. See (Baader et al., 2003) for a full explanation.
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Following we present our initial description of
KAMP. Notice that the complete description of a pro-
tocol comprises a set of definitions, although the pro-
tocol is represented by the class name KAMP. More-
over, the description of a protocol is directed by the
graph that represents that protocol. Class names for
states are prefixed byS and class names for transi-
tions are prefixed byT and formed with the letters of
source and target states.

KAMP ≡ Protocol⊓∃hasInitialState.S-I

S-I ≡ State⊓∃hasTransition.T-IA ⊓∃hasPredicate.PI

S-A ≡ State⊓∃hasTransition.(T-AC ⊔T-AD⊔T-AB⊔T-AG)

⊓∃hasPredicate.PA

S-B ≡ State⊓∃hasTransition.(T-BA ⊔T-BD⊔T-BE)

⊓∃hasPredicate.PB

S-C ≡ FinalState ⊓∃hasPredicate.PC

S-D ≡ FinalState ⊓∃hasPredicate.PD

S-E ≡ State⊓∃hasTransition.T-EG ⊓∃hasPredicate.PE

S-F ≡ FinalState ⊓∃hasPredicate.PF

S-G ≡ FinalState ⊓∃hasPredicate.PG

T-IA ≡ Transition ⊓∃hasCommAct.AppointmentModify

⊓∃hasNextState.S-A

T-AC ≡ Transition ⊓∃hasCommAct.AppointmentModifyDecline

⊓∃hasNextState.S-C

T-AD ≡ Transition ⊓∃hasCommAct.AppointmentModifyWithdraw

⊓∃hasNextState.S-D

T-AB ≡ Transition ⊓∃hasCommAct.AppointmentModifyCounter

⊓∃hasNextState.S-B

T-AG ≡ Transition ⊓∃hasCommAct.AppointmentInform

⊓∃hasNextState.S-G

T-BA ≡ Transition ⊓∃hasCommAct.AppointmentModifyCounter

⊓∃hasNextState.S-A

T-BD ≡ Transition ⊓∃hasCommAct.AppointmentModifyWithdraw

⊓∃hasNextState.S-D

T-BE ≡ Transition ⊓∃hasCommAct.AppointmentModifyAccept

⊓∃hasNextState.S-E

T-EG ≡ Transition ⊓∃hasCommAct.AppointmentInform ⊓

∃hasNextState.S-G

Notice that communication acts that appear in the
transitions of the protocol are defined in the COM-
MONT ontology in the following way:

AppointmentModify ≡ Request

⊓ =1 hasContent.AppointmentOverwrite

AppointmentOverwrite ≡ Overwrite

⊓∃hasSubject.Appointment

AppointmentInform ≡ Responsive

⊓ =1 hasContent.AppointmentInformation

⊓∃inReplyTo.AppointmentModify

AppointmentInformation ≡ Proposition

⊓∃hasSubject.Appointment

AppointmentModifyCounter ≡ Counter

⊓ =1 hasContent.AppointmentOverwrite

⊓ =1 inCounterTo.AppointmentOverwrite

AppointmentModifyAccept ≡ Accept

⊓ =1 hasContent.AppointmentOverwrite

AppointmentModifyDecline ≡ Decline

⊓ =1 hasContent.AppointmentOverwrite

AppointmentModifyWithdraw ≡ Withdraw

⊓ =1 hasContent.AppointmentOverwrite

4 CYCLES: CAN WE MANAGE
THEM?

As we said in section 3, our OWL-DL description
of a protocol is directed by the graph that represents
that protocol. Notice also that a protocol with cy-
cles can be represented by different graphs that de-
ploy the same runs of communication acts. Unfor-
tunately, when state classes of protocols are involved
in cycles our descriptions of them does not result ad-
equate to capture equivalence relationships between
states of different graphs allowing for the same set
of runs beginning on that state (notice that the transi-
tive clousure operator of regular languages is not sup-
ported by OWL-DL).

Fortunately, we have found a way to bypass this
inconvenience assuming that cycles in protocols mean
repetition of a deliberation process in such a way that
a complete cycle execution returns to a state class
equivalent to the initial class of the turn. Therefore,
considering the task of comparing protocol structure
in order to decide compliance of protocol runs, it is
not important the number of times a cycle is walked
around but only if it is possible to go for one turn.
Consequently, we systematically modify the descrip-
tions of protocols with cycles in order to achieve cor-
rect answers with respect to the structural relation-
ships defined in section 5. It is worth mentioning that
this modification is systematic and it is only carried
out for the reasoning process.

Moreover, we also assume that, for every proto-
col run, each communication act involved in a cycle
maintains invariant the class of its content. The repe-
tition of deliberation assumed for every cycle in a run
is represented by the fact that the content of an occur-
ring communication act in a transition involved in a
cycle, removes from the state the content of the previ-
ously occurrence of a communication act in the same
transition. A formalization of those two assumptions
is represented by the following rule.

RULE 1: e(x) in a cycle∧ HoldsAt(P(i), t) ∧
owner(P(i),O)∧ Happens(e(x), t)∧ Initiates(e(x),
P(j), t)∧ owner(P(j),O)∧ i, j belong to the same class
→ Terminates(e(x), P(i), t)

By the owner of a proposition we refer to the
sender of the message whose content is that propo-
sition itself. Rule 1 declares that when the owner of
a proposition that is now holding causes an event that
initiates holding of a new proposition that belongs to
the same class than the previous one, and the event is
in a cycle, the previous proposition ceases to hold.
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Figure 2: Equivalence of protocols.

5 PROTOCOL STRUCTURAL
RELATIONSHIPS

When two agents of different systems want to inter-
communicate using a particular protocol each, both
protocols must match properly. Thanks to our proto-
col description, a reasoning process can decide if two
protocols are equivalent, or if one is a specialization
of the other, otherwise they are incompatible proto-
cols. Moreover, we have developed a reasoning ser-
vice that decides if a protocol is a prefix, a suffix or
an infix of another protocol, and those relationships
taken also in the sense of equivalence or specializa-
tion. Notice also that due to the fact that protocols
are described as OWL-DL classes, structural relation-
ships among protocols can also be defined in terms of
DL semantics. We write⊢A⊑B (respectively⊢A≡B)
to mean that classA is subsumed by classB (respec-
tively A is equivalent toB).

Definition 1. Two protocolsA andB are equivalent
(A≡totB) if ⊢A≡B.

By specialization of protocols we mean special-
ization of the classes of communication acts appear-
ing in the protocol.

Definition 2. ProtocolA is a specialization of proto-
col B (A⊑totB) if ⊢A⊑B.

For example, the KAMP protocol in Fig. 1 is a
specialization of the KAoS Request protocol shown
in Fig. 2a. Every communication act that appears in
the transitions of the KAMP Protocol is a subclass of
the communication act in the corresponding transition
of the KAoS Request protocol.

In order to look for a prefix relationship, we
can modify a protocol description by converting

some states into final states. LetS be a state sub-
class, we denotefinal(S) to the expression resulting
from adding by conjunction the classFinalState
to the defining expression ofS. For example, if
S-E ≡ State ⊓ ∃hasTransition.T-EG then fi-
nal(S-E) is the expressionFinalState⊓ State
⊓ ∃hasTransition.T-EG . Moreover, we can sup-
press some transitions by removing their axiom def-
initions and removing the corresponding expressions
∃hasTransition.T from the state definitions which
include it. We denotePrune[P/(S1 . . .Sn),(T1 . . .Tm)]
to the new protocol described by the set of de-
scriptions that results from replacing definition ex-
pressions ofS1 . . .Sn, respectively, by expresssions
final(S1). . . final(Sn), and removing occurrences of
transitionsT1 . . .Tm in the set of descriptions of pro-
tocolP.

Definition 3. Protocol A is a prefix of protocolB
(A≡preB) if there exist states S1 . . .Sn and transitions
T1 . . .Tm in the set of equations definingB such that
⊢A≡ Prune[B/(S1 . . .Sn),(T1 . . .Tm)].

Analogously, protocolA is a specialization
of a prefix of protocol B (A⊑preB) if ⊢A⊑
Prune[B/(S1 . . .Sn),(T1 . . .Tm)].

For example, the subKAoS Request protocol
shown in Fig. 2(b) is a prefix of the KAoS Request
protocol in Fig. 2(a) because it is equivalent to that
protocol after removing two transitions: one from
stateA to stateF and another from stateB to stateE.

With respect to suffix relationship, we modify a
protocol description converting some states into ini-
tial states. LetS1 . . .Sn states in the definition of
protocol P. We denoteChangeInit[P/S1. . .Sn] to
the new protocol described by the set of descrip-
tions that results from modifying theP protocol def-
inition in the following way: adding by conjunction
∃hasInitialState.Si (i = 1. . .n).

Definition 4. Protocol A is a suffix of pro-
tocol B (A≡su fB) if there exist states S1 . . .Sn
in the set of equations definingB such that
⊢A≡ChangeInit[B/S1. . .Sn].

Analogously, protocol A is a specializa-
tion of a suffix of protocol B (A⊑su fB) if
⊢A⊑ChangeInit[B/S1. . .Sn].

We denoteProt[S] to a new protocol defined as
Prot[S] ≡ Protocol ⊓ ∃hasInitialState.S.

Definition 5. Protocol A is an infix of protocolB
(A≡in fB) if there exist a state S in the set of equations
definingB such thatA≡preProt[S] and Prot[S]≡su fB.

Analogously, protocolA is a specialization of an
infix of protocol B (A⊑in fB) if A⊑preProt[S] and
Prot[S]⊑su fB.
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6 CONCLUSIONS

In this paper we have presented a proposal to describe
communication protocols, represented by STS, using
the OWL-DL language. The main contribution of
this proposal is the possibility that it brings to reason
about communication protocols in such a way that dif-
ferent kinds of structural relationships -equivalenceor
specialization- between complete protocols or parts
of them: prefix, infix andsuffixcan be detected. The
formal definition of those structural relationships has
been included in the paper within a justification of
how cycles can be managed.
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