
A COMPARATIVE STUDY OF DOCUMENT CORRELATION
TECHNIQUES FOR TRACEABILITY ANALYSIS

Anju G. Parvathy, Bintu G. Vasudevan and Rajesh Balakrishnan
SETLabs, Infosys Technologies Ltd., Bangalore

Keywords: Traceability matrix, impact analysis, document correlation, TFIDF, LSI, LDA, CTM.

Abstract: One of the important aspects of software engineering is to ensure traceability across the development lifecycle.
Traceability matrix is widely used to check for completeness and to aid impact analysis. We propose that this
computation of traceability can be automated by looking at the correlation between the documents. This
paper describes and compares four novel approaches for traceability computation based on text similarity,
term structure and inter-document correlation algorithms. These algorithms base themselves on different
information retrieval techniques for establishing document correlation. Observations from our experiments are
also presented. The advantages and disadvantages of each of these approaches are discussed in detail. Various
scenarios where these approaches would be applicable and the future course of action are also discussed.

1 INTRODUCTION

Requirements traceability can be defined as “An ex-
plicit tracing of requirements to other requirements,
models, test requirements and other traceability items
such as design and user documentation”. A traceabil-
ity item in turn is “Any textual or model item, which
needs to be explicitly traced from another textual, or
model item, in order to keep track of the dependen-
cies between them” (Spence and Probasco, 1998). A
general definition of a traceability item would be thus,
a “project artifact”. In the life cycle of large software
projects several artifacts like Requirements specifica-
tion, Architecture, Design specification, Test Plans,
Use Case documents etc. get created. Any change
in the requirements or design would imply change in
many other artifacts as well. The ability to assess the
impact of a change, in any one of the artifacts, on the
rest of the project artifacts and on the project execu-
tion itself is a critical aspect of software engineering.

Traceability links is one popular mechanism used
to perform impact analysis. This allows a user to
follow the life of a requirement both forwards and
backwards, from origin through implementation (Go-
tel and Finkelstein, 1994). Thus the user can keep
track of the requirement’s development, specification,

its subsequent deployment and use.
We start with a discussion on related works and

proceed to present our hypotheses. Following this
we explain the four different implementation schemes
we experimented with. The first scheme involves Co-
sine Similarity (CosSim), the second employs Latent
Semantic Indexing (LSI) (Deerwester et al., 1990),
the third uses Latent Dirichlet Allocation (LDA) (Blei
et al., 2003) and the fourth is based on topic modeling
using Correlated Topic Models (CTM) (Blei and Laf-
ferty, 2007). We also explain how we classified the
dependent artifacts into high, medium and low match
categories. This is followed by a comparative analysis
of the recall and precision inferred from their respec-
tive traceability matrices.

2 RELATED WORKS

Traceability is essential for many purposes, including
assuring that systems conform to their requirements,
that terms are defined and used consistently, and that
the structures of models correspond to requirements
(Alexander, 2002). A variety of software engineer-
ing tasks require tools and techniques to recover inter
document traceability links, particularly the ones be-

64
G. Parvathy A., G. Vasudevan B. and Balakrishnan R. (2008).
A COMPARATIVE STUDY OF DOCUMENT CORRELATION TECHNIQUES FOR TRACEABILITY ANALYSIS.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 64-69
DOI: 10.5220/0001676100640069
Copyright c© SciTePress

tween documentation and source code. These tools
enable general maintenance tasks, impact analysis,
program comprehension and reverse engineering for
redevelopment and systematic reuse. Several such
tools are currently available, some of which are dis-
cussed here. There are different types of traceability
techniques like cross reference centered, document
centered and structure centered (Gotel and Finkel-
stein, 1994). We use document correlation to build
the traceability links.

Different methods to improve the overall qual-
ity of dynamic candidate link generation for require-
ments tracing have been recently studied. (Dekhtyar
et al., 2006). A novel approach to automate trace-
ability when one artifact is derived from the other has
been illustrated(Richardson and Green, 2004). ‘Qua
Trace’ is yet another tool to aid impact analysis that
allows traces to be established, analyzed, and main-
tained effectively and efficiently (Knethen and Grund,
2003). Some other tools that support traceability be-
tween artifacts are (RDD-100, 2006), (RequisitePro,
2006), (DOORS, 2006), RETH (Ebner and Kaindl,
2002),CORE (Vitech Corp.), icCONCEPT RTM (In-
tegrated Chipware), SLATE (TD Technologies, Inc.)
and XTie-RT (Teledyne Brown Engineering) .

The user interface supported by most commercial
tools detailed above, introduces overhead on software
development process. This is pronounced by the trac-
ing tools adding a lot of extra work on the users like
Business Analyst, Architect, Designer, Developer,
Tester, which is distinctly different from what their
corresponding job function demands. These over-
heads include maintenance of the database, storing
the concept definitions and relations, maintaining ac-
cess rights and permissions to different kinds of users
etc. Further the user is supposed to mark require-
ments, build the requirement hierarchy and maintain
it. Moreover, it is necessary to start using the tool
from project initiation as it would be virtually impos-
sible to capture the required trace information from
different project artifacts otherwise. These tools also
provide limited support for impact analysis. Most of
the tools do not give a quantitative relationship be-
tween two concepts, either. Further the links estab-
lished by such tools are rarely based on the semantic
structure of the documents. Hence some sort of se-
mantic analysis should be incorporated in the tools
to eliminate ‘false positive links’ established by the
tools.

Some approaches for semantic analysis can be
used for information retrieval for document corre-
lation. Probabilistic Latent Semantic Analysis is
a probabilistic variant of Latent Semantic Analy-
sis which defines a proper generative model of data

(Hoffman, 1999). Aspect model (Hoffmann et al.,
1999) and semi discrete matrix decomposition (Kolda
and O’Leary, 1998) are other models for semantic
analysis. An algorithm used for classification of
words into semantic classes (or concepts) is ‘Un-
supervised Induction of Concepts’ (Lin and Pantel,
2001).

The four approaches for requirements tracing dis-
cussed in this paper reduce the burden on the user by
automatically identifying concepts and trace links be-
tween these concepts. Moreover, approaches based
on LSI, LDA and CTM aid in semantic analysis.

3 AUTOMATING TRACEABILITY

In this section, we look at the details of the ap-
proaches towards automating requirements tracing.
They are based on two key hypotheses: The first,
is usage of common terminology. We believe that
the application-domain knowledge that programmers
process when writing the code is often captured by
the mnemonics for identifiers; therefore, the analy-
sis of these mnemonics can help associate high-level
concepts (eg:use case) with program concepts (eg:
class design specification) and vice-versa. The sec-
ond, hypothesis is the usage of connected words as
in class/design specification documents. A connected
word contains two or more words in mixed case. The
beginning of a new token within a word is marked by
an upper case character. Often prefixes are also at-
tached to these words. The prefixes which begin with
a lower case character are neglected as they do not
contribute to the meaning of the word. Appropriate
rules are set to tokenize the connected word depend-
ing on the document type in use (eg: of a connected
word is ‘getCostParameter’; ‘get’ is the prefix and the
tokens are ‘Cost’ and ‘Parameter’). Accordingly, if a
particular document has the words ‘cost’ and ‘param-
eter’ and another has the connected word ‘getCostPa-
rameter’ then the two documents are related.

Formally, a project consists of a set of artifacts
like Business Process Model, Requirements Specifi-
cation, Class/Design Specification, Test Case docu-
ment etc. Each Artifact could contain multiple con-
cepts having different concept types. A concept type
can be a requirement, use case, test case, class de-
sign or some other relevant topic. A set of “Concept
Extraction Algorithms” can be used to specify how
to extract a particular concept type from an artifact.
A simple CEAL for extracting requirement concept
type from a requirement document could be to look
for some key word like “Requirement” in the differ-
ent headings in the document. In some extreme cases,

A COMPARATIVE STUDY OF DOCUMENT CORRELATION TECHNIQUES FOR TRACEABILITY ANALYSIS

65

we may have to apply a combination of text segmen-
tation and text abstraction algorithms to extract con-
cepts from artifacts (Goldin and Berry, 1997). Our ap-
proaches propose to derive the relationships, between
concepts, through different ”Relationship Extraction
Algorithms” (REAL) that specify how to derive re-
lationships between two different types of concepts.
For eg:, if a project has a use case artifact and a class
design artifact and the template used for documenting
use cases have a section called “Related Classes”; an
REAL to extract relationships can look for the items
under the “Related Classes” section. Another REAL
could be based on text similarity between use case de-
scription and class design specifications. If the “Re-
lated Classes” section is well maintained, the first al-
gorithm is the more efficient one.

The approaches may not help in deriving all the
concepts and relations in the documents. However,
even if an automated mechanism based on the above
approach is able to derive 60-70 % of the concepts
and relations, we believe that there would be an over-
all increase in productivity through out the lifecycle
of a software project. The approaches themselves are
not tied to any specific set of project artifacts or con-
cept types or any specific document format. Further,
we can use any of the four approaches in any stage of
software development lifecycle for inter artifact trac-
ing.

We used sample documents of “Use Case” (UC)s
and related “Class Specification” (CS)s as input cor-
pora for all the four approaches. The outputs are
quantified relationship matrices and classified trace-
ability matrices. The input corpora are preprocessed
and freed from ‘stop words’ which are very common
words, that will adversely effect the relationship ma-
trix computation. Every new word is also checked
for being a connected word. The four approaches
based on cosine similarity, LSI, LDA and CTM are
discussed subsequently.
Cosine Similarity. Here the documents are pre-
processed and represented in the vector space using
T FIDF of terms, as weights. The popular text simi-
larity algorithm of cosine measure is applied to every
pair of document vectors to get the relationship index
RIi j, which quantifies the relationship between them.
The greater the cosine value the higher is the corre-
lation. Further, we classify the dependencies based
on their degree of match into three categories high,
medium and low matches respectively. For classifi-
cation the RIs with CSs are first sorted in descending
order for each UC. Then the average values of high-
est three RIs are used as threshold values for classi-
fication. Thus corresponding to each UC, we have
three classes of CSs, one or more of which could be

empty, as per the degree of correlation between the
documents.
Latent Semantic Indexing. Documents are prepro-
cessed as before and subsequently represented in vec-
tor space. The term by document matrix is then sub-
ject to singular value decomposition for LSI ((Deer-
wester et al., 1990) and (Dumais, 1991)). Choosing
optimal value for rank k for dimensionality reduction
produces a reduced term by document matrix. Differ-
ent values of k result in different links being recov-
ered. The RI here is the cosine of angle between a
pair of document vectors (of documents to be corre-
lated). This RIs are used for classification of CSs as
in the earlier approach.
Latent Dirichlet Allocation. LDA is a general prob-
abilistic model for collections of discrete data such as
text corpora (Blei et al., 2003). The input corpus size
is normalized. The maximum document size amongst
the documents in the corpora is obtained. Then ev-
ery document with size less than 50% of the maxi-
mum document size is appended with copies of itself
until the size exceeds the maximum document size.
This normalization is done to ensure uniform length
of documents so that LDA captures importance words
from smaller documents and quantizes their relation-
ships.

The documents are preprocessed as in the ear-
lier cases. The vector form of every document(d)
is determined by the unique words(w) and their
frequencies(f) in it. The jth document vector is : d j =
〈n〉 〈wi : f 〉..., where n is the total number of unique
words in d j and i = 1,2, ...n.

We assign the number of topics for which LDA
pools the terms to be equal to the total number of de-
pendent documents in the entire corpora. LDA pro-
cesses the document vectors with predefined settings
and produces the bag of words and log beta file which
is a matrix of word to topic probabilities. We define a
text similarity algorithm where RIi j is computed as:

RIi j =
N

∑
k=1

pki × fki × fk j ×βk

where, N is the total number of unique words in
LDA bag of words, pki is the weight with respect
to maximum number of tokens in connected words,
fki and fk j are the frequencies of wordk in documenti
and document j respectively and βk is the sum of beta
probabilities of wordk across all topics as given by
LDA. The classification of the CSs is done as in the
previous cases, the only difference being a different
form of RI.
Correlated Topic Model. CTM is a fast variational
inference procedure for carrying out approximate in-
ference that can be used for semantic analysis (Blei

ICEIS 2008 - International Conference on Enterprise Information Systems

66

and Lafferty, 2007). The procedure for traceability
is exactly the same as the one which involves LDA,
except that the bag of words is obtained using CTM
techniques.

4 EXPERIMENTAL RESULTS

Based on the above mentioned approaches the exper-
iments were carried on sets of two distinct corpora,
each one containing documents belonging to a partic-
ular concept type in the artifact - specifically 22 UCs1

and 21 CSs1. Similar experiments were conducted on
a project of 26 UCs and 235 related CSs for actions
dealing with waste water management, recall and pre-
cision of which are discussed later.

4.1 Quantified Relationship Matrices

In this section, we provide the quantified relationship
matrices (of dimension 22 X 21) for four different ap-
proaches mentioned.

Table 1 shows a portion of the matrix of normal-
ized RI computed using cosine similarity. In the ex-
ample, RI14 is greater than RI11, RI12, RI13, RI14, RI15,
RI16 and RI17. This means that the highest correlation
is between CS4 and UC1 , amongst the seven retrieved
relations for UC1 as in the table.

Table 1: Relationship matrix of RI for CosSim.

UC CS1 CS2 CS3 CS4 CS5 CS6 CS7

1 0.0 0.0 0.01 0.40 0.03 0.02 0.20
2 0.0 0.02 0.0 0.01 0.02 0.003 0.26
3 0.0 0.0 0.0 0.01 0.004 0.0 0.21
4 0.03 0.009 0.02 0.02 0.01 0.001 0.29
5 0.002 0.002 0.002 0.31 0.04 0.03 0.05

Table 2 shows the normalized RI computed after
applying LSI with an optimal latent parameter k = 10.
The higher the value of k, the lesser is the reduction in
dimension. The highest possible value of k is equal to
the total number of documents in the corpus in which
case the results are the same as in the case of simple

1The results elaborated were generated from experi-
ments on artifacts (UCs and CSs) pertaining to a shopping
portal project. UC1 elaborates the steps involved in mak-
ing replacement costs available to regions, UC2 elucidates
the actions related to posting prices, UC3 on publishing
these posted prices, UC4 on getting these posted prices and
UC5 explains the action sequence for entering parameters
for quotes. CS4 is a CS on cost parameter control within
the shopping portal which also deals with quote prices, re-
placement costs and fixed price deals . CS10 sequences the
process involved in searching cost parameters and replace-
ment costs and CS7 describes posted price control.

cosine similarity. In the table, the RI27 is the largest
amongst all RIs for UC2. Hence UC2 is highly related
to CS7.

Table 2: Relationship matrix of RI for LSI.

UC CS1 CS2 CS3 CS4 CS5 CS6 CS7

1 0.0 0.02 0.004 0.46 0.36 0.01 0.20
2 0.007 0.02 0.007 0.09 0.17 0.003 0.17
3 0.004 0.02 0.005 0.04 0.13 0.0 0.15
4 0.005 0.02 0.008 0.10 0.18 0.009 0.17
5 0.001 0.01 0.003 0.53 0.30 0.03 0.09

Table 3 presents a part of the normalized matrix
generated using the bag of words from LDA, with
number of latent topics equal to 21 (the number of
CSs). Here again RI14 of UC1 with CS4 is the highest
in the list of RIs for UC1 and quantifies a true pos-
itive ‘traceability link’. The RIs of UC2, UC3 and
UC4 with CSs do not help in recovering true relation-
ships as many dominant words from these UCs and
CSs fail to be present in the LDA generated bag of
words which consequently weakens the traceability
process. As for UC5, it was found that there was no
CS in the CS corpora that was directly dependent on
UC5. Hence the RIs represent false positive relations
for UC5.

Table 3: Relationship matrix of RI for LDA.

UC CS1 CS2 CS3 CS4 CS5 CS6 CS7

1 0.02 0.02 0.01 0.16 0.02 0.02 0.03
2 0.01 0.01 0.01 0.01 0.01 0.004 0.01
3 0.005 0.006 0.006 0.006 0.005 0.002 0.006
4 0.04 0.05 0.03 0.04 0.02 0.02 0.03
5 0.01 0.01 0.007 0.11 0.01 0.01 0.01

The normalised matrix computed using CTM gen-
erated bag of words is as shown in Table (4). The
number of latent topics is once again chosen to be 21.
The highest RIs denote strongest relationships of UCs
with CSs for UC1, UC2 and UC3.

Table 4: Relationship matrix of RI for CTM.

UC CS1 CS2 CS3 CS4 CS5 CS6 CS7

1 0.01 0.01 0.006 0.16 0.02 0.01 0.02
2 0.0 0.0 0.004 0.0 0.006 0.0 0.005
3 0.0 0.0 0.002 0.0 0.003 0.0 0.003
4 0.007 0.01 0.007 0.01 0.01 0.008 0.01
5 0.005 0.003 0.002 0.09 0.01 0.004 0.01

4.2 Classified Traceability Matrices

The quantified relationship matrices generated previ-
ously are used to rank the CSs for every UC, in de-
scending order of RI. After applying threshold mea-
sures on the RIs,the CSs that are dependent on the

A COMPARATIVE STUDY OF DOCUMENT CORRELATION TECHNIQUES FOR TRACEABILITY ANALYSIS

67

UCs are classified into the high, medium or low match
categories to generate classified traceability matrices.

Table 5 A shows the matrices computed using the
measure of cosine similarity and the LSI technique.
For cosine similarity method, it is observed that for
UC1 the high and medium matches agree with ex-
perts’ trace. The relationships of UC2, UC3 and UC4
with CS7 fall in the medium, low and medium match
categories respectively. But the experts’ trace suggest
that these are the strongest relations for these UCs.
Relations for UC5 can be ignored as it does not have
significantly matching CSs as per experts’ trace.The
matches indicated by the traceability matrix for LSI
approach are valid for UC1, UC2 and UC3. Relations
for UC4 and UC5 can be ignored owing to the rea-
sons cited earlier. The classified traceability matrices
generated using LDA and CTM are shown in Table 5
B. The trace measure indicated by the LDA approach
validates the assertions by experts’ trace for UC1 only.
The fallacy of the other links retrieved by LDA is due
to inappropriate representation in bag of words.As for
the CTM approach, UC1, UC2 and UC3 are observed
to have approvable matches.

Table 5: Classified traceability matrices for CosSim, LSI,
LDA and CTM approaches.

UC CS
A CosSim LSI

High Medium Low High Medium Low
1 4,10 14,17 7,21,13,9,12 4,10 12,5 11,13,14,9,17
2 7 13,11,9,16,2 5,7,13,9,19
3 7,11,13,17,16 7,13,5,19,9
4 7 9,13,11,20,16 13,12,9,11,5
5 14 4,10,17 21,12,9,7,13 4,10,14 17 21,12,11,5,13
B LDA CTM

High Medium Low High Medium Low
1 10 4,14,17,21 19,12,15,11,7 10,4 14,17,21 19,12,15,5,11
2 15,3,2,12,11 15,5,7,3,12
3 10,19,2,3,7 7,5,15,11,3
4 19,2,11,4,10 15,19,10,4,11
5 10,4,14,17 21,19,12,15,11 10,4,14,17 21,12,15,19,5

4.3 Analysis of Experimental Results

The four different approaches were experimented on
two case studies. The precision and recall shown in
Table 6 were calculated without applying a threshold
on RI values.

Table 6: The precision and recall table.

Precision% Recall%
Approach Case I Case II Case I Case II
CosSim 73 72 94 90

LSI 55 48 71 63

LDA 50 40 65 50

CTM 50 40 65 50

For a given pair of documents, the RI computation
using cosine measure involves all unique words in

both the documents. But it provides a relatively small
amount of reduction in description length and reveals
little in the way of inter or intra document statistical
structure. LSI does “noise reduction”, precluding the
term combinations which are less frequently occur-
ring in the given document collection, from the LSI
subspace used to calculate RI. The approaches that
use LDA and CTM for computing the RI are con-
fined to the bag of words that they generate after se-
mantic analysis. The recalls offered by the later two
methods are poorer than the cosine similarity and LSI
based approaches because of the inability of dominant
words from certain documents to figure in the bag of
words. This could be the reason why the strength of
traceability links are different when the different ap-
proaches are used.

In general, CTM approach scores over LDA ap-
proach in the fact that the words collected under one
bag in CTM, is not confined to a particular document.
So the inter document relationship is delivered by the
bag of words as well. The LDA approach was found
to extract words in a more document specific manner
and hence the words with low frequency but of high
importance in some documents didn’t figure in the
bag. However the two approaches yielded the same
precision and recall in the experiments conducted.

The best traceability scheme as suggested by the
result of experiments is thus ‘document correlation
using cosine similarity considering connected words’.
However a great deal of its accuracy is attributed to
the emphasis on connected words. When the same
procedure was carried out ignoring such words, the
recall was very poor and the result very erratic.

4.4 Advantages and Disadvantages

One of the most notable advantages is that they par-
tially automate the task of concept identification and
relationship extraction reducing the burden on the
user for building and maintaining trace information.
Further all of these approaches can be adopted during
any phase of the project’s lifecycle. Also, as the rela-
tionships are quantified, we can differentiate between
strongly related and weakly related documents. This
aids impact analysis and helps find the minimal set of
design specifications that cover a given set of require-
ments. Moreover, the emphasis given to connected
words by all four approaches is extremely advanta-
geous for use in many technical domains of projects.
Also, the techniques are programming language and
paradigm independent, thus offering more flexibility
and automation capability. Further, the relationship
extraction using LDA and CTM bag of words greatly
reduce the description length of a document and also

ICEIS 2008 - International Conference on Enterprise Information Systems

68

reveal inter or intra document statistical structure.
However these approaches are not without their

share of inadequacies. Their success depend upon the
acceptance of standard templates for information cap-
ture by the project teams. Further, concepts and re-
lations, at least sometimes, will have to be extracted
using text segmentation or text similarity algorithms.
Most of them work on large volumes of text. Hence
success of our approaches will depend on whether
these algorithms can be tuned to work with small
amounts of text. Also, there are chances of the sys-
tem coming up with wrong relations. The onus of
maintaining the correctness of trace data still is on the
user.

To improve the effectiveness of the traceability,
we will consider the following improvements. A glos-
sary or a Thesaurus which aids in resolving usage of
similar words/terms can be devised. Ontology can be
used to capture domain specific concepts. We can pro-
vide the user with a mechanism to control keywords
importance and document granularity . Further im-
proved text normalization methods can be adopted so
that LDA and CTM bag of words uniformly contain
dominant words from all documents in the corpora.

5 CONCLUSIONS

Document correlation is an important step towards es-
tablishing traceability. However inter-artifact trace-
ability is often ignored due to the large overhead
added by the current tracing mechanisms. Even par-
tial automation of the trace building and maintenance
would help the user to seriously consider this aspect
through out the lifecycle of the project. The four
different approaches for tracing discussed in this pa-
per, can at least partially automate this process. The
approaches can also be incorporated into the project
at an advanced stage in project’s lifecycle. To im-
prove the efficiency of traceability ‘tokenization of
connected words’ is done by all four approaches .
Such words are extremely important for correlating
technical documents like design specifications and ac-
tual codes with other documents. The result of exper-
iments we conducted suggest that the best approach
for traceability amongst the ones discussed is ‘docu-
ment correlation using cosine similarity considering
connected words’. However the LSI, LDA and CTM
based approaches emphasize on extracting semantic
information from the text corpora. We also aspire to
explore alternate methods to compute index of docu-
ment similarity to improve the recall and precision.

REFERENCES

Alexander, I. (2002). Towards automatic traceability in in-
dustrial practice. In Proc. of Workshop on Traceabil-
ity, pages 26–31.

Blei, D. M. and Lafferty, J. D. (2007). A correlated topic
model of science. Appl. Stat., 1(1):17–35.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent
dirichlet allocation. J. of MLR3, pages 993–1022.

Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas,
G. W., and Harshman, R. A. (1990). Indexing by latent
semantic analysis. J. of ASIS, 41(6):391–407.

Dekhtyar, A., Hayes, J. H., and Sundaram, S. K. (2006).
Advancing candidate link generation for requirements
tracing: The study of methods. In IEEE Trans. on SE,
volume 32, pages 4–19.

DOORS (2006). Telelogic, http://www.telelogic.com.

Dumais, S. (1991). Improving the retrieval of information
from external sources. Behavior Research Methods,
Instruments, and Computers, 23(2):229–236.

Ebner, G. and Kaindl, H. (2002). Tracing all around in
reengineering. IEEE Software, 19(3):70–77.

Goldin, L. and Berry, D. M. (1997). Abstfinder, a proto-
type natural language text abstraction finder for use in
requirements elicitation. ASE, 4(4):375–412.

Gotel, O. and Finkelstein, A. (1994). An analysis of the re-
quirements traceability problem. In Proc. of the IEEE
Int’l. Conf. on Req. Engg., pages 94–101.

Hoffman, T. (1999). Probabilistic latent semantic analysis.
In Proc. of UAI, pages 289–296.

Hoffmann, T., Puzicha, J., and Jordan, M. I. (1999). Learn-
ing from dyadic data. ANIPS 11.

Knethen, A. V. and Grund, M. (2003). Quatrace: A tool en-
vironment for(semi-) automatic impact analysis based
on traces. In Proc. of the Int’l. Conf. on Software
Maintenance, pages 246–255.

Kolda, T. G. and O’Leary, D. P. (1998). A semi - dis-
crete matrix decomposition for latent semantic index-
ing in information retrieval. ACM Trans. on Info. Sys.,
16(4):322–346.

Lin, D. and Pantel, P. (2001). Induction of semantic classes
from natural language text. In Proc. of the seventh
Int’l. Conf. on KDDM, pages 317–322, California.

RDD-100 (2006). Holagent corporation,
http://www.holagent.com/products/product1.html.

RequisitePro, R. (2006). Rational software,
http://www.rational.com/products/reqpro/index.jsp.

Richardson, J. and Green, J. (2004). Automating traceabil-
ity for generated software artifacts. In Proc. of the
19th IEEE Int’l. Conf. on ASE, pages 24–33.

Spence, I. and Probasco, L. (1998). Traceability strategies
for managing requirements with use cases. W. Paper.

A COMPARATIVE STUDY OF DOCUMENT CORRELATION TECHNIQUES FOR TRACEABILITY ANALYSIS

69

