
EMBEDDING XPATH QUERIES INTO SPARQL QUERIES

Matthias Droop1, Markus Flarer1, Jinghua Groppe2, Sven Groppe2, Volker Linnemann2
Jakob Pinggera1, Florian Santner1, Michael Schier1, Felix Schöpf1

Hannes Staffler1 and Stefan Zugal1
1 University of Innsbruck, Technikerstrasse 21a, A-6020 Innsbruck, Austria

2 Institute of Information Systems, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany

Keywords: XML, XPath, Semantic Web, SPARQL, RDF.

Abstract: While XPath is an established query language developed by the W3C for XML, SPARQL is a new query
language developed by the W3C for RDF data. Comparisons between the data models of XML and RDF
and between the query languages XPath and SPARQL are missing. Since XML and XPath are earlier
recommendations of the W3C than RDF and SPARQL, currently more XML data and XPath queries are
used in applications. However, recently available SPARQL query evaluators do not deal with XML data and
XPath queries. We have developed a prototype for translating XML data into RDF data and embedding
XPath queries into SPARQL queries for the following two reasons: 1) We want to compare the XPath and
XQuery data model with the RDF data model and the XPath query language with the SPARQL query
language in order to show similarities and differences. 2) We want to enable SPARQL query evaluators to
deal with XML data and XPath queries in order to support XPath processing and SPARQL processing in
parallel. We have developed a prototype for the source-to-source translations from XML data into RDF data
and from XPath queries into SPARQL queries. We have run experiments to measure the execution times of
the translations, of XPath queries and of their translated SPARQL queries.

1 INTRODUCTION

XML is a data format for exchanging data on the
web, between databases and elsewhere.
Furthermore, XML has become a widely used native
data format. The W3C has developed XPath (W3C,
2007) as a query language for XML data. XPath is
embedded in many other languages like the XQuery
query language and the XSLT language for
transforming XML data. The name of XPath derives
from its basic concept, the path expression, with
which the user can hierarchically address the nodes
of the XML data. The user of XPath may not only
use simple relationships like parent-child, but also
more complex relationships like the descendant
relationship, which is the transitive closure of the
parent-child relationship. Furthermore, complex
filter expressions are allowed in XPath queries.

The Resource Description Framework (RDF)
(Carroll and Klyne, 2004) is a language for
representing information about resources in the

World Wide Web. SPARQL (Prud’hommeaux and
Seaborne, 2008) is a query language for formulating
queries against RDF graphs. SPARQL supports
querying by triple patterns, conjunctions,
disjunctions, and optional patterns, and constraining
queries by a source RDF graph and extensible value
testing. Results of SPARQL queries can be ordered,
limited and offset in number. There are plans to
embed SPARQL in forthcoming languages similar
to XPath that is embedded in XQuery and XSLT.

In recent years, RDF storage systems, which
support or plan to support SPARQL, have occurred
like Jena (Wilkinson et al., 2003), Sesame
(Broekstra et al., 2003), rdfDB (Guha, 2006),
Redland (Beckett, 2002), Kowari (Northrop
Grumman Corporation, 2006), RDF Suite (Alexaki
et al., 2001) and Allegro (Franz Inc., 2006). These
RDF storage systems do not support XML data and
XPath queries, which are currently widely used in
applications. Integration of XML data into RDF data
and embedding of XPath queries into SPARQL
queries can make XML data and XPath available for

5
Droop M., Flarer M., Groppe J., Groppe S., Linnemann V., Pinggera J., Santner F., Schier M., Schöpf F., Staffler H. and Zugal S. (2008).
EMBEDDING XPATH QUERIES INTO SPARQL QUERIES.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - DISI, pages 5-14
DOI: 10.5220/0001672200050014
Copyright c© SciTePress

these products. Furthermore, the proposed
embedding enables users to work in parallel with
XML data and RDF data, and with XPath queries
and SPARQL queries, i.e. XML data is integrated in
RDF data and the result of XPath subqueries can be
used in SPARQL for further processing. As many
SPARQL tools do not allow calling an external
XPath evaluator from SPARQL, we propose to
translate embedded XPath queries into SPARQL
subexpressions.

Tree-based queries can be easier expressed in the
tree query language XPath in comparison to the
graph query language SPARQL. For example,
SPARQL does not allow computing all descendant
nodes of a node like XPath does. Furthermore, the
formulation of joins in graphs is easier in SPARQL
than in XPath. An embedding of XPath into
SPARQL allows the easy formulation of tree queries
and graph queries in one query. Thus, the host
language SPARQL benefits from the embedded
language XPath and the embedded language XPath
benefits from its host language SPARQL.

In this paper, we first compare the different data
models of XML and RDF and the different query
languages XPath and SPARQL. Based on the
comparison, we propose a translation scheme for
XML data into RDF data and XPath queries into
SPARQL queries. Furthermore, we present the
results of an experimental evaluation of a prototype,
which shows that various different XPath queries
can be embedded into SPARQL.

2 FURTHER RELATED WORK

There are many contributions (see (Florescu and
Kossmann, 1999), (Georgiadis and Vassalos, 2006),
(Grust et al., 2004), (Tatarinov et al., 2002),
(Manolescu et al., 2001), (Shanmugasundaram et al.,
1999), (Subramanyam, and Kumar, 2005), (Fan et
al., 2005) and (Yoshikawa et al., 2001)) to source-
to-source translations for evaluating XPath
expressions on relational database management
systems. Many techniques described there can be
adapted for evaluating XPath expressions on
SPARQL evaluators like using a numbering scheme
for the XML data to support all XPath axes (Grust et
al., 2004), but some other techniques cannot be
adapted like the evaluation of positional predicates
(Tatarinov et al., 2002) as SQL supports more
language constructs than SPARQL like the rank
clause.

(Bettentrupp et al., 2006), (Fokoue et al., 2005),
(Klein et al., 2005) and (Lechner et al., 2001) focus
on the translations between XSLT and XQuery (and

vice versa), which embed the XPath language, where
the XSLT and XQuery languages are based on the
same data model.

Furthermore, some contributions deal with
bridging the gap between SPARQL/RDF and the
relational world (see (Chong et al., 2005), (Dokulil,
2006), (Harris and Shadbolt, 2005) and (de Laborda
and Conrad, 2006)).

(Groppe et al., 2008) describes a translation
scheme from SPARQL to XQuery/XSLT.

(Droop et al., 2007) deals with a translation from
XML data into RDF data and from XPath queries
into SPARQL queries, but it neither contains the
general translation algorithm nor an experimental
evaluation. In this work, we suggest a translation
algorithm and present the results of an experimental
evaluation, which demonstrates which kind of XPath
queries can be translated into SPARQL and which
kind of embedded XPath queries are fast processed
when using SPARQL evaluators. Furthermore,
(Droop et al., 2007) does not deal with an
embedding of XPath queries into SPARQL queries.

3 COMPARISON OF XML/RDF
AND XPATH/SPARQL

We describe the XML and RDF data models and
introduce the XPath and SPARQL query languages
in the following subsections (see Section 3.1 and
Section 3.2). Furthermore, we describe the
similarities of the data models and query languages
in Section 3.3 and the differences in Section 3.4.

3.1 XPath and XQuery Data Model
and XPath Query Language

The XPath and XQuery data model is defined as
follows:

Definition 1 (Data Model of XPath and XQuery).
An XML document is a tree of nodes. The kinds of
nodes are document, element, attribute, text,
namespace, processing-instruction, and comment.
Every node has a unique node identity that
distinguishes it from other nodes. In addition to
nodes, the data model allows atomic values, which
are single values that correspond to the simple types
defined in (W3C, 2001), such as strings, Booleans,
decimal, integers, floats, doubles, and dates. The
first node in any document is the document node,
which contains the entire document. Element nodes,
comment nodes, and processing instruction nodes
occur in the order in which they are found in the
textual representation of the XML document.

ICEIS 2008 - International Conference on Enterprise Information Systems

6

Element nodes occur before their children – the
element nodes, text nodes, comment nodes, and
processing instructions, which they contain.
Attribute nodes and namespace nodes are not
considered as children of an element.

See Figure 1 for an example of a textual XML
document representing a bookstore containing the
two books “Harry Potter” from J. K. Rowling and
“Learning XML” from Erik T. Ray. Figure 2 is a
graphical representation of the XML document of
Figure 1.

<bookstore>
 <book category="CHILDREN">
 <title>Harry Potter</title>
 <author>J. K. Rowling</author></book>
 <book category="WEB">
 <title>Learning XML</title>
 <author>Erik T. Ray</author></book>
</bookstore>

Figure 1: An example XML document representing a
bookstore.

Document Node

bookstore

book book

category=
„CHILDREN“

category=
„WEB“

title author title author

Harry Potter J. K. Rowling Learning XML Erik T. Ray

X Element with
name „X“

attribute with name „X“
assigned with value „V“

text node with content „T“

parent-child relationship

next-sibling relationship

parent-attribute relationship

X=
„V“

T

Document Node

bookstore

book book

category=
„CHILDREN“

category=
„WEB“

title author title author

Harry Potter J. K. Rowling Learning XML Erik T. Ray

X Element with
name „X“

attribute with name „X“
assigned with value „V“

text node with content „T“

parent-child relationship

next-sibling relationship

parent-attribute relationship

X=
„V“

T

Figure 2: Graphical representation of the XML document
of Figure 1.

The W3C developed the XPath language as a
simple query language to describe node sets of XML
documents. The basic concept of XPath expressions
are location steps separated by a slash ("/"). Each
location step of the form a::nt[P1]…[Pn] contains
• an axis a, which can be one of child, attribute, self,

parent, descendant, descendant-or-self, ancestor, ancestor-or-
self, following, following-sibling, preceding and preceding-
sibling.

• a node test nt. Among the possible node tests are a
name node test for a specific name A (declared by
A itself), for an arbitrary name (declared by the
wildcard *), for a text node (declared by text()), and
a node test node() for all node types.

• an arbitrary number of predicates P1 to Pn. A
predicate is enclosed by the brackets [and]. A
predicate contains a Boolean expression, e.g. a
comparison with a constant string or number.

Starting with the root node of an XML
document, each location step from left to right
describes, which XML nodes must be considered for
the next location step by following the axis for the

XML nodes of the previous location step, checking
the node test and the predicates. The whole XPath
expression describes the resultant XML nodes of the
last location step. For example, the resultant nodes
of the XPath query of Figure 3 with input XML
document of Figure 1 are presented in Figure 4.

/bookstore/parent::node()/descendant::title/text()

Figure 3: An example XPath query.

Harry Potter
Learning XML

Figure 4: Resultant text nodes when applying the XPath
query of Figure 3 to the input XML document of Figure 1.

3.2 RDF Data Model and SPARQL

In comparison to the XPath and XQuery data model,
the data model of RDF is defined as follows:

Definition 2 (Data Model of RDF). The underlying
structure of any expression in RDF is a collection of
triples, each consisting of a subject (a RDF URI
reference or a blank node), a predicate (a RDF URI
reference) and an object (a RDF URI reference, a
blank node or a literal, which can be plain literals
having optionally a language tag, or which can be a
typed literal having additionally a datatype URI
being a RDF URI reference). A set of such triples is
called an RDF graph. The nodes of an RDF graph
are its subjects and objects. The predicate holds a
directed relationship from a subject to an object.

There are different ways to represent RDF data,

e.g. RDF Triplets or RDF/XML documents, which
use XML to encode RDF data. Figure 5 contains an
example RDF/XML document, which actually
represents the generated RDF graph of the data
translation module of our prototype when using the
XML data of Figure 1 as input. Figure 6 is a
graphical representation of the RDF data of Figure 5.

SPARQL (see (Prud’hommeaux and Seaborne,
2008)) is a query language for retrieving information
from RDF graphs stored in semantic storage
systems. The outline query model is graph patterns
expressed by simple triple patterns. It does not use
rules and is not path based.

We briefly introduce SPARQL by a simple
example. Figure 7 presents a SPARQL query, which
actually is a query translated by our prototype with
the input XPath query of Figure 3. The query
consists of three parts, the PREFIX declarations, the
SELECT clause and the WHERE clause. The
PREFIX declarations specify prefixes for short name
usages (e.g. here rel is declared as short name for
<http://uibk.ac.at/informatic/comdesign/relations:>). The

EMBEDDING XPATH QUERIES INTO SPARQL QUERIES

7

SELECT clause identifies the variables to appear in
the query results (here ?v9). The WHERE clause
contains triple patterns like “?v0 rel:child ?v1.”. The
first position (?v0) in the triple pattern represents the
constraints or bindings to variables for the subjects
in the RDF data. The second position (here it is the
relation rel:child) contains the constraints or bindings
to variables for predicates of the triples of the RDF
data, and the third (here ?v1) contains the constraints
or bindings to variables for the objects of the triples
of the RDF data. A join between the first triple
pattern (?v0 rel:child ?v1.) and the second triple pattern
(?v1 rel:type "1".) of the query is expressed by using the
same variable ?v1 in both triple patterns.
Furthermore, SPARQL queries may contain filter
expressions (here e.g. FILTER (xsd:long(?v6) >
xsd:long(?v4)).), which contain boolean expressions to
constrain the input data (here the considered filter
expression contains a greater-than comparison (“>”)
between the two variables ?v6 and ?v4, which are
first castet to the XML Schema datatype long).

<rdf:RDF xmlns:rel=
 "http://uibk.ac.at/informatic/comdesign/relations:"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
 <rdf:Description rdf:nodeID="A0">
 <rel:end>10</rel:end><rel:child rdf:nodeID="A1"/>
 <rel:start>7</rel:start><rel:type>1</rel:type>
 <rel:name>author</rel:name>
 </rdf:Description>
 <rdf:Description rdf:nodeID="A2">
 <rel:type>2</rel:type><rel:value>WEB</rel:value>
 <rel:name>category</rel:name>
 </rdf:Description>
 <rdf:Description rdf:nodeID="A3">
 <rel:end>6</rel:end><rel:child rdf:nodeID="A4"/>
 <rel:start>3</rel:start><rel:type>1</rel:type>
 <rel:name>title</rel:name>
 </rdf:Description>
 <rdf:Description rdf:nodeID="A5">
 <rel:end>20</rel:end><rel:child rdf:nodeID="A6"/>
 <rel:start>17</rel:start><rel:type>1</rel:type>
 <rel:name>author</rel:name>
 </rdf:Description>
 <rdf:Description rdf:nodeID="A1">
 <rel:end>9</rel:end><rel:type>3</rel:type>
 <rel:value>J. K. Rowling</rel:value>
 <rel:start>8</rel:start>
 </rdf:Description>
 <rdf:Description rdf:nodeID="A7">
 <rel:end>16</rel:end><rel:child rdf:nodeID="A8"/>
 <rel:start>13</rel:start><rel:type>1</rel:type>
 <rel:name>title</rel:name>
 </rdf:Description>
 <rdf:Description rdf:nodeID="A9">
 <rel:type>2</rel:type><rel:value>CHILDREN</rel:value>
 <rel:name>category</rel:name>
 </rdf:Description>
 <rdf:Description rdf:about="file:///C:/bookstore.xml">
 <rel:end>23</rel:end><rel:child rdf:nodeID="A10"/>
 <rel:type>9</rel:type><rel:start>0</rel:start>
 </rdf:Description>
 <rdf:Description rdf:nodeID="A8">
 <rel:end>15</rel:end><rel:type>3</rel:type>
 <rel:value>Learning XML</rel:value>
 <rel:start>14</rel:start>
 </rdf:Description>
 <rdf:Description rdf:nodeID="A11">
 <rel:end>11</rel:end><rel:child rdf:nodeID="A0"/>
 <rel:child rdf:nodeID="A3"/>
 <rel:attribute rdf:nodeID="A9"/>
 <rel:start>2</rel:start><rel:type>1</rel:type>
 <rel:name>book</rel:name>
 </rdf:Description>
 <rdf:Description rdf:nodeID="A4">
 <rel:end>5</rel:end><rel:type>3</rel:type>
 <rel:value>Harry Potter</rel:value>
 <rel:start>4</rel:start>

 </rdf:Description>
 <rdf:Description rdf:nodeID="A10">
 <rel:end>22</rel:end><rel:child rdf:nodeID="A12"/>
 <rel:child rdf:nodeID="A11"/>
 <rel:start>1</rel:start><rel:type>1</rel:type>
 <rel:name>bookstore</rel:name>
 </rdf:Description>
 <rdf:Description rdf:nodeID="A12">
 <rel:end>21</rel:end><rel:child rdf:nodeID="A5"/>
 <rel:child rdf:nodeID="A7"/>
 <rel:attribute rdf:nodeID="A2"/>
 <rel:start>12</rel:start><rel:type>1</rel:type>
 <rel:name>book</rel:name>
 </rdf:Description>
 <rdf:Description rdf:nodeID="A6">
 <rel:end>19</rel:end><rel:type>3</rel:type>
 <rel:value>Erik T. Ray</rel:value>
 <rel:start>18</rel:start>
 </rdf:Description>
</rdf:RDF>
Figure 5: RDF/XML document representing the generated
RDF graph of the data translation module of our prototype
when using the XML data of Figure 1 as input.

bookstore

rel:name

0

23

9

rel:
start

rel:type

rel:end

re
l:c

hi
ld

1

22

1

rel:
start

rel:type

rel:end

rel:name

12

21

1

rel:
start

rel:type

rel:endrel:name

2

11

1

rel:
start

rel:type

rel:end

2

category

CHILDREN

rel:type
rel:

attribute
rel:

name

rel:value
re l:c

h ild re l:ch ild

2

category

WEB

rel:type

rel:attribute

rel:
name

rel:value

rel:name

3

6

1

rel:
start

rel:type

rel:end rel:name

7

10

1

rel:
start

rel:type

rel:end

title

rel:name

13

16

1

rel:
start

rel:type

rel:end rel:name

17

20

1

rel:
start

rel:type

rel:end

re
l:c

hi
ld rel:child

r e
l : c

h i
ld

rel:child

rel:value

18

19

3

rel:
start

rel:type

rel:endrel:value

14

15

3

rel:
start

rel:type

rel:endrel:value

8

9

3

rel:
start

rel:type

rel:endrel:value

4

5

3

rel:
start

rel:type

rel:end

re
l:c

hi
ld

re
l:c

hi
ld

re
l:c

hi
ld

re
l:c

hi
ld

A12

bookbook

A7 A5

author

A6

Erik T. Ray

A8

Learning XMLJ. K. Rowling

A11A9

A3 A0

author

A1A4

Harry Potter

title

A10

file:///C:/bookstore.xml

A2

X Node with identity X or
literal with value X

relationship r
rel:

r

bookstore

rel:name

0

23

9

rel:
start

rel:type

rel:end

re
l:c

hi
ld

1

22

1

rel:
start

rel:type

rel:end

rel:name

12

21

1

rel:
start

rel:type

rel:endrel:name

2

11

1

rel:
start

rel:type

rel:end

2

category

CHILDREN

rel:type
rel:

attribute
rel:

name

rel:value
re l:c

h ild re l:ch ild

2

category

WEB

rel:type

rel:attribute

rel:
name

rel:value

rel:name

3

6

1

rel:
start

rel:type

rel:end rel:name

7

10

1

rel:
start

rel:type

rel:end

title

rel:name

13

16

1

rel:
start

rel:type

rel:end rel:name

17

20

1

rel:
start

rel:type

rel:end

re
l:c

hi
ld rel:child

r e
l : c

h i
ld

rel:child

rel:value

18

19

3

rel:
start

rel:type

rel:endrel:value

14

15

3

rel:
start

rel:type

rel:endrel:value

8

9

3

rel:
start

rel:type

rel:endrel:value

4

5

3

rel:
start

rel:type

rel:end

re
l:c

hi
ld

re
l:c

hi
ld

re
l:c

hi
ld

re
l:c

hi
ld

A12

bookbook

A7 A5

author

A6

Erik T. Ray

A8

Learning XMLJ. K. Rowling

A11A9

A3 A0

author

A1A4

Harry Potter

title

A10

file:///C:/bookstore.xml

A2

X Node with identity X or
literal with value X

relationship r
rel:

r

Figure 6: Graphical representation of the RDF data of
Figure 5.

Figure 8 presents the XML representation of the
resultant bindings of the SPARQL query of Figure 7
applied to the RDF data of Figure 5.

There are further constructs to e.g. use built-in
functions and set operations like the UNION
operator. We refer the interested reader to
(Prud’hommeaux and Seaborne, 2008) for a
complete list and description of the SPARQL
features.

PREFIX rel: <http://uibk.ac.at/relations/>
PREFIX xsd:<http://www.w3.org/2001/XMLSchema#>
SELECT ?v9 WHERE { ?v0 rel:type "9".
 ?v0 rel:child ?v1.
 ?v1 rel:name "bookstore".
 ?v2 rel:child ?v1.
 ?v7 rel:start ?v3.

ICEIS 2008 - International Conference on Enterprise Information Systems

8

 ?v2 rel:start ?v5.
 ?v7 rel:end ?v4.
 ?v2 rel:end ?v6.
 ?v7 rel:name "title".
 ?v7 rel:child ?v8.
 ?v8 rel:type "3".
 ?v8 rel:value ?v9.
 FILTER(xsd:long(?v6)>xsd:long(?v4)).
 FILTER(xsd:long(?v5)<xsd:long(?v3)).}

Figure 7: Translated SPARQL query when using the
XPath query of Figure 3 as input of our prototype.

<?xml version="1.0"?>
<sparql
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xs="http://www.w3.org/2001/XMLSchema#"
 xmlns="http://www.w3.org/2005/sparql-results#" >
 <head><variable name="v10"/></head>
 <results ordered="false" distinct="false">
 <result><binding name="v10">
 <literal>Harry Potter</literal>
 </binding></result>
 <result><binding name="v10">
 <literal>Learning XML</literal>
 </binding></result>

</results>
</sparql>

Figure 8: Result of the SPARQL query of Figure 7 when
we use the RDF graph of Figure 5 as input.

3.3 Similarities

Both query languages, XPath and SPARQL, support
complex queries and support the usage of variables,
constraining the result of queries (see predicates […]
in XPath and FILTER expressions in SPARQL) and
joins using variables. XPath and SPARQL support
iterating through an input data set (see for clauses in
XPath and triple patterns in SPARQL). Furthermore,
XPath and SPARQL have a rich set of built-in
functions, some of which are equivalent (see e.g.
function fn:matches in XPath and the equivalent
function regex in SPARQL). Both, XPath and
SPARQL, do not support user-defined functions.
Both languages support conditional results (see e.g.
if-then-else expressions in XPath and OPTIONAL
patterns in SPARQL) and support nesting of their
expressions and statements. Our translation scheme
shows that many language constructs of XPath can
be embedded into SPARQL expressions in a
straightforward way. The supported datatypes in
XPath queries are the datatypes of XML Schema,
which are supported in SPARQL, too.

XML data represents a tree of information. RDF
data consists of triple data, which expresses a graph.
Nevertheless, XML data can contain information to
represent graphs and RDF data can express trees.
For our translation from XML to RDF, we translate
the tree structure into triples, such that no
information is lost of the content of each node and
the relationship between the nodes of the XML tree.
Furthermore, because of some differences between
the XPath and SPARQL languages (see Section 3.4),

we have to add a numbering scheme for the
representation of the XML data in RDF.

3.4 Differences

XPath supports mechanisms to determine transitive
closures by built-in mechanisms (e.g. using the
descendant axis), but SPARQL does not support the
determination of transitive closures. Furthermore,
XPath supports nesting of expressions with full
generality, but SPARQL does not support, e.g.
querying the result of a SPARQL subquery
formulated in one SPARQL query.

Both languages, XPath and SPARQL, define
built-in functions, which do not have a
corresponding built-in function in the other language
(see e.g. fn:replace and simple aggregates like
fn:count and fn:max in XPath, and isIRI and
isBound in SPARQL). Some of these built-in
functions of XPath can be expressed by SPARQL
language constructs (e.g. id in XPath); some other
might only be expressed in an external function
formulated in another programming language. Cast
operations in XPath queries of data of a not castable
datatype lead to an error, which stops the evaluation
of the XPath query, while casting in SPARQL
queries within filter expressions constraints the input
data.

XPath expressions return a single or a sequence
of atomic values, which are single values that
correspond to the simple types defined in (W3C,
2001), such as strings, Booleans, decimal, integers,
floats, doubles, and dates, or a non-nesting, un-typed
sequence of nodes, which are ordered according to
the document order. The evaluation of SPARQL
queries returns a set of bindings of variables. Thus,
we have to provide a mechanism to transform the set
of bindings of SPARQL results into typical XPath
results in the case that SPARQL results are returned
back from the SPARQL query.

The implicit type of each node of the XML tree
has to be stored explicitly by a special relationship
for translating XML data into RDF data. All implicit
relationships of nodes of the XML tree have to be
added as explicit relationships in the RDF data. This
includes parent-child relationships, attribute and
namespace relationships, and next-sibling
relationships. As SPARQL does not support the
determination of transitive closures, we have to add
a numbering scheme (see Section 4.1) to the RDF
data in order to support XPath axes, which require
the determination of the transitive closure of basic
relationships, like descendant, ancestor,
following and preceding.

EMBEDDING XPATH QUERIES INTO SPARQL QUERIES

9

4 TRANSLATION OF XPATH
QUERIES

We propose to embed XPath subqueries in SPARQL
queries by binding a SPARQL variable to the result
of an XPath subquery by using a BIND(S, E)
construct in the WHERE clause of the host
SPARQL query, which assigns the resultant nodes
of an embedded XPath expression E to a SPARQL
variable S. For example, we present a SPARQL
query with an embedded XPath subquery in Figure
9, where the titles of all available books in a
collection of books from a bookstore, the data of
which is stored in the input XML document, are
retrieved and represented by the SPARQL variable
?XPath (see lines (5) to (7)). Furthermore, the
retrieved result of the embedded XPath subquery is
compared with the titles in the book collection of the
user (see line (8)), which are stored in the input RDF
document, and the current places of the books are
determined (see line (9)). The title of the books
available in both, in the bookstore and in the book
collection of the user, is returned together with the
current place of the book (see line (4)).

(1) PREFIX myCollection:
(2) <http://uibk.ac.at/informatic/myCollection>
(3) PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
(4) SELECT ?XPath ?place WHERE
(5) { BIND(?XPath, /child::bookstore/
(6) parent::node()/
(7) descendant::title/child::text()).
(8) ?x myCollection:title ?XPath.
(9) ?x myCollection:place ?place. }

Figure 9: Host SPARQL query with embedded XPath
query.

We first explain how to translate an XPath query
into an equivalent SPARQL query. Afterwards, we
explain how to integrate the translation of an
embedded XPath subquery into its host SPARQL
query.

The translation process consists of three steps
(see Figure 10): (i) the translation of the input data
from XML into RDF, (ii) the source-to-source
translation from the XPath query into the translated
SPARQL query, and (iii) in the case that the host
SPARQL query returns the result of an embedded
XPath query the translation of the result from the
translated SPARQL query into the result according
to the XPath and XQuery data model, which is
equivalent to the result of the XPath query. We
explain each translation step in more detail in
Section 4.1 to Section 4.3.

4.1 Translation of Data

We translate the XML data into RDF data by a
depth-first traversal of the XML tree and annotate
each translated node of the XML data with the
relationships rel:type, rel:child, rel:attribute,
rel:namespace, rel:name, rel:value, rel:start and
rel:end.

Result in
Data Model

XML

Result in
Data Model

SparQL

Source
Program

formulated
in XPath

Data in
Data Model

XML

Data in
Data Model

RDF

(ii) Source-To-Source Translation

(i) Translation of Data

(iii)
Translation
of Result

Source
Program

formulated
in SparQL

Result in
Data Model

XML

Result in
Data Model

SparQL

Source
Program

formulated
in XPath

Data in
Data Model

XML

Data in
Data Model

RDF

(ii) Source-To-Source Translation

(i) Translation of Data

(iii)
Translation
of Result

Source
Program

formulated
in SparQL

Figure 10: The translation process consists of three steps:
(i) the translation of data from XML into RDF, (ii) the
source-to-source translation from XPath into SPARQL,
and (iii) the translation of the result, which is returned by
the SPARQL query, from an embedded XPath query into
the result in the data model XML, which is equivalent to
the result of the XPath query.

As an example, see Figure 1 for the original
XML data and see Figure 2 for its graphical
representation, and see Figure 5 for the translated
RDF data and see Figure 6 for its graphical
representation.

We use a relationship rel:type in the RDF data
in order to explicitly annotate the type of an XML
node. The explicit relationship rel:child in the
translated RDF data expresses a parent-child
relationship in the XML tree, rel:attribute an
attribute relationship, and rel:namespace a
namespace relationship. The value associated over
the relationship rel:name contains the name of the
XML node, rel:value contains the value of the node.
The relationships rel:start and rel:end are
computed by a numbering scheme for XML data and
their purpose are for the determination of the
descendant relationships in SPARQL queries, as
SPARQL does not support the determination of
transitive closures.

We use a numbering scheme based on the region
encoding on elements of the XML tree, which we
adapt from (Grust et al., 2004): For each element,
the values of rel:start and rel:end can be assigned
by a depth-first traversal through the XML tree. The
value of rel:start of the document tree is 1. The
value rel:end of a node v with start value n can be
computed by n+count(subtree(v))+1, where the
function count returns the number of nodes of the
subtree rooted at v. The value of rel:start of the
first child of a node v is v.start+1. The value of

ICEIS 2008 - International Conference on Enterprise Information Systems

10

rel:start of a non-first child is the value of rel:end
of the previous sibling plus 1.

Between any two elements a and b of the XML
tree, a is a descendant node of b, if a.start>b.start
and a.end<b.end. Analogously, a is an ancestor node
of b, if a.start<b.start and a.end>b.end. a is a
following-sibling (a preceding-sibling respectively)
of b, if a.start>b.start (a.start<b.start
respectively) and there exists a subject p such that p
rel:child a and p rel:child b holds.

With these relationships, we can support all
XPath axes in our translation scheme, as we can
determine the nodes according to the basic
relationships. Note that the XPath location step
following::n is equivalent to ancestor-or-

self::node()/following-sibling::node()/descendant-

or-self::n, and the XPath location step preceding::n
is equivalent to ancestor-or-self::node()/preceding-
sibling::node()/descendant-or-self::n.

4.2 Translation of Queries

We translate an XPath query into an equivalent
SPARQL query in the following way:

First, we determine the syntax tree of the XPath
query. See Figure 11, which contains the syntax tree
of the XPath query of Figure 3. This can be done by
using standard compiler techniques, the input of
which is the XPath grammar.

Second, we evaluate the attribute grammar,
which we do not present here due to space
limitations, on the syntax tree. This attribute
grammar defines computation rules for each possible
situation in the syntax tree. The computation rules
compute attributes of the nodes of the syntax tree.
Depending on the dependencies between the
attributes in the computation rules, a tree walking
algorithm defines the traversal of the syntax tree and
the evaluation order of the attributes. After applying
the tree walking algorithm, a special attribute
SPARQL of the root node XPATH of the syntax tree
contains the translated SPARQL query.

As an example of the query translation, see
Figure 3 for the original XPath query, Figure 11 for
its syntax tree with computed attributes according to
our attribute grammar and Figure 7 for the translated
SPARQL query.

The translation of embedded XPath subqueries
and the integration of their translations into the host
SPARQL query require that the resultant SPARQL
query containing the result of the XPath subquery is
renamed according to the bound variable of the
extended SPARQL expression for embedding XPath
queries. Furthermore, the declared prefixes must be
added to the declared prefixes of the host SPARQL

query and the WHERE clause of the translated
XPath query has to be added to the WHERE clause
of the host SPARQL query.

4.3 Translation of Result

XPath

Expr

AndExpr

CmpExpr

RangeExpr

AdditiveExpr

UnionExpr

IntersectExpr

UnaryExpr

PathExpr

RelPath
“/“

AxisStep

AxisStep

“/“

AxisStep

“/“

AxisStep

“/“

Axis NodeTest PredList

Axis NodeTest PredList

Axis NodeTest PredList

Axis NodeTest PredList

“child“

“parent“

“descendant“

“child“

QName

KindTest

AnyKindTest

QName

KindTest

TextTest

SPARQL="PREFIX rel: http://uibk.ac.at/informatic/comdesign/relations:\n"+
"PREFIX xsd: http://www.w3.org/2001/XMLSchema#\n"+
"SELECT DISTINCT ?v9 WHERE {"+Expr.SPARQL+"}";

SPARQL=AndExpr.SPARQL

SPARQL=CmpExpr.SPARQL

SPARQL=RangeExpr.SPARQL

SPARQL=AdditiveExpr.SPARQL

SPARQL=UnionExpr.SPARQL

SPARQL=IntersectExpr.SPARQL

SPARQL=UnaryExpr.SPARQL

SPARQL=PathExpr.SPARQL

SPARQL=“?v0 rel:type 9.“+RelPath.SPARQL

SPARQL=Step[1].SPARQL+Step[2].SPARQL+Step[3].SPARQL+Step[4].SPARQL

Step

Step

Step

StepSPARQL=AxisStep.SPARQL

SPARQL=
AxisStep.SPARQL

SPARQL=
AxisStep.SPARQL

SPARQL=
AxisStep.SPARQL

SPARQL=
Axis.SPARQL+
NodeTest.SPARQL+
PredList.SPARQL

SPARQL=Axis.SPARQL+
NodeTest.SPARQL+
PredList.SPARQL

SPARQL=Axis.SPARQL+
NodeTest.SPARQL+
PredList.SPARQL

SPARQL=Axis.SPARQL+
NodeTest.SPARQL+
PredList.SPARQL

SPARQL=““

SPARQL=““

SPARQL=““

SPARQL=““SPARQL=
“?v0 rel:child ?v1.“

SPARQL=
“?v2 rel:child ?v1.“

SPARQL=
“?v1 rel:name“+
“ ‘bookstore‘.“

SPARQL=
KindTest.SPARQL

SPARQL=““

SPARQL=“?v8 rel:type 3.“+
“?v8 rel:value ?v9.“

SPARQL=
KindTest.SPARQL

SPARQL=
“?v7 rel:start ?v3.“+
“?v2 rel:start ?v5.“+
“Filter(xsd:integer(?v5)“+

“<xsd:integer(?v3))“+
“?v7 rel:end ?v4.“+
“?v2 rel:end ?v6.“+
“Filter(xsd:integer(?v6)“+

“>xsd:integer(?v4))“

SPARQL=
“?v7 rel:name“+
“ ‘title‘.“

SPARQL=
“?v7 rel:child ?v8.“

“title“

“title“

XPath

Expr

AndExpr

CmpExpr

RangeExpr

AdditiveExpr

UnionExpr

IntersectExpr

UnaryExpr

PathExpr

RelPath
“/“

AxisStep

AxisStep

“/“

AxisStep

“/“

AxisStep

“/“

Axis NodeTest PredList

Axis NodeTest PredList

Axis NodeTest PredList

Axis NodeTest PredList

“child“

“parent“

“descendant“

“child“

QName

KindTest

AnyKindTest

QName

KindTest

TextTest

SPARQL="PREFIX rel: http://uibk.ac.at/informatic/comdesign/relations:\n"+
"PREFIX xsd: http://www.w3.org/2001/XMLSchema#\n"+
"SELECT DISTINCT ?v9 WHERE {"+Expr.SPARQL+"}";

SPARQL=AndExpr.SPARQL

SPARQL=CmpExpr.SPARQL

SPARQL=RangeExpr.SPARQL

SPARQL=AdditiveExpr.SPARQL

SPARQL=UnionExpr.SPARQL

SPARQL=IntersectExpr.SPARQL

SPARQL=UnaryExpr.SPARQL

SPARQL=PathExpr.SPARQL

SPARQL=“?v0 rel:type 9.“+RelPath.SPARQL

SPARQL=Step[1].SPARQL+Step[2].SPARQL+Step[3].SPARQL+Step[4].SPARQL

Step

Step

Step

StepSPARQL=AxisStep.SPARQL

SPARQL=
AxisStep.SPARQL

SPARQL=
AxisStep.SPARQL

SPARQL=
AxisStep.SPARQL

SPARQL=
Axis.SPARQL+
NodeTest.SPARQL+
PredList.SPARQL

SPARQL=Axis.SPARQL+
NodeTest.SPARQL+
PredList.SPARQL

SPARQL=Axis.SPARQL+
NodeTest.SPARQL+
PredList.SPARQL

SPARQL=Axis.SPARQL+
NodeTest.SPARQL+
PredList.SPARQL

SPARQL=““

SPARQL=““

SPARQL=““

SPARQL=““SPARQL=
“?v0 rel:child ?v1.“

SPARQL=
“?v2 rel:child ?v1.“

SPARQL=
“?v1 rel:name“+
“ ‘bookstore‘.“

SPARQL=
KindTest.SPARQL

SPARQL=““

SPARQL=“?v8 rel:type 3.“+
“?v8 rel:value ?v9.“

SPARQL=
KindTest.SPARQL

SPARQL=
“?v7 rel:start ?v3.“+
“?v2 rel:start ?v5.“+
“Filter(xsd:integer(?v5)“+

“<xsd:integer(?v3))“+
“?v7 rel:end ?v4.“+
“?v2 rel:end ?v6.“+
“Filter(xsd:integer(?v6)“+

“>xsd:integer(?v4))“

SPARQL=
“?v7 rel:name“+
“ ‘title‘.“

SPARQL=
“?v7 rel:child ?v8.“

“title“

“title“

Figure 11: Syntax tree of the XPath query of Figure 3 and
computed attributes according to our attribute grammar.

EMBEDDING XPATH QUERIES INTO SPARQL QUERIES

11

The result of an SPARQL query is a set of bindings
of variables in the SELECT clause of an SPARQL
query. We determine the translated XPath query in
such a way that the retrieved bindings of the XPath
query represent the resultant XML nodes of the
original query. In the module of the translation of
result and in the case that the result of an embedded
XPath query is returned by the SPARQL query, we
now rebuild the subtrees of these resultant XML
nodes by considering the information of the original
XML tree in the RDF data (especially the rel:type,
rel:child, rel:attribute, rel:namespace, rel:name, rel:value,
rel:start and rel:end relationships). Furthermore, we
sort the resultant XML trees according to the
document order of the original XML tree, as the
XPath language specifies the result of an XPath
query to be in document order of the queried XML
document. Note that the less-than order relation of
the computed values of rel:start correspond to the
document order relation, i.e. if a and b are the values
of the rel:start relationship of two nodes of the
translated RDF data and a<b, then the corresponding
node of a occurs before the corresponding node of b
in document order in the original XML document.

5 PERFORMANCE ANALYSIS

The test system for all experiments is a 2.66
Gigahertz Intel Pentium 4 processor with 1
Gigabytes main memory. The test system runs
Windows XP Professional Version 2002 Service
Pack 2 and Java version 1.5. We have used the Java
1.5 internal XPath evaluator. Furthermore, we have
used the XQuery evaluators Saxon (Kay, 2006), as
Saxon is widely used, and Qizx (Axyana software,
2006), as Qizx is a fast evaluator, to process the
original XPath queries. We have used Jena (Hewlett-
Packard Labs, 2003) to process the translated
SPARQL expressions, as Jena supports the current
version of SPARQL and as Jena is the most widely
used Semantic Web reasoning engine (see (Cardoso,
2007)). We present the average of 10 execution
times of evaluating the original XPath queries, of the
data translation, of the query translation, of
processing the translated SPARQL queries and of
the result translation.

For the original queries, we have used the queries
for the performance test of the XPathMark
(Franceschet, 2005) benchmark. The data is
generated by the data generation tool of the
benchmark, which allows scaling the size of the
input data.

We have excluded those queries of the XPathMark
benchmark, which are not supported by our
prototype for the following reasons:
• The queries contain an XPath built-in function,
which does not correspond to any built-in function
of SPARQL. Our prototype supports the not,
round, abs, floor, ceiling and
substring function. One possible way to
support other built-in functions is to use external
functions, which are especially implemented to
provide the same functionality as the corresponding
XPath built-in function. We did not implement
these external functions, as external functions are
not standardized and thus depend on the used
SPARQL engine.

0,001

0,010

0,100

1,000

10,000

100,000

1000,000

tim
e in seconds

/site/closed_auctions/closed_auction/annotation/desc
ription/text/keyword

//closed_auction//keyword

/site/closed_auctions/closed_auction//keyword

/site/closed_auctions/closed_auction[annotation/desc
ription/text/keyword]/date

/site/closed_auctions/closed_auction[descendant::ke
yword]/date

/site/people/person[phone or homepage]/name

/site/people/person[address and (phone or
homepage) and (creditcard or profile)]/name

/site/regions/*/item[parent::namerica or
parent::samerica]/name

//keyword/ancestor::listitem/text/keyword

Java 1.5 internal XPath Processor Saxon Qizx Data Translation Query Translation Jena Result Translation

Figure 12: Execution time of the first subset of original
XPath queries of the XPathMark Benchmark, of the data
translation, of the query translation, of the translated
SPARQL query and of the result translation when using an
input XML document of size 56.55 Kilobytes.

• The queries contain predicates of the form [x],
where x is a number, which restrict the current
node set of a location step to its x-th element. We
are currently not aware of a simple, but efficient
way to access the x-th element of a dynamically
determined set in SPARQL queries. Note that
techniques developed for SQL as described in

ICEIS 2008 - International Conference on Enterprise Information Systems

12

(Tatarinov et al., 2002) cannot be adapted to
SPARQL, as a RANK clause as in SQL or an
equivalent language construct is missing in the
SPARQL language.

0,001

0,010

0,100

1,000

10,000

100,000

1000,000

tim
e in seconds

/site/open_auctions/open_auction/bidder[following-
sibling::bidder]

/site/open_auctions/open_auction/bidder[preceding-
sibling::bidder]

/site/regions/*/item[following::item]/name

/site/regions/*/item[preceding::item]/name

//person[profile/@
income]/name

/site/open_auctions/open_auction[(not(bidder/following::bidder)
or not(bidder/preceding::bidder)) and (bidder/following::bidder

and bidder/preceding::bidder)]/interval

/site/people/person[profile/age >= 18 and profile/@
income <

10000 and address/city != 'Dallas']/name

/site/open_auctions/open_auction[bidder/increase =
current]/interval

/site/people/person[profile/@
income =

/site/open_auctions/open_auction/current]/name

Average

Java 1.5 internal XPath Processor Saxon Qizx Data Translation Query Translation Jena Result Translation

Figure 13: Execution time of the second subset of original
XPath queries of the XPathMark Benchmark, of the data
translation, of the query translation, of the translated
SPARQL query and of the result translation when using an
input XML document of size 56.55 Kilobytes.

Figure 12 and Figure 13 present the execution times
of the original XPath queries of the XPathMark
benchmark, of the data translation, of the query
translation, of the translated SPARQL query and of
the result translation when using an input XML
document of size 56.55 Kilobytes. Furthermore,
Figure 13 presents the average execution times of all
these 18 queries of the XPathMark benchmark (most
right column). Figure 14 presents the average
execution times when varying the size of the input
file. Furthermore, it shows that the average
execution times for processing the translated
SPARQL queries is dominated by the execution time
of those translated queries, which are translated from

XPath queries containing a recursive axis like
descendant, descendant-or-self, ancestor, ancestor-
or-self, following, preceding, following-sibling and
preceding-sibling. The translated SPARQL queries
of XPath queries containing a recursive axes have
filter expressions like FILTER (xsd:long(?v6) >
xsd:long(?v4)), the processing of which is time
consuming. Future versions of Jena or other
SPARQL engines may optimize these kinds of filter
expressions, such that the translations for recursive
axes are faster processed.

Figure 14: Average execution times of the original queries
of the XPathMark benchmark, of data translation, query
translation, result translation and the execution times of
the translated SPARQL queries (all, only those containing
recursive axes and those, which contain only non-
recursive queries) using Jena.

6 CONCLUSIONS

In this paper, we first compare the RDF and XPath
and XQuery data model and the XPath and
SPARQL query languages. Then we propose
translations from XML into RDF, from XPath into
SPARQL, and from the result of the translated
SPARQL query into the XPath and XQuery data
model, in order to integrate XML data into RDF data
and embed XPath subqueries into SPARQL queries.
A translation from XML into RDF and an
embedding from XPath into SPARQL enable
SPARQL query evaluators to deal with XML data
and to process XPath queries as subqueries.

We have developed a prototype to verify our
translations and to show the practical usability of
such a source-to-source translator. We have done a
performance analysis to measure the execution times
of the translations and the evaluations of the XPath
query and the translated SPARQL query. The
evaluation of translated SPARQL queries from
XPath queries not containing a recursive axis is

EMBEDDING XPATH QUERIES INTO SPARQL QUERIES

13

efficient and not significantly slower than processing
the original XPath queries. The translated SPARQL
queries of XPath queries containing a recursive axes
contain filter expressions like FILTER (xsd:long(?v6) >
xsd:long(?v4)), the processing of which is time
consuming. Future versions of Jena or other
SPARQL engines may optimize these kinds of filter
expressions, such that the translations for recursive
axes are faster processed.

REFERENCES

Alexaki, S., Christophides, V., Karvounarakis, G.,
Plexousakis, D., and Tolle, K.. 2001, The rdfsuite:
Managing voluminous rdf description bases.
SemWeb’01 in conjunction with WWW, Hongkong.

Axyana software, 2006, Qizx/open version 1.1,
http://www.axyana.com/qizxopen.

Beckett, D., 2002. The design and implementation of the
Redland RDF application framework. Computer
Networks, 39(5):577-588.

Bettentrupp, R., Groppe, S., Groppe, J., Böttcher, S., and
Gruenwald, L., 2006. A Prototype for Translating
XSLT into XQuery, ICEIS 2006, Paphos, Cyprus.

Broekstra, J., Kampman, A., van Harmelen, 2002.
Sesame: A Generic Architecture for Storing and
Querying RDF and RDF Schema. ISWC, Sardinia.

Cardoso, J., 2007, The Semantic Web Vision: Where are
We?, IEEE Intelligent Systems, pp.22-26.

Carroll J. J., Klyne G., 2004, Resource Description
Framework: Concepts and Abstract Syntax, W3C
Recommendation, 10th February 2004.

Chong E. I., Das S., Eadon G., Srinivasan J., 2005, An
Efficient SQL-based RDF Querying Scheme, VLDB,
Trondheim, Norway.

Dokulil, J., 2006, Evaluation of SPARQL Queries Using
Relational Databases. ISWC, Athens, GA, U.S.A..

Droop, M., Flarer, M., Groppe, J., Groppe, S., Linnemann,
V., Pinggera, J., Santner, F., Schier, M., Schöpf, F.,
Staffler, H., and Zugal, S., 2007, Translating XPath
Queries into SPARQL Queries, ODBASE 2007,
Vilamoura, Algarve, Portugal.

Florescu, D., Kossmann, D., 1999, Storing and Querying
XML Data Using an RDBMS. IEEE Data
Engineering Bulletin 22 (1999) 27–34

Fokoue, A., Rose, K., Siméon, J., and Villard, L., 2005,
Compiling XSLT 2.0 into XQuery 1.0, WWW 2005,
Chiba, Japan.

Franceschet, M., 2005, XPathMark – An XPath
Benchmark for the XMark Generated Data. XSym
2005, Trondheim, Norway.

Franz Inc., 2006. AllegroGraph 64-bit RDFStore,
http://www.franz.com/products/allegrograph.

Georgiadis, H., and Vassalos, V., 2006, Improving the
Efficiency of XPath Execution on Relational Systems,
EDBT, Vol. 3896, pp. 570-587, Springer.

Groppe, S., Groppe, J. Linnemann, V., Kukulenz, D.,
Höller, N., and Reinke, C., 2008, Embedding
SPARQL into XQuery / XSLT, ACM SAC 2008,
Fortaleza, Ceara, Brasilien

Grust, T., van Keulen, M., and Teubner, J., 2004,
Accelerating XPath evaluation in any RDBMS, ACM
Trans. Database Syst, Vol. 29, pp. 91-131.

Guha, R., 2006. rdfDB: An RDF Database,
http://www.guha.com/rdfdb.

Harris, S., and Shadbolt, N., 2005, SPARQL Query
Processing with Conventional Relational Database
Systems. WISE Workshops 2005.

Hewlett-Packard Labs, 2003, The Jena SemanticWeb
Toolkit. Technical report, Hewlett-Packard Labs,
http://jena.sourceforge.net/.

Tatarinov, I., Viglas, S., Beyer, K. S.,
Shanmugasundaram, J., Shekita, E. J., Zhang, C.,
2002, Storing and querying ordered XML using a
relational database system. SIGMOD Conference
2002, Madison, Wisconsin, U.S.A..

Kay, M. H., 2006, Saxon - The XSLT and XQuery
Processor, http://saxon.sourceforge.net.

Klein, N., Groppe, S., Böttcher, S., and Gruenwald, L. ,
2005, A Prototype for Translating XQuery
Expressions into XSLT Stylesheets, ADBIS, Talinn.

de Laborda, C. P., Conrad, S., 2006, Bringing Relational
Data into the SemanticWeb using SPARQL and
Relational.OWL. SWDB’06 in conjunction with ICDE
2006, Atlanta, Georgia, U.S.A..

Lechner, S., Preuner, G., and Schrefl, M., 2001,
Translating XQuery into XSLT, In ER 2001
Workshops, Yokohama, Japan.

Manolescu, I., Florescu, D., Kossmann, D., 2001, Pushing
XML Queries inside Relational Databases. INRIA,
Rapport de recherche 4112 (2001).

Northrop Grumman Corporation, 2006. Kowari,
http://www.kowari.org.

Prud’hommeaux E., Seaborne A., 2008, SPARQL Query
Language for RDF, W3C Recommendation.

Shanmugasundaram, J., Tufte, K., Zhang, C., He, G.,
DeWitt, D.J., Naughton, J.F., 1999, Relational
Databases for Querying XML Documents: Limitations
and Opportunities. VLDB 1999, Edinburgh, Scotland.

Subramanyam, G. V., and Kumar, P. S., 2005, Efficient
Handling of Sibling Axis in XPath, COMAD 2005,
Goa, India.

Fan, W., Yu, J. X., Lu, H., Lu, J., and Rastogi, R., 2005,
Query Translation from XPath to SQL in the presence
of recursive DTDs, VLDB, Trondheim, Norway.

Wilkinson, K., Sayers, C., Kuno, H. A., Reynolds, D.,
2003. Efficient RDF Storage and Retrieval in Jena2.
SWDB’03 co-located with VLDB 2003, Berlin.

W3C, 2001, XML Schema Part 2: Datatypes, W3C
Recommendation, 2001.

W3C, 2007, XPath Version 2.0, W3C Recommendation.
Yoshikawa, M., Amagasa, T., Shimura, T., and Uemura,

S., 2001, XRel: A Path-Based Approach to Storage
and Retrieval of XML Documents Using Relational
Databases. ACM TOIT, 1 (2001) 110–141.

ICEIS 2008 - International Conference on Enterprise Information Systems

14

