
AN EFFICIENT STREAMING ALGORITHM FOR EVALUATING
XPATH QUERIES

Yangjun Chen
Dept. Applied Computer Science, University of Winnipeg, Canada

Keywords: XML databases, Trees, Paths, XML pattern matching, XML streams.

Abstract: With the growing importance of XML in data exchange, much research has been done in providing flexible
query mechanisms to extract data from XML documents. In this paper, we focus on the query evaluation in
an XML streaming environment, in which data streams arrive continuously and queries have to be evaluated
even before all the data of an XML document is available. We will propose an algorithm for this issue,
working in O(|T|⋅Qleaf) time and O(|T|⋅Qleaf) space, where Tleaf stands for the number of the leaf nodes in a
document tree T and Qleaf for the number of the leaf nodes in a query tree Q.

1 INTRODUCTION

There is much current interest in processing
streaming XML data, using queries expressed with
languages such as XPath (World Wide Web
Consortium, 2007) and XQuery (World Wide Web
Consortium, 2005). A streaming environment, as
found with stock market data, network monitoring,
or sensor network, differs from non-streaming XPath
query processing in the following aspect. In a
streaming environment, data streams, which can be
potentially infinite, arrive continuously, and must be
processed in a single sequential scan due to the
limited storage space available. Query results should
be distributed incrementally once they are found,
possibly before we have read all the data. In
addition, the query processing algorithm should
scale well in both time and space. An algorithm that
meets such an environment for query evaluation
over XML data is called a streaming evaluation
algorithm.

In this paper, we propose a new algorithm to
evaluate queries in such an environment, which runs
in O(|T|⋅Qleaf) time and O(Tleaf⋅Qleaf) space, where
Tleaf and Qleaf represent the numbers of the leaf nodes
in a document tree T and in a query tree Q,
respectively.

- Data model and query language
Abstractly, an XML document can be considered as
a tree structure with each node standing for an

element name from a finite alphabet ∑; and an edge
for the element-subelement relationship.

In an XML streaming environment, an XML
document tree T is modeled as a stream S of
modified SAX events: startElement(tag, level, id)
and endElement(tag, level), where tag is the tag of
the node being processed, level is the level at which
the node appears, and id is the unique identifier
assigned to the node. A node in T exactly
corresponds to a startElement and (the
corresponding endElement event) in S. In addition, if
an element e has no subelement, a text is possibly
associated with its startElement.

These events are the input to our query
evaluation processor.

On the other hand, queries in XML query
languages, such as XPath (World Wide Web
Consortium, 2007), XQuery (World Wide Web
Consortium, 2005), XML-QL (Dutch et al., 1999),
and Quilt (Chamberlin et al., 2002; Chamberlin et
al., 2000), typically specify patterns of selection
predicates on multiple elements that also have some
specified tree structured relations. For instance, the
following XPath expression:
 book[title = ‘Art of Programming’]//author[fn =

‘Donald’ and ln = ‘Knuth’]
matches author elements that (i) have a child
subelement fn with content ‘Donald’, (ii) have a
child subelement ln with content ‘Knuth’, and are
descendants of book elements that have a child title
subelement with content ‘Art of Programming’. This

190
Chen Y. (2008).
AN EFFICIENT STREAMING ALGORITHM FOR EVALUATING XPATH QUERIES.
In Proceedings of the Fourth International Conference on Web Information Systems and Technologies, pages 190-196
DOI: 10.5220/0001531101900196
Copyright c© SciTePress

expression can be represented as a tree structure as
shown in Figure 1.

Figure 1: A query tree.

In this tree structure, a node v is labeled with an
element name or a string value, denoted as label(v).
In addition, there are two kinds of edges: child edges
(c-edges) for parent-child relationships, and
descendant edges (d-edges) for ancestor-descendant
relationships. A c-edge from node v to node u is
denoted by v → u in the text, and represented by a
single arc; u is called a c-child of v. A d-edge is
denoted v ⇒ u in the text, and represented by a
double arc; u is called a d-child of v. In addition, a
node in Q can be a wildcard ‘*’ that matches any
element in T. Such a query is often called a twig
pattern. In the following discussion, we use
startElement and node interchangeably since each
startElement event in S exactly corresponds to a
node in T.

- XML query evaluation and tree matching
In any DAG (directed acyclic graph), a node u is
said to be a descendant of a node v if there exists a
path (sequence of edges) from v to u. In the case of a
twig pattern, this path could consist of any sequence
of c-edges and/or d-edges. Based on these concepts,
the tree embedding can be defined as follows.
Definition 1. An embedding of a twig pattern Q into
an XML document T is a mapping f: Q → T, from
the nodes of Q to the nodes of T, which satisfies the
following conditions:
(i) Preserve node label: For each u ∈ Q, label(u) =

label(f(u)).
(ii) Preserve c/d-child relationships: If u → v in Q,

then f(v) is a child of f(u) in T; if u ⇒ v in Q,
then f(v) is a descendant of f(u) in T.

If there exists a mapping from Q into T, we say, Q
can be imbedded into T, or say, T contains Q. The
purpose of XML query evaluation is to find all the
subtrees of T, which contain Q.

Notice that an embedding could map several
nodes of the query (of the same label) to the same
node of the database. It also allows a tree mapped to
a path. This definition is quite different from the tree
matching defined in (Hoffmann and O’Donnell,
1982).

Recently, a great many strategies have been
proposed to evaluate XPath queries in an XML
streaming environment (Avila et al., 2002; Chen et
al., 2006; Ives et al., 2002; Koch et al., 2004;
Ludascher et al., 2002; Peng and Chawathe, 2003;
Peng et al., 2003). The methods discussed in (Avila
et al., 2002; Ives et al., 2002) are based on finite
state automata (FSA), but only able to handle single
path queries, i.e., a query containing branching
cannot be processed, as observed in (Peng and
Chawathe, 2003). The method proposed in (Peng
and Chawathe, 2003) is a general strategy, but
requires exponential time (O(|T| × 2|Q|)) in the worst
case, as analyzed in (Peng et al., 2003). The methods
discussed in (Koch et al., 2004; Ludascher et al.,
2002) do not support d-edges. If we extend them to
general cases, exponential time is required. Up to
now, the research culminates in TwigM presented in
(Chen et al., 2006). It is not only a general-case
algorithm, but also works in polynomial time. In the
worst case, its time complexity is bounded by
O(ThQd|Q||T| + |Q|2|T|), where Th is the height of T
and Qd is the largest outdegree of a node in Q. By
this method, each node q of Q is associated with a
boolean array of length Qd and a stack of size Th, in
which each element is a node v from T such that its
relationship with the nodes in the stack associated
with q’s parent q’ satisfies the relationship between
q and q’. Therefore, each time to figure out a stack
and push a node into it, O(ThQd|Q|) time is required,
leading to a time complexity of O(ThQd|Q||T| +
|Q|2|T|). See Theorem 4.4 in (Chen et al., 2006).

The remainder of the paper is organized as
follows. In Section 2, we discuss an algorithm for
simple cases that a twig pattern contains only d-
edges, as well as wildcards and branches. In Section
3, we extend this algorithm to general cases. Finally,
a short conclusion is set forth in Section 4.

2 ALGORITHM FOR SIMPLE
CASES

In this section, we describe an algorithm for simple
cases that a twig pattern contains only d-edges,
wildcards and branches. First, we give a basic
algorithm in 2.1. Then, in 2.2, we prove the
correctness of the algorithm and analyze its
computational complexities.

Art of Programming

title

Knuth

book

fn

author

ln

Donald

AN EFFICIENT STREAMING ALGORITHM FOR EVALUATING XPATH QUERIES

191

2.1 Basic Algorithm

Recall that in a streaming environment, the input to
the XML query processor is a steam of modified
SAX events; and an event is either startElement(tag,
level, id) or endElement(tag, level). In order to
evaluate a query Q, we have to scan a stream S from
the beginning to the end and report any startElement
event once the corresponding subtree is found
containing Q.

For this purpose, we will maintain a global stack
structure with each entry in it being a triplet: <e, p,
c>, where e is a startElement event, p is a pointer to
an entry in stack where its parent startElement is
stored and c a pointer to the head of a linked list
containing all the nodes constructed for its child
elements, as illustrated in Figure 2.

Figure 2: Illustration for stack structure.

During the process, two other data structures are
also maintained and computed to facilitate the
discovery of subtree matchings according to
Definition 1.
- Each node v (corresponding to a startElement

event in S) in a document tree T is associated
with a set, denoted α(v), contains all those nodes
q in Q such that Q[q] can be imbedded into T[v].

- Each q in Q is associated with a value δ(q),
defined as follows.
Initially, for each q ∈ Q, δ(q) is set to φ. During

the tree matching process, δ(q) is dynamically
changed as below.
(i) Let v be a node in T with parent node u.
(ii) If q appears in α(v), change the value of δ(q) to

u.
Then, each time before we insert q into α(v), we

will do the following checkings:
1. Check whether label(q) = label(v).
2. Let q1, ..., qk be the child nodes of q. For each qi

(i = 1,..., k), check whether δ(qi) is equal to v.
If both (1) and (2) are satisfied, insert q into α(v).
Below is the algorithm, which takes an event

stream S and a twig pattern Q as the input. During
the process, S is scanned from the beginning to the
end and once a startElement event is found such that
the subtree rooted at the corresponding node
contains Q it will be reported.

In the algorithm, a virtual startElement event is
used, which is considered to be the parent of the first
startElement event in S (which corresponds to the
root of T). The level number of the virtual event is
set to be -1, and its tag and id are both set to be nil.
Two variables E and E’ are used. E’ is for the
current startElement event being processed while E
is to store the parent of the current startElement
event. In addition, each time a node v is constructed,
a subprocedure containment-check(v, Q) is invoked
to find all those q ∈ Q such that T[v] contains Q[q]
and store them in α(v).
Algorithm query-evaluation(S, Q)
input: S - an XML stream; Q - a twig pattern.
output: report any startElement such that for the

corresponding node v, T[v] contains Q.
begin
1. push(the first element of S, stack);
2. E := virtual event;
3. while stack is not empty do {
4. E’ := top(stack);
 (*check the top element in stack*)
5. E’.p := address of E;
 (*establish parent link for E’*)
6. let e be the next element in S;
7. if e is a startElement event then {
8. E := E’;
9. push(e, stack);
10. }
11. else (*e is an endElement event.*)
12. {E’’ := pop(stack);
 (*pop the top element out of stack*)
13. generate node v for E’’; E := E’’.p;
14. append v to the end of (E’’.p).c;
15. call containment-check(v, Q);
16. }
17. }
end

The above algorithm processes the events in S
one by one. Therefore, the corresponding document
tree T is searched in the depth-first traversal fashion.
Each time a startElement event is encountered, it
will be pushed into stack (see line 1 and lines 6 - 9)
and stay there until its corresponding endElement is
encountered (see lines 11 - 12). In this case, it will
be popped out of stack and a node v for it will be
constructed (see line 13), for which a containment
check will be performed (see line 15).
Example 1. Consider the document tree T in Figure
3(a). Its XML stream S is shown in Figure 3(b).
Applying the algorithm query-evaluation() to S, we
will regain T if line 15 is not executed. In Figure 4,
we trace the first 8 steps of the execution process.

ck

 …
 … c1

 …

 …
 p e c

stack structure:

WEBIST 2008 - International Conference on Web Information Systems and Technologies

192

Figure 3: A document tree and its XML stream.

Figure 4: Illustration for for L(qi)’s.

From the above discussion, we can see that a
document tree can always be constructed by
scanning the corresponding XML stream S. For the
purpose of query evaluation, however, we have to
check the containment each time a node of T is
constructed. This is done by calling containment-
check(v, Q), in which another two functions are
invoked to do different checkings:
- element-check(u, q): u is an element containing

subelements. It checks whether T[u] contains
Q[q]. If it is the case, return {q}. Otherwise, it
returns an empty set ∅.

- bottom-element-check(u, Q): u is an element
containing no subelement. It returns a set of
nodes in Q: {q1, ..., qk} such that for each qi (1 ≤ i
≤ k) the following conditions are satisfied.

 (i) label(u) = label(qi).
 (ii) if qi has a child, then the child must be a text

and matches the text associated with u.

Algorithm containment-check(v, Q)
input: v - a node in T; Q - a twig pattern.
output: a(v) - a set of query node q such that T[v]

contains Q[q].
begin
1. C := ∅; C1 := ∅; C2 := ∅;
2. if v.c is not nil then (*v has some subelements.*)
3. {let v1, ..., vk be the child nodes of v;
4. α := α(v1) ∪ ... ∪ α(vk);
5. for each q ∈ α do
6. {δ(q) := v; C := C ∪ {q’s parent};}
7. remove all α(vj) (j = 1, ..., k);
8. for each q’ in C do
9. C1 := C1 ∪ element-check(v, q’);
10. }
11. C2 := bottom-element-check(v, Q);
12. α(v) := α ∪ C1 ∪ C2;
end

Function element-check(u, q)
begin
1. C1 := ∅;
2. if label(q) = label(u) then
 (*If q is ‘*’, the checking is always successful.*)
3. {let q1, ..., qk be the child nodes of q;
4. if for each qi (i = 1, ..., k) d(qi) is equal to u
5. then {C1 := {q};
6. if q is root then report u};}
7. return C1;
end
Function bottom-element-check(u, Q)
begin
1. C2 := ∅; flag := false;
2. for each leaf node q in Q do {
3. if q is a text then {
4. let q’ be the parent of q;
5. if label(q’) = label(u) and

 q matches the text associated with u then
{C2 := C2 ∪ {q’}; flag := true;

6. }
7. else {
8. if label(q) = label(u) then {
9. C2 := C2 ∪ {q}; flag := true;
10. }
11. if q is root and flag := true then report u;

 p startE c

At the beginning, stack is
empty.

Step 1: 1st startE into stack

(a, 0, 1)
 p startE c

Step 2: 2nd startE into stack

0 (a, 1, 2)
(a, 0, 1)

 p startE c

Step 3: 3rd startE into stack

1 (c, 2, 3)
0 (a, 1, 2)

(a, 0, 1)
 p startE c

Step 4: meet an endE; pop
stack; a node is constructed.

0 (a, 1, 2)
(a, 0, 1)

 p startE c
v3

1 (e, 2, 4)
0 (a, 1, 2)

Step 5: 4th startE into stack

(a, 0, 1)
 p startE c

v3

Step 6: 5th startE into stack

(b, 3, 5) 2
1 (e, 2, 4)
0 (a, 1, 2)

(a, 0, 1)
 p startE c

v3

Step 7: meet an endE; pop
stack; a node is constructed.

1 (e, 2, 4)
0 (a, 1, 2)

(a, 0, 1)
 p startE c

v3

v5

Step 8: meet an endE; pop
stack; a node is constructed.

0 (a, 1, 2)
(a, 0, 1)

 p startE c
v3 v4

v5

a v1

a v2 v6 c

v5 b

c v3 v4 e b v7 v8 b

1. startE(a, 0, 1) 9. endE(a, 1)
2. startE(a, 1, 2) 10. startE(c, 1, 6)
3. startE(c, 2, 3) 11. startE(b, 2, 7)
4. endE(c, 2) 12. endE(b, 2)
5. startE(e, 2, 4) 13. startE(b, 2, 8)
6. startE(b, 3, 5) 14. endE(b, 2)
7. endE(b, 3) 15. endE(c, 1)
8. endE(e, 2) 16. endE(a, 0)

(a) (b)

AN EFFICIENT STREAMING ALGORITHM FOR EVALUATING XPATH QUERIES

193

12. flag := false;
13. }
14. return C2;
end

One of the inputs to the algorithm containment-
check() is a node v constructed in the execution of
query-evaluation(S, Q). If v corresponds to an
element that has no subelement, the function bottom-
element-check() is called (see line 11), by which
a(v) will be established by checking it against all the
leaf nodes of Q. Otherwise, α(vi) will be checked for
all the child nodes vi of v (see lines 3 -6). Concretely,
for each q in α (= α(v1) ∪ ... ∪ α(vk)), the value of
δ(q) will be changed to v. Meanwhile, q’s parent will
be stored in a temporary variable C. Then, all the
nodes q’ in C are the candidates to be further
checked. This is done by calling element-check(v,
q’) to see whether T[v] contains Q[q’] (see lines 8 -
9). Special attention should be paid to the fact that
bottom-element-check() should also be applied to v
to find all the leaf nodes of Q which matche v.

Finally, we notice that in the execution of
element-check(), δ(q)’s are utilized to facilitate the
checkings (see lines 3 - 5 in element-check()).

The following example helps for illustration.
Example 2. Consider T and S shown in Figure 3 and
Q shown in Figure 5.

Figure 5: A tree pattern query.

By executing query-evaluation(S, Q), the nodes
of T will be constructed bottom up.

First, v3 in T is constructed. It is a leaf node,
matching q3 of the two leaf nodes in Q. Therefore,
α(v3) = {q3} (see lines 11). In the same way, we will
set α(v5) = {q2}. In a next step, v4 is constructed. It is
the parent of v5. In terms of α(v5) = {q2}, δ(q2) is set
to be v4 (see Fig. 6 for illustration.) After that,
element-check(v4, q1) is invoked. (Note that q1 is the
parent of q2. See lines 8 - 9.) Since label(v4) ≠
label(q1), it returns C1 = ∅. bottom-element-
check(v4) also returns C2 = ∅. So α(v4) = α(v5) ∪ C1

∪ C2 = {q2} (see line 12). When v2 is constructed,
we will first set δ(q2) = δ(q3) = v2 (in terms of α(v4)
= {q2} and α(v3) = {q3}, respectively). Next, we call
element-check(v2, q1), in which we will check
whether label(v2) = label(q1). It is the case. So we
will further check whether δ(qi) (i = 2, 3) is equal to
v2. Since both δ(q2) and δ(q3) are equal to v2, we

have that T[v2] contains Q[q1]. Therefore, C1 = {q1}.
Thus, we set α(v2) = α(v3) ∪ α(v4) ∪ C1 ∪ C2 =
α(v3) ∪ α(v4) ∪ {q1} ∪ ∅ = {q1, q2, q3}.

In a next step, v7 will be constructed. It is a leaf
node, matching q2. Therefore, α(v7) = {q2}.
Similarly, we will set α(v8) = {q2}. When v6 is
constructed, we will change δ(q2) to v6 (according to
α(v7) = α(v8) = {q2}), but δ(q3) (= v2) remains not
modified. element-check(v6, q1) will return ∅. Thus,
α(v6) = α(v7) ∪ α(v8) ∪ C1 ∪ C2 = {q2, q3}. Finally,
we will meet v1 and set δ(q1) = v1, δ(q2) = v1, and
δ(q3) = v1. Since label(v1) = label(q1), δ(q2) = v1 and
δ(q3) = v1, element-check(v1, q1) returns {q1}. So
α(v1) is equal to α(v2) ∪ α(v6) ∪ C1 ∪ C2 = {q1, q2,
q3}.

Figure 6: Sample trace.

2.2 Correctness and Computational
Complexities

In this subsection, we prove the correctness of
containment-check() and analyze its computational
complexities.
Proposition 1. Let v be a node in T. Then, for each q
in a(v) generated by containment-check(), we have
that T[v] contains Q[q].
Proof. We prove the proposition by induction on the
height of Q, height(Q).
Basic step. When height(Q) = 1, the proposition
trivially holds.
Induction step. Assume that the proposition holds
for any query tree Q’ with height(Q’) ≤ h. We
consider a query tree Q of height h + 1. Let rQ be the
root of Q. Let q1, ..., qk be the child nodes of rQ.
Then, we have height(Q[qj]) ≤ h (j = 1, ..., k). In
terms of the induction hypothesis, for each q in Q[qj]
(j = 1, ..., k), if it appears in α(vi) (where vi is a child
node of v), we have T[vi] contains Q[q] and δ(q) will
be set to be v. Especially, if T[vi] contains Q[qj] (j =
1, ..., k), we must have qj ∈ α(vi) and δ(qj) will be set
to be v before v is checked against rQ. Obviously, if
label(v) = label(rQ) and for each qj (j = 1, ..., k), δ(qj)
is equal to v, Q can be embedded into T[v]. So rQ
will be inserted into α(v).

q3
b q2

q1
aQ:

c

α(v4)
= {q2}

α(v2) =
{q1, q2, q3} cb q3q2

q1 a Q:

cb v6v2

v1aT:

b v3 b v4 b v7 b v8

b v5
α(v3)
= {q3} α(v5) = {q2}

δ(q2) = {v4}

WEBIST 2008 - International Conference on Web Information Systems and Technologies

194

Now we consider the time complexity of the
algorithm, which can be divided into four parts:
1. The first part is the time spent on unifying α(v1),

..., α(vk), where vi (i = 1, ..., k) is a child node of
some node v in T. This part of cost is bounded by

 O(∑
||

||
T

i
i Qd) = O(|T||Q|),

 where di represents the ourdegree of a node vi in T.
2. The second part is the time used for generating S

from α (= α(v1) ∪ ... ∪ α(vk)). Since the size of a
is bounded by O(|Q|), so this part of cost is also
bounded by O(|Q|).

3. The third part is the time for checking a node vi in
T against each node qj in an S. This can be
estimated by the following sum:

 O(∑∑
|| ||T

i

C

j
jc) ≤ O(∑∑

|| ||T

i

Q

i
jc)= O(|T||Q|),

 Where cj represents the ourdegree of a node qj in
S.

4. The fourth part is the time for checking each node
in T against the leaf nodes in Q. Obviously, this
part of cost is bounded by

 O(∑
||

||
T

i
Q) = O(|T||Q|).

In terms of the above analysis, we have the
following proposition.
Proposition 2. The time complexity of containment-
check() is bounded by O(|T||Q|).
Proof. See the above discussion.
However, this computational complexity can be
improved by reducing the size of each α(v).
For this purpose, we assign each node q in Q a pair
of numbers as follows. By traversing Q in preorder,
each node q will obtain a number pre(q) to record
the order in which the nodes of the tree are visited.
In a similar way, by traversing Q in postorder, each
node q will get another number post(q). These two
numbers can be used to characterize the ancestor-
descendant relationships as follows.
Let q and q’ be two nodes of a tree Q. Then, q’ is a
descendant of q iff pre(q’) > pre(q) and post(q’) <
post(q). See Exercise 2.3.2-20 in [15].
In addition, if pre(q’) < pre(q) and post(q’) <
post(q), q’ is to the left of q.
Assume that q and q’ are two query nodes appearing
in α(v). If q’ is a descendant of q, then we can
remove q’ from α(v) since the containment of Q[q]
in T[v] implies the containment of Q[q’] in T[v].
This can be done as follows.
First of all, we notice that the algorithm searches T
bottom-up. For a leaf node v in T, α(v) is initialized
with all those leaf nodes in Q, which match v. This

can be carried out by searching the leaf nodes in Q
from left to right. Then, for any two leaf nodes q and
q’ in α(v), if q’ appears before q, we have that
pre(q’) < pre(q) and post(q’) < post(q). That is, α(v)
is initially sorted by the pre and post values. We can
store α(v) as a linked list. Let α1 and α2 be two
sorted lists with | α1| ≤ Qleaf and | α2| ≤ Qleaf. The
union of α1 and α2 (α1 ∪ α2) can be performed by
scanning both α1 and α2 from left to right and
inserting the elements in α2 into α1 one by one.
During this process, any element in α1, if it is a
descendant of some element in a2, will be removed;
and any element in α2, if it is a descendant of some
element in α1, will not be inserted into α1. The result
is stored in α1. Obviously, the resulting linked list is
still sorted and its size is bounded by Qleaf. We
denote this process as merge(α1, α2) and define
merge(α1, ..., αk-1, αk) to be merge(merge((α1, ..., αk-

1), αk). In this way, the time and space complexities
of the algorithm can be improved to O(|T|Qleaf) and
O(Tleaf⋅Qleaf), respectively.

3 GENERAL CASES

The algorithm discussed in Section 3 can be easily
extended to general cases that a query tree contains
both c-edges and d-edges, as well as wildcards and
branches.

Let q1, ..., qk be the child nodes of q. Let v1, ..., vl
be the child nodes of v. If T[v] contains Q[q], the
following two conditions must hold:
- for each c-edge (q, qi) (1 ≤ i ≤ k), there must exist

a vj (1 ≤ j ≤ l) such that (v, vj) matches (q, qi), and
- T[vj] contains Q[qi].

In terms of this analysis, we modify Algorithm
containment-check() as follows.
Algorithm general-containment-check(v, Q)
input: v - a node in T; Q - a twig pattern.
output: α(v) - a set of query node q such that T[v]
contains Q[q].
begin
1. C := ∅; C1 := ∅; C2 := ∅;
2. if v.c is not nil then(*v has some subelements.*)
3. {let v1, ..., vk be the chi ld nodes of v;
4. for i = 1 to k do {
5. for q ∈ α(vi) do {
6. if ((q is a d-child) or
7. (q is a c-child and q matches vi))
8. then δ(q) := v
9. }}
10. α := merge(α(v1), ..., α(vk));

AN EFFICIENT STREAMING ALGORITHM FOR EVALUATING XPATH QUERIES

195

11. assume that α = {q1, ..., qj};
12. for i = 1 to j do {
13. if (qi’s parent ≠ qi-1’s parent)
 then C := C ∪ {qi’s parent};}
14. remove all a(vj) (j = 1, ..., k);
15. for each q in C do
16. C1 := C1 ∪ element-check(v, q);
17. }
18. S2 := bottom-element-check(v);
29. α(v) := merge(α, C1, C2);
end

The first difference of the above algorithm from
the algorithm containment-check() is that before we
set the value for δ(q) we will check whether q is a d-
child or a c-child. If q is a c-child, we will further
check whether it matches vi (see lines 6 - 8). We
notice that q appearing in α(vi) only indicates that
Q[q] can be embedded into T[vi], but not necessarily
means that q matches vi.

The second difference is line 10 and lines 12 -
13. In line 10, we use the merge operation to union
α(v1), ..., and α(vk) together. In lines 12 -13, we
generate a set C that contains the parent nodes of all
those nodes appearing in α (= merge(α(v1), ...,
α(vk)), where vj is a child node of the current node v.
Since the nodes in a are sorted (according to the
nodes’ pre and post values), if there are more than
one nodes in α sharing the same parent, they must
appear consecutively in the list. So each time we
insert a parent node q’ (of some q in a) into C, we
need to check whether it is the same as the
previously inserted one. If it is the case, q’ will be
ignored. Thus, the size of C is also bounded by
O(Qleaf).

4 CONCLUSIONS

In this paper, an efficient algorithm for the query
evaluation in an XML streaming environment is
presented. The algorithm runs in O(|T|⋅Qleaf) time

and O(|T|⋅Qleaf) space, where Tleaf stands for the
number of the leaf nodes in a document tree T and
Qleaf for the number of the leaf nodes in a query tree
Q. This computational complexity is much better
than any existing strategy for this problem.

ACKNOWLEDGEMENTS

The author is supported by NSERC 239074-01
(242523) (Natural Sciences and Engineering Council
of Canada).

REFERENCES

I. Avila-Campillo, T.J. Green, A. Gupta, M. Onizuka, D.
Raven, and D. Suciu (2002), XMLTK: An XML
Toolkit for Scalable XML Stream Processing, in
Programming Langauge Technologoes for
XML(PLAN-X), 2002.

D.D. Chamberlin, J.Clark, D. Florescu and M. Stefanescu
(2002) XQuery1.0: An XML Query Language, http:/
/www.w3.org/TR/query-datamodel/.

D.D. Chamberlin, J. Robie and D. Florescu (2000) Quilt:
An XML Query Language for Heterogeneous Data
Sources, WebDB 2000.

Y. Chen, S.B. Davison, Y. Zheng (2006), An Efficient
XPath Query Processor for XML Streams, in Proc.
ICDE, Atlanta, USA, April 3-8, 2006.

A. Dutch, M. Fernandez, D. Florescu, A. Levy, D. Suciu
(1999), A Query Language for XML, in: Proc. 8th
World Wide Web Conf., May 1999, pp. 77-91.

C.M. Hoffmann and M.J. O’Donnell (1982), Pattern
matching in trees, J. ACM, 29(1):68-95, 1982.

Z.G. Ives, A.Y. Halevy, and D.S. Weld (2002), An XML
query engine for network-bound data, VLDB Journal,
11(4), 2002.

D.E. Knuth (1969), The Art of Computer Programming,
Vol.1, Addison-Wesley, Reading, 1969.

C. Koch, S. Scherzinger, N. Schweikardt, and B.
Stegmaier (2004), Schema-based Scheduling of Event
Processor and Buffer Minimization for Queries on
Structured Data Stream, in: Proc. of VLDB, 2004.

B. Ludascher, P. Mukhopadhayn, and Y.
Papakonstantinou (2002), A Transducer-based XML
Query Processor, in: Proc. of VLDB, 2002.

F. Peng and S.S. Chawathe (2003), XPath queries on
streaming data, in: Proc. of SIGMOD, 2003.

F. Peng and S.S. Chawathe (2003), XSQ: A Streaming
XPath Engine, Technical Report CS-TR-4493,
University of Maryland, 2003.

World Wide Web Consortium (2007). XML Path
Language (XPath), W3C Recommendation, 2007. See
http:// www.w3.org/TR/xpath20.

World Wide Web Consortium (2005). XQuery 1.0: An
XML Query Language, W3C Recommendation,
Version 1.0, 2005. See http://www.w3.org/TR/xquery.

WEBIST 2008 - International Conference on Web Information Systems and Technologies

196

