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Abstract: With the growing importance of XML in data exchange, much research has been done in providing flexible 
query mechanisms to extract data from XML documents. In this paper, we focus on the query evaluation in 
an XML streaming environment, in which data streams arrive continuously and queries have to be evaluated 
even before all the data of an XML document is available. We will propose an algorithm for this issue, 
working in O(|T|⋅Qleaf) time and O(|T|⋅Qleaf) space, where Tleaf stands for the number of the leaf nodes in a 
document tree T and Qleaf for the number of the leaf nodes in a query tree Q. 

1 INTRODUCTION 

There is much current interest in processing 
streaming XML data, using queries expressed with 
languages such as XPath (World Wide Web 
Consortium, 2007) and XQuery (World Wide Web 
Consortium, 2005). A streaming environment, as 
found with stock market data, network monitoring, 
or sensor network, differs from non-streaming XPath 
query processing in the following aspect. In a 
streaming environment, data streams, which can be 
potentially infinite, arrive continuously, and must be 
processed in a single sequential scan due to the 
limited storage space available. Query results should 
be distributed incrementally once they are found, 
possibly before we have read all the data. In 
addition, the query processing algorithm should 
scale well in both time and space. An algorithm that 
meets such an environment for query evaluation 
over XML data is called a streaming evaluation 
algorithm.  

In this paper, we propose a new algorithm to 
evaluate queries in such an environment, which runs 
in O(|T|⋅Qleaf) time and O(Tleaf⋅Qleaf) space, where 
Tleaf and Qleaf represent the numbers of the leaf nodes 
in a document tree T and in a query tree Q, 
respectively. 

- Data model and query language 
Abstractly, an XML document can be considered as 
a tree structure with each node standing for an 

element name from a finite alphabet ∑; and an edge 
for the element-subelement relationship. 

In an XML streaming environment, an XML 
document tree T is modeled as a stream S of 
modified SAX events: startElement(tag, level, id) 
and endElement(tag, level), where tag is the tag of 
the node being processed, level is the level at which 
the node appears, and id is the unique identifier 
assigned to the node. A node in T exactly 
corresponds to a startElement and (the 
corresponding endElement event) in S. In addition, if 
an element e has no subelement, a text is possibly 
associated with its startElement. 

These events are the input to our query 
evaluation processor. 

On the other hand, queries in XML query 
languages, such as XPath (World Wide Web 
Consortium, 2007), XQuery (World Wide Web 
Consortium, 2005), XML-QL (Dutch et al., 1999), 
and Quilt (Chamberlin et al., 2002; Chamberlin et 
al., 2000), typically specify patterns of selection 
predicates on multiple elements that also have some 
specified tree structured relations. For instance, the 
following XPath expression: 
 book[title = ‘Art of Programming’]//author[fn = 

‘Donald’ and ln = ‘Knuth’] 
matches author elements that (i) have a child 
subelement fn with content ‘Donald’, (ii) have a 
child subelement ln with content ‘Knuth’, and are 
descendants of book elements that have a child title 
subelement with content ‘Art of Programming’. This 
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expression can be represented as a tree structure as 
shown in Figure 1. 

 
Figure 1: A query tree. 

In this tree structure, a node v is labeled with an 
element name or a string value, denoted as label(v). 
In addition, there are two kinds of edges: child edges 
(c-edges) for parent-child relationships, and 
descendant edges (d-edges) for ancestor-descendant 
relationships. A c-edge from node v to node u is 
denoted by v → u in the text, and represented by a 
single arc; u is called a c-child of v. A d-edge is 
denoted v ⇒ u in the text, and represented by a 
double arc; u is called a d-child of v. In addition, a 
node in Q can be a wildcard ‘*’ that matches any 
element in T. Such a query is often called a twig 
pattern. In the following discussion, we use 
startElement and node interchangeably since each 
startElement event in S exactly corresponds to a 
node in T. 

- XML query evaluation and tree matching 
In any DAG (directed acyclic graph), a node u is 
said to be a descendant of a node v if there exists a 
path (sequence of edges) from v to u. In the case of a 
twig pattern, this path could consist of any sequence 
of c-edges and/or d-edges. Based on these concepts, 
the tree embedding can be defined as follows. 
Definition 1. An embedding of a twig pattern Q into 
an XML document T is a mapping f: Q → T, from 
the nodes of Q to the nodes of T, which satisfies the 
following conditions: 
(i) Preserve node label: For each u ∈ Q, label(u) = 

label(f(u)). 
(ii) Preserve c/d-child relationships: If u → v in Q, 

then f(v) is a child of f(u) in T; if u ⇒ v in Q, 
then f(v) is a descendant of f(u) in T.   

If there exists a mapping from Q into T, we say, Q 
can be imbedded into T, or say, T contains Q. The 
purpose of XML query evaluation is to find all the 
subtrees of T, which contain Q. 

Notice that an embedding could map several 
nodes of the query (of the same label) to the same 
node of the database. It also allows a tree mapped to 
a path. This definition is quite different from the tree 
matching defined in (Hoffmann and O’Donnell, 
1982). 

Recently, a great many strategies have been 
proposed to evaluate XPath queries in an XML 
streaming environment (Avila et al., 2002; Chen et 
al., 2006; Ives et al., 2002; Koch et al., 2004; 
Ludascher et al., 2002; Peng and Chawathe, 2003; 
Peng et al., 2003). The methods discussed in (Avila 
et al., 2002; Ives et al., 2002) are based on finite 
state automata (FSA), but only able to handle single 
path queries, i.e., a query containing branching 
cannot be processed, as observed in (Peng and 
Chawathe, 2003). The method proposed in (Peng 
and Chawathe, 2003) is a general strategy, but 
requires exponential time (O(|T| × 2|Q|)) in the worst 
case, as analyzed in (Peng et al., 2003). The methods 
discussed in (Koch et al., 2004; Ludascher et al., 
2002) do not support d-edges. If we extend them to 
general cases, exponential time is required. Up to 
now, the research culminates in TwigM presented in 
(Chen et al., 2006). It is not only a general-case 
algorithm, but also works in polynomial time. In the 
worst case, its time complexity is bounded by 
O(ThQd|Q||T| + |Q|2|T|), where Th is the height of T 
and Qd is the largest outdegree of a node in Q. By 
this method, each node q of Q is associated with a 
boolean array of length Qd and a stack of size Th, in 
which each element is a node v from T such that its 
relationship with the nodes in the stack associated 
with q’s parent q’ satisfies the relationship between 
q and q’. Therefore, each time to figure out a stack 
and push a node into it, O(ThQd|Q|) time is required, 
leading to a time complexity of O(ThQd|Q||T| + 
|Q|2|T|). See Theorem 4.4 in (Chen et al., 2006). 

The remainder of the paper is organized as 
follows. In Section 2, we discuss an algorithm for 
simple cases that a twig pattern contains only d-
edges, as well as wildcards and branches. In Section 
3, we extend this algorithm to general cases. Finally, 
a short conclusion is set forth in Section 4. 

2 ALGORITHM FOR SIMPLE 
CASES 

In this section, we describe an algorithm for simple 
cases that a twig pattern contains only d-edges, 
wildcards and branches. First, we give a basic 
algorithm in 2.1. Then, in 2.2, we prove the 
correctness of the algorithm and analyze its 
computational complexities. 

Art of Programming 

title 

Knuth 

book 

fn 

author 

ln 

Donald 
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2.1 Basic Algorithm 

Recall that in a streaming environment, the input to 
the XML query processor is a steam of modified 
SAX events; and an event is either startElement(tag, 
level, id) or endElement(tag, level). In order to 
evaluate a query Q, we have to scan a stream S from 
the beginning to the end and report any startElement 
event once the corresponding subtree is found 
containing Q. 

For this purpose, we will maintain a global stack 
structure with each entry in it being a triplet: <e, p, 
c>, where e is a startElement event, p is a pointer to 
an entry in stack where its parent startElement is 
stored and c a pointer to the head of a linked list 
containing all the nodes constructed for its child 
elements, as illustrated in Figure 2. 

 
Figure 2: Illustration for stack structure. 

During the process, two other data structures are 
also maintained and computed to facilitate the 
discovery of subtree matchings according to 
Definition 1. 
- Each node v (corresponding to a startElement 

event in S) in a document tree T is associated 
with a set, denoted α(v), contains all those nodes 
q in Q such that Q[q] can be imbedded into T[v]. 

- Each q in Q is associated with a value δ(q), 
defined as follows. 
Initially, for each q ∈ Q, δ(q) is set to φ. During 

the tree matching process, δ(q) is dynamically 
changed as below. 
(i) Let v be a node in T with parent node u.  
(ii) If q appears in α(v), change the value of δ(q) to 

u. 
Then, each time before we insert q into α(v), we 

will do the following checkings: 
1. Check whether label(q) = label(v). 
2. Let q1, ..., qk be the child nodes of q. For each qi 

(i = 1,..., k), check whether δ(qi) is equal to v. 
If both (1) and (2) are satisfied, insert q into α(v). 
Below is the algorithm, which takes an event 

stream S and a twig pattern Q as the input. During 
the process, S is scanned from the beginning to the 
end and once a startElement event is found such that 
the subtree rooted at the corresponding node 
contains Q it will be reported. 

In the algorithm, a virtual startElement event is 
used, which is considered to be the parent of the first 
startElement event in S (which corresponds to the 
root of T). The level number of the virtual event is 
set to be -1, and its tag and id are both set to be nil. 
Two variables E and E’ are used. E’ is for the 
current startElement event being processed while E 
is to store the parent of the current startElement 
event. In addition, each time a node v is constructed, 
a subprocedure containment-check(v, Q) is invoked 
to find all those q ∈ Q such that T[v] contains Q[q] 
and store them in α(v). 
Algorithm query-evaluation(S, Q) 
input:  S - an XML stream; Q - a twig pattern. 
output: report any startElement such that for the 

corresponding node v, T[v] contains Q. 
begin 
1. push(the first element of S, stack); 
2. E := virtual event; 
3. while stack is not empty do { 
4.  E’ := top(stack); 
 (*check the top element in stack*) 
5.  E’.p := address of E;  
 (*establish parent link for E’*) 
6.  let e be the next element in S; 
7.  if  e is a startElement event then { 
8.   E := E’; 
9.   push(e, stack); 
10.  } 
11.  else (*e is an endElement event.*) 
12.   {E’’ := pop(stack);    
  (*pop the top element out of stack*) 
13.   generate node v for E’’; E := E’’.p; 
14.   append v to the end of (E’’.p).c;   
15.   call containment-check(v, Q); 
16.   } 
17. } 
end  

The above algorithm processes the events in S 
one by one. Therefore, the corresponding document 
tree T is searched in the depth-first traversal fashion. 
Each time a startElement event is encountered, it 
will be pushed into stack (see line 1 and lines 6 - 9) 
and stay there until its corresponding endElement is 
encountered (see lines 11 - 12). In this case, it will 
be popped out of stack and a node v for it will be 
constructed (see line 13), for which a containment 
check will be performed (see line 15).  
Example 1. Consider the document tree T in Figure 
3(a). Its XML stream S is shown in Figure 3(b). 
Applying the algorithm query-evaluation( ) to S, we 
will regain T if line 15 is not executed. In Figure 4, 
we trace the first 8 steps of the execution process. 

ck 

 … 
 … c1 

 … 

 … 
 p     e       c 

stack structure: 
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Figure 3: A document tree and its XML stream. 

 
Figure 4: Illustration for for L(qi)’s. 

From the above discussion, we can see that a 
document tree can always be constructed by 
scanning the corresponding XML stream S. For the 
purpose of query evaluation, however, we have to 
check the containment each time a node of T is 
constructed. This is done by calling containment-
check(v, Q), in which another two functions are 
invoked to do different checkings: 
- element-check(u, q): u is an element containing 

subelements. It checks whether T[u] contains 
Q[q]. If it is the case, return {q}. Otherwise, it 
returns an empty set ∅. 

- bottom-element-check(u, Q): u is an element 
containing no subelement. It returns a set of 
nodes in Q: {q1, ..., qk} such that for each qi (1 ≤ i 
≤ k) the following conditions are satisfied. 

 (i) label(u) = label(qi). 
 (ii) if qi has a child, then the child must be a text 

and matches the text associated with u. 
 
Algorithm containment-check(v, Q) 
input: v - a node in T; Q - a twig pattern. 
output: a(v) - a set of query node q such that T[v] 

contains Q[q].  
begin 
1. C := ∅; C1 := ∅; C2 := ∅; 
2. if v.c is not nil then (*v has some subelements.*) 
3. {let v1, ..., vk be the child nodes of v; 
4. α := α(v1) ∪ ... ∪ α(vk); 
5. for each q ∈ α do  
6. {δ(q) := v; C := C ∪ {q’s parent};} 
7. remove all α(vj) (j = 1, ..., k);  
8. for each q’ in C do 
9. C1 := C1 ∪ element-check(v, q’); 
10. } 
11. C2 := bottom-element-check(v, Q); 
12. α(v) := α ∪ C1 ∪ C2; 
end 

Function element-check(u, q) 
begin 
1. C1 := ∅; 
2. if label(q) = label(u) then 
 (*If q is ‘*’, the checking is always successful.*) 
3. {let q1, ..., qk be the child nodes of q; 
4. if for each qi (i = 1, ..., k) d(qi) is equal to u  
5. then {C1 := {q};  
6. if q is root then report u};} 
7. return C1; 
end 
Function bottom-element-check(u, Q) 
begin 
1. C2 := ∅; flag := false; 
2. for each leaf node q in Q do { 
3.  if q is a text then { 
4. let q’ be the parent of q; 
5. if label(q’) = label(u) and 

 q matches the text associated with u then 
{C2 := C2 ∪ {q’}; flag := true; 

6. } 
7. else { 
8. if label(q) = label(u) then { 
9. C2 := C2 ∪ {q}; flag := true; 
10. } 
11. if q is root and flag := true then report u; 

 p        startE         c 

At the beginning, stack is 
empty. 

Step 1: 1st startE into stack 

(a, 0, 1) 
 p        startE         c

Step 2: 2nd startE into stack 

0 (a, 1, 2) 
(a, 0, 1) 

 p        startE         c 

Step 3: 3rd startE into stack 

1 (c, 2, 3) 
0 (a, 1, 2) 

(a, 0, 1) 
 p        startE         c

Step 4: meet an endE; pop
stack; a node is constructed. 

0 (a, 1, 2) 
(a, 0, 1) 

 p        startE         c 
v3 

1 (e, 2, 4) 
0 (a, 1, 2) 

Step 5: 4th startE into stack 

(a, 0, 1) 
 p        startE         c

v3 

Step 6: 5th startE into stack 

(b, 3, 5) 2 
1 (e, 2, 4) 
0 (a, 1, 2) 

(a, 0, 1) 
 p        startE         c 

v3 

Step 7: meet an endE; pop
stack; a node is constructed. 

1 (e, 2, 4) 
0 (a, 1, 2) 

(a, 0, 1) 
 p        startE         c 

v3 

v5 

Step 8: meet an endE; pop 
stack; a node is constructed. 

0 (a, 1, 2) 
(a, 0, 1) 

 p        startE         c 
v3 v4 

v5 

a v1 

a v2 v6 c 

v5 b 

c v3 v4 e b v7 v8 b 

1. startE(a, 0, 1) 9. endE(a, 1) 
2. startE(a, 1, 2) 10. startE(c, 1, 6) 
3. startE(c, 2, 3) 11. startE(b, 2, 7)  
4. endE(c, 2) 12. endE(b, 2)  
5. startE(e, 2, 4) 13. startE(b, 2, 8)  
6. startE(b, 3, 5) 14. endE(b, 2)  
7. endE(b, 3) 15. endE(c, 1) 
8. endE(e, 2) 16. endE(a, 0)  

(a) (b)
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12. flag := false; 
13. } 
14. return C2; 
end 

One of the inputs to the algorithm containment-
check( ) is a node v constructed in the execution of 
query-evaluation(S, Q). If v corresponds to an 
element that has no subelement, the function bottom-
element-check( ) is called (see line 11), by which 
a(v) will be established by checking it against all the 
leaf nodes of Q. Otherwise, α(vi) will be checked for 
all the child nodes vi of v (see lines 3 -6). Concretely, 
for each q in α (= α(v1) ∪ ... ∪ α(vk)), the value of 
δ(q) will be changed to v. Meanwhile, q’s parent will 
be stored in a temporary variable C. Then, all the 
nodes q’ in C are the candidates to be further 
checked. This is done by calling element-check(v, 
q’) to see whether T[v] contains Q[q’] (see lines 8 -
9). Special attention should be paid to the fact that 
bottom-element-check( ) should also be applied to v 
to find all the leaf nodes of Q which matche v. 

Finally, we notice that in the execution of 
element-check( ), δ(q)’s are utilized to facilitate the 
checkings (see lines 3 - 5 in element-check( )). 

The following example helps for illustration. 
Example 2. Consider T and S shown in Figure 3 and 
Q shown in Figure 5. 

 
Figure 5: A tree pattern query. 

By executing query-evaluation(S, Q), the nodes 
of T will be constructed bottom up.  

First, v3 in T is constructed. It is a leaf node, 
matching q3 of the two leaf nodes in Q. Therefore, 
α(v3) = {q3} (see lines 11). In the same way, we will 
set α(v5) = {q2}. In a next step, v4 is constructed. It is 
the parent of v5. In terms of α(v5) = {q2}, δ(q2) is set 
to be v4 (see Fig. 6 for illustration.) After that, 
element-check(v4, q1) is invoked. (Note that q1 is the 
parent of q2. See lines 8 - 9.) Since label(v4) ≠ 
label(q1), it returns C1 = ∅. bottom-element-
check(v4) also returns C2 = ∅. So α(v4) = α(v5) ∪ C1 

∪ C2 = {q2} (see line 12). When v2 is constructed, 
we will first set δ(q2) = δ(q3) = v2 (in terms of α(v4) 
= {q2} and α(v3) = {q3}, respectively). Next, we call 
element-check(v2, q1), in which we will check 
whether label(v2) = label(q1). It is the case. So we 
will further check whether δ(qi) (i = 2, 3) is equal to 
v2. Since both δ(q2) and δ(q3) are equal to v2, we 

have that T[v2] contains Q[q1]. Therefore, C1 = {q1}. 
Thus, we set α(v2) = α(v3) ∪ α(v4) ∪ C1 ∪ C2 =  
α(v3) ∪ α(v4) ∪ {q1} ∪ ∅ = {q1, q2, q3}.  

In a next step, v7 will be constructed. It is a leaf 
node, matching q2. Therefore, α(v7) = {q2}. 
Similarly, we will set α(v8) = {q2}. When v6 is 
constructed, we will change δ(q2) to v6 (according to   
α(v7) = α(v8) = {q2}), but δ(q3) (= v2) remains not 
modified. element-check(v6, q1) will return ∅. Thus, 
α(v6) = α(v7) ∪ α(v8) ∪ C1 ∪ C2 = {q2, q3}. Finally, 
we will meet v1 and set δ(q1) = v1, δ(q2) = v1, and 
δ(q3) = v1. Since label(v1) = label(q1), δ(q2) = v1 and 
δ(q3) = v1, element-check(v1, q1) returns {q1}. So 
α(v1) is equal to α(v2) ∪ α(v6) ∪ C1 ∪ C2 = {q1, q2, 
q3}. 

 
Figure 6: Sample trace. 

2.2 Correctness and Computational 
Complexities 

In this subsection, we prove the correctness of 
containment-check( ) and analyze its computational 
complexities. 
Proposition 1. Let v be a node in T. Then, for each q 
in a(v) generated by containment-check( ), we have 
that T[v] contains Q[q]. 
Proof. We prove the proposition by induction on the 
height of Q, height(Q). 
Basic step. When height(Q) = 1, the proposition 
trivially holds.  
Induction step. Assume that the proposition holds 
for any query tree Q’ with height(Q’) ≤ h. We 
consider a query tree Q of height h + 1. Let rQ be the 
root of Q. Let q1, ..., qk be the child nodes of rQ. 
Then, we have height(Q[qj]) ≤ h (j = 1, ..., k). In 
terms of the induction hypothesis, for each q in Q[qj] 
(j = 1, ..., k), if it appears in α(vi) (where vi is a child 
node of v), we have T[vi] contains Q[q] and δ(q) will 
be set to be v. Especially, if T[vi] contains Q[qj] (j = 
1, ..., k), we must have qj ∈ α(vi) and δ(qj) will be set 
to be v before v is checked against rQ. Obviously, if 
label(v) = label(rQ) and for each qj (j = 1, ..., k), δ(qj) 
is equal to v, Q can be embedded into T[v]. So rQ 
will be inserted into α(v). 

q3 
b q2 

q1 
aQ: 

c 

α( v4)
= {q2}

α( v2) =
{q1, q2, q3} cb q3q2 

q1 a Q: 

cb v6v2

v1aT:

b v3 b v4 b v7 b v8 

b v5
α( v3)
= {q3} α( v5) = {q2} 

δ( q2) = {v4} 
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Now we consider the time complexity of the 
algorithm, which can be divided into four parts: 
1. The first part is the time spent on unifying α(v1), 

..., α(vk), where vi (i = 1, ..., k) is a child node of 
some node v in T. This part of cost is bounded by  

  O( ∑
||

||
T

i
i Qd ) = O(|T||Q|), 

 where di represents the ourdegree of a node vi in T. 
2. The second part is the time used for generating S 

from α (= α(v1) ∪ ... ∪ α(vk)). Since the size of a 
is bounded by O(|Q|), so this part of cost is also 
bounded by O(|Q|). 

3. The third part is the time for checking a node vi in 
T against each node qj in an S. This can be 
estimated by the following sum: 

 O( ∑∑
|| ||T

i

C

j
jc ) ≤ O( ∑∑

|| ||T

i

Q

i
jc )= O(|T||Q|), 

 Where cj represents the ourdegree of a node qj in 
S. 

4. The fourth part is the time for checking each node 
in T against the leaf nodes in Q. Obviously, this 
part of cost is bounded by 

 O( ∑
||

||
T

i
Q ) = O(|T||Q|). 

In terms of the above analysis, we have the 
following proposition. 
Proposition 2. The time complexity of containment-
check( ) is bounded by O(|T||Q|). 
Proof. See the above discussion. 
However, this computational complexity can be 
improved by reducing the size of each α(v). 
For this purpose, we assign each node q in Q a pair 
of numbers as follows. By traversing Q in preorder, 
each node q will obtain a number pre(q) to record 
the order in which the nodes of the tree are visited. 
In a similar way, by traversing Q in postorder, each 
node q will get another number post(q). These two 
numbers can be used to characterize the ancestor-
descendant relationships as follows. 
Let q and q’ be two nodes of a tree Q. Then, q’ is a 
descendant of q iff pre(q’) > pre(q) and post(q’) < 
post(q). See Exercise 2.3.2-20 in [15]. 
In addition, if pre(q’) < pre(q) and post(q’) < 
post(q), q’ is to the left of q. 
Assume that q and q’ are two query nodes appearing 
in α(v). If q’ is a descendant of q, then we can 
remove q’ from α(v) since the containment of Q[q] 
in T[v] implies the containment of Q[q’] in T[v]. 
This can be done as follows. 
First of all, we notice that the algorithm searches T 
bottom-up. For a leaf node v in T, α(v) is initialized 
with all those leaf nodes in Q, which match v. This 

can be carried out by searching the leaf nodes in Q 
from left to right. Then, for any two leaf nodes q and 
q’ in α(v), if q’ appears before q, we have that 
pre(q’) < pre(q) and post(q’) < post(q). That is, α(v) 
is initially sorted by the pre and post values. We can 
store α(v) as a linked list. Let α1 and α2 be two 
sorted lists with | α1| ≤ Qleaf and | α2| ≤ Qleaf. The 
union of α1 and α2 (α1 ∪ α2) can be performed by 
scanning both α1 and α2 from left to right and 
inserting the elements in α2 into α1 one by one. 
During this process, any element in α1, if it is a 
descendant of some element in a2, will be removed; 
and any element in α2, if it is a descendant of some 
element in α1, will not be inserted into α1. The result 
is stored in α1. Obviously, the resulting linked list is 
still sorted and its size is bounded by Qleaf. We 
denote this process as merge(α1, α2) and define 
merge(α1, ..., αk-1, αk) to be merge(merge((α1, ..., αk-

1), αk). In this way, the time and space complexities 
of the algorithm can be improved to O(|T|Qleaf) and 
O(Tleaf⋅Qleaf), respectively. 

3 GENERAL CASES 

The algorithm discussed in Section 3 can be easily 
extended to general cases that a query tree contains 
both c-edges and d-edges, as well as wildcards and 
branches.  

Let q1, ..., qk be the child nodes of q. Let v1, ..., vl 
be the child nodes of v. If T[v] contains Q[q], the 
following two conditions must hold: 
- for each c-edge (q, qi) (1 ≤ i ≤ k), there must exist 

a vj (1 ≤ j ≤ l) such that (v, vj) matches (q, qi), and 
- T[vj] contains Q[qi]. 

In terms of this analysis, we modify Algorithm 
containment-check( ) as follows. 
Algorithm general-containment-check(v, Q) 
input: v - a node in T; Q - a twig pattern. 
output: α(v) - a set of query node q such that T[v] 
contains Q[q].  
begin 
1. C := ∅; C1 := ∅; C2 := ∅; 
2. if v.c is not nil then(*v has some subelements.*) 
3. {let v1, ..., vk be the chi ld nodes of v; 
4.  for i = 1 to k do {  
5.  for q ∈ α(vi) do { 
6.  if ((q is a d-child) or  
7.  (q is a c-child and q matches vi)) 
8.  then δ(q) := v 
9.  }} 
10. α := merge(α(v1), ..., α(vk)); 
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11. assume that α = {q1, ..., qj}; 
12. for i = 1 to j do { 
13. if (qi’s parent ≠ qi-1’s parent) 
 then C := C ∪ {qi’s parent};} 
14. remove all a(vj) (j = 1, ..., k);  
15. for each q in C do 
16. C1 := C1 ∪ element-check(v, q); 
17. } 
18. S2 := bottom-element-check(v); 
29. α(v) := merge(α, C1, C2); 
end 

The first difference of the above algorithm from 
the algorithm containment-check( ) is that before we 
set the value for δ(q) we will check whether q is a d-
child or a c-child. If q is a c-child, we will further 
check whether it matches vi (see lines 6 - 8). We 
notice that q appearing in α(vi) only indicates that 
Q[q] can be embedded into T[vi], but not necessarily 
means that q matches vi. 

The second difference is line 10 and lines 12 - 
13. In line 10, we use the merge operation to union 
α(v1), ..., and α(vk) together. In lines 12 -13, we 
generate a set C that contains the parent nodes of all 
those nodes appearing in α (= merge(α(v1), ..., 
α(vk)), where vj is a child node of the current node v. 
Since the nodes in a are sorted (according to the 
nodes’ pre and post values), if there are more than 
one nodes in α sharing the same parent, they must 
appear consecutively in the list. So each time we 
insert a parent node q’ (of some q in a) into C, we 
need to check whether it is the same as the 
previously inserted one. If it is the case, q’ will be 
ignored. Thus, the size of C is also bounded by 
O(Qleaf).  

4 CONCLUSIONS 

In this paper, an efficient algorithm for the query 
evaluation in an XML streaming environment is 
presented. The algorithm runs in O(|T|⋅Qleaf) time  

and O(|T|⋅Qleaf) space, where Tleaf stands for the 
number of the leaf nodes in a document tree T and 
Qleaf for the number of the leaf nodes in a query tree 
Q. This computational complexity is much better 
than any existing strategy for this problem. 
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