
TEACHING PROGRAMMING WITH A COMPETITIVE
ATTITUDE TO FOSTER GROUP SPIRIT

Pedro Guerreiro
Universidade do Algarve, Gambelas, 8005-139 Faro, Portugal

Katerina Georgouli
Department of Informatics, Technological Educational Institute, Agiou Spiridonos, Egaleo 12210, Greece

Keywords: Blended-learning, competition-based learning, web-enhancement, automatic judging systems.

Abstract: Socialization is an important aspect of university life. We believe that if students feel that they fit in the
group, their commitment will be higher and their results will be better. In introductory programming
courses, most tasks are elementary and are usually performed on an individual basis. If we manage to give
greater visibility to those lonely activities, students will find out that the difficulties they face are shared by
many, and realize that they are not alone. We do that by adding a competitive flavour to the tasks in the
course. For example, programming assignments are modelled after programming competitions; quizzes are
given after each lecture, students get points for it, and a ranking is kept, much like those in some sports; we
organize tournaments, where students’ programs play against one another in a computer game. This pro-
vides a supplement of excitement to tasks that otherwise might be uninteresting to newcomers, and fosters
group spirit. As a consequence, student participation is higher and results were better than before.

1 INTRODUCTION

It is well known among teachers that a very signifi-
cant factor for students’ success or failure on a par-
ticular course is the degree to which students get
involved in course activities (Felder, 2004; Wang,
2001). Another factor is the group feeling students
experience when they have to be involved in com-
mon tasks. This is true of traditional classroom
courses, and more so in blended learning courses,
where interaction between learners might be en-
hanced by well designed communication tools
strengthening their feeling belonging to a commu-
nity.

There are four components of classroom com-
munity, outlined by Rovai (2001): spirit, trust, inter-
action and learning. Firstly, ‘spirit’ is the feeling of
belonging to a group. Secondly, ‘trust’ is simply the
feeling that the group can be trusted and the group
members will give feedback to each other. Thirdly,
‘interaction’ is the feeling that community members
have that they may benefit by interacting with other
members of the community. Finally, ‘learning’ is the
sense that community members have that learning

can come about due to the community discussing
information, that is, the community can construct
knowledge.

In a blended learning environment group mem-
bers may engage in interactive behaviour such as
discussions, exchanges of ideas, and class competi-
tions.

Therefore, when designing a blended-learning
strategy for a programming course, the question
arises: how can we engage our students in course
programming activities and, at the same time, instil
group spirit in them? Our proposal suggests that we
do that by adding a competitive flavour to the course
activities: for example, programming assignments
are modelled after programming competitions (Rob-
erts, 2000; Skiena, 2003), such as the ACM ICPC
(ICPC) and the International Olympiad in Informat-
ics (IOI); quizzes are given after each lecture, stu-
dents get points for it, and a ranking is kept, much
like those in some sports, like tennis; we organize
tournaments, where students’ programs play against
one another in a computer game (Ribeiro, 2007).

These activities can be used from elementary
stages, and with unconventional languages. As we
write, we are teaching an Introductory Programming

414
Guerreiro P. and Georgouli K. (2008).
TEACHING PROGRAMMING WITH A COMPETITIVE ATTITUDE TO FOSTER GROUP SPIRIT.
In Proceedings of the Fourth International Conference on Web Information Systems and Technologies, pages 414-421
DOI: 10.5220/0001528704140421
Copyright c© SciTePress

course, using a functional approach (CC2001), with
Haskell.

 In principle, students of Informatics should be
more willing to accept courses with a strong e-
learning component, based on an array of computa-
tional tools. We have been capitalizing on that, by
gradually reinforcing the importance of the online
activities, in our own programming courses. Up to a
few years ago, the Internet was used as a repository
of course material, namely PowerPoint slides and
exercises, and that was it. Later, we introduced fo-
rums, where students could exchange ideas and get
help on their programming assignments. A major
development occurred when we started recording the
lectures and making them available on the Internet.
At about the same time we introduced Mooshak
(http://www.ncc.up.pt/mooshak/), an automatic pro-
gramming judge, which test programs submitted by
students and accepts them if they pass a set of secret
test cases, or rejects them, if not (Leal and Silva,
2003). More recently, we adopted Moodle (http://
moodle.org/), an open-source learning management
system that provides a common interface to most e-
learning activities. Full integration with the auto-
matic judge and the grading system might be desir-
able, but we haven’t achieved it yet.

In this paper, we report on the usage of our e-
learning platform, with an emphasis on the competi-
tive activities that take place through it. The plat-
form is based on three pillars: Moodle, the learning
management system, Mooshak, the automatic judge,
and the general availability of the lectures on the
Internet.

This study applies to the previous home depart-
ment of the first author. Although it focuses on a
programming course, we believe the main ideas can
be used on other science courses with a strong prob-
lem solving component.

In section 2, we briefly present our programming
course and the blended-learning strategy used for
web-enhancing it. Next, in section 3, we discuss the
range of e-learning activities that the course encom-
passes for enhancing group spirit and for motivating
the students. Then, in section 4, we present the inte-
gration of the two platforms we have used for suc-
ceeding in the above goals. Finally, we conclude by
discussing the experience gained by the use of the e-
learning platform, and the perceived effect on the
students and on the course results

2 WEB-ENHANCING A
PROGRAMMING COURSE

The ACM/IEEE Computing Curricula recommends
a three course sequence for introductory program-
ming (ACM/IEEE, 2001), and we have been com-
plying. We are currently using the objects-first ap-
proach. The first course is on programming funda-
mentals, the second on object-oriented programming
and the third on data structures and algorithms. In all
three courses, we use Java. We report here on our
experience with the latest edition (2006-2007 school
year) of the second course, Object-Oriented Pro-
gramming. This is a course on the second semester
of the first year of studies of the first cycle of infor-
matics engineering.

Around 300 students registered for the course.
About one third are students taking the course for
the second time, having failed the previous year.
Even though, we have no record of over 100 stu-
dents. That is, more than 100 students who regis-
tered for the course never submitted an assignment
for grading. This might seem strange, but it is a con-
sequence of the system of university placement, by
which a great number of students enter the univer-
sity late after the middle of the first semester. It is
too late for them to catch up in the course for pro-
gramming fundamentals, and they seem discouraged
to take the object-oriented programming course that
comes next, but for which they were registered
automatically.

The emphasis of the course is programming with
objects and classes, using inheritance and polymor-
phism, learning the fundamental algorithms, practis-
ing Java, developing problem solving skills and un-
derstanding software engineering issues. For Java
programming, we use Eclipse (http://www.
eclipse.org/) and a standard textbook (Horstmann,
2005). There are three 50-minutes lectures and one
2-hours lab per week per student. The overall work-
load is 68 contact hours plus 100 hours for inde-
pendent work (projects, self study and evaluation).
This corresponds to 6 ECTS credits.

Lectures use both PowerPoint slides and live
demonstrations of program development. In the labs,
students perform two types of assignments: competi-
tion-type problems and scripted tasks. Competition-
type problems are problems similar to those used in
programming competitions such as the International
Olympiad in Informatics (http://www.ioinfor-
matics.org/) and the ACM-ICPC (http://icpc.baylor.
edu/icpc/): a problematic situation is described
which has to be solved by writing a program. No
guidance is provided. In elementary courses, how-
ever, students are not prepared to start solving diffi-
cult problems immediately. Actually we want to

TEACHING PROGRAMMING WITH A COMPETITIVE ATTITUDE TO FOSTER GROUP SPIRIT

415

teach them just that: how to solve programming
problems. That’s what scripted tasks are for. In this
case, the problematic situation is split into a number
of tasks that the students must solve one after the
other. Those scripts exercise the subjects we are
illustrating in the course or the programming tech-
niques we are discussing on the occasion. They are
meant to guide the students: do this, do that, con-
sider this aspect, try this new instruction, use this
library function, make this experiment, etc.

On a more recent edition of the course, we intro-
duced so-called exercises: numerous, short pro-
gramming assignments, each requiring writing a few
lines of code, focusing on a particular technique or
feature of the language.

This approach is carried out in a blended learn-
ing environment with three key ingredients: the
learning management system, Moodle, the automatic
judge, Mooshak, and the systematic recording of the
lectures, that are made available online a few hours
after they were given in the lecture hall. These are
the tools that support independent work by the stu-
dents. We will now describe them in more detail and
the learning activities that students perform with
them.

3 BLENDED-LEARNING FOR
ELEMENTARY
PROGRAMMING

According to the planned workload, students in our
course spend more than half of their time working
on their own. In our case, this independent work
consists basically in reviewing the lectures and pre-
paring the lab assignments. For reviewing the lec-
tures, students can use the PowerPoint slides or ac-
tually watch the recording of the lecture. For prepar-
ing the lab assignments, students download the task
descriptions from the learning management system,
program the solutions in Java using the Eclipse envi-
ronment, and submit them to the online automatic
judge.

3.1 Recording the Lectures

We record the lectures with Camtasia Studio
(http://www.techsmith.com/camtasia.asp). Actually,
we record the computer screen as it is projected on
the screen of the lecture hall, together with the voice
and image of the lecturer. All this can be handled
with minimal setup by the lecturer, and requires no
extra staff: the voice is recorded by a computer mi-
crophone and the image by a webcam. After the lec-
ture, the recording is edited, in order to remove si-

lent portions and other uninteresting parts, and also
to mark the video, so that a table of contents is gen-
erated allowing spectators to jump to a specific part
of the video. We make the image of the lecturer ap-
pear in the lower right corner of the video, but we
remove it if it hides any useful information. We cur-
rently produce two types of output files, for the
Windows Media Player and for the iPod. Editing the
recording is a lengthy process, taking about two
hours for each hour of recording. This means that, in
practise, videos will not be uploaded until a few
hours after the lecture.

Having the image of the teacher is a bit superflu-
ous, of course. What matters most is the sound. Be-
sides, the camera being fixed and the teacher moving
the frame is often empty or just showing half of the
teacher. Also, depending on the classroom arrange-
ment, the teacher may not look at the camera except
when he is typing at the computer. Thus the live
recording of the teacher is very naïve and crude but
it does convey a message of sincerity and proximity
that the students appreciate.

One could expect that by having the lectures
online without much delay, students would stop
coming to the lectures altogether. In fact, that has
not happened. We have been using this system for
five years now, and the pattern of student attendance
in our lectures is not different from that of other
courses that do not record. On the other hand, it has
removed from students feelings of guilt or embar-
rassment for not coming to the lecture, thus contrib-
uting to a friendlier, more relaxed environment.

Recording the lectures is very easy and it is a lit-
tle surprising that it has not become common prac-
tise yet, now that almost all teachers use a laptop in
their lectures and that all students have access to the
Internet.

The sequence of recordings does not constitute
by itself a video course for e-learning, even if it can
be used as such by interested learners who are not
regular students. Unless the teacher follows a script
very closely, the contents of each lecture will be
partly improvised, in response to the students’ reac-
tions, and this may be distracting for people who
have not experienced at least some of those lectures
in the auditorium. Still, if we are able to provide a
suitable learning path, the set of videos together with
complementary material can be made into an effec-
tive blended-learning course. We have had interest-
ing feedback from colleagues from secondary
schools who mentioned they are planning to use this
idea for helping students who cannot come to school
for health reasons.

WEBIST 2008 - International Conference on Web Information Systems and Technologies

416

3.2 Competition–based Learning

In programming courses, most assignments are pro-
grams: students are asked to write programs to solve
particular problems or to perform certain tasks.
When the work is done, students hand in the pro-
grams they wrote, together with a written report.
This is the standard procedure, but, to use the pro-
gramming jargon, it does not scale, if done by hand:
it is acceptable if you have a few students and a few
small programs, but it becomes impossible if you
have 200 students, and want them to hand in new
assignments every week. The solution is to use an
automatic judging system such as Mooshak (Leal
and Silva, 2003).

Mooshak was designed to manage programming
competitions such as the ACM International Colle-
giate Programming Contest (http://icpc.baylor.edu
/icpc/). Originally it was not a pedagogical tool.
However, the facilities it provides can be very useful
in programming courses.

Within Mooshak, a contest is a set of program-
ming problems or tasks, to be solved by the contest-
ants before a given deadline. Contestants submit
their source files using a browser. Mooshak recom-
piles and links them with the appropriate libraries,
and runs them with a set of secret test files. The re-
sulting output files are compared with the “official”
ones and if they all match exactly the task is “ac-
cepted”. If one of the tests fails, the reply is “wrong
answer”. In this case, no indication is given of the
nature of the discrepancy. It’s up to the contestants
to figure out, using their wit, the causes of the fail-
ure, and then correct it.

The great novelty of this system is that students
obtain immediate feedback, and this has great peda-
gogical value. Most of the times, students are 100%
sure that their programs fully satisfy the stated re-
quirements and they are surprised and disappointed
when they get “wrong answer”. In the past, their
wrong solution would be submitted to the teaching
assistant, and it might be falsely be taken as correct,
if the assistant was not rigorous or did not have time
to experiment all the interesting cases. In any case,
the assistant would typically return the assignment a
few days after, and if corrections were necessary,
they would be more painful because the assignment
was over in the student’s mind.

All programming assignments – exercises, prob-
lems and scripts are carried to be judged automati-
cally. When we started this approach, we used
scripts only, in place of the so-called “projects” that
were, at the time, the only meaningful programs the
students would write, typically at the end of the se-
mester. The observation at the time was that the
quality of those projects was very unsatisfactory,
because the students were only novice programmers.

That was understandable, but it left everybody, stu-
dents and teacher, unhappy. With scripts, students
could be guided to program interesting systems,
which would be beyond there current capabilities, if
they were left on their own.

With time, students became quite good at fol-
lowing scripts. We were surprised that when they
were given a problem without guidance, they would
feel uneasy. Many would simply give up instantly,
knowing that the grade points they had got with the
scripts were sufficient for passing.

To counter this attitude, we increased the num-
ber of problems and gave them more weight in the
final grade.

Still, Mooshak it was difficult to use Mooshak
early in the course, because Mooshak was designed
to handle input-output programs, i.e., programs that
read their input from the console and write their out-
put to the console too. This means that students must
know how to read data, not a trivial thing in many
programming languages. Furthermore, output must
conform exactly to what was specified, not a charac-
ter more, not a character less. Again, this is not an
issue after a while, but it discourages students on
their first rounds with Mooshak.

In order to solve this issue, and get more success
earlier (meaning, from the first lab), we introduced
exercises. With exercises, students merely write a
function with a specified interface, and submit it,
Input and output is performed by a “framework” in
which the students function is inserted, thus freeing
the students from those worries. This involved some
hacking with Mooshak, but proved very effective,
and helped raising the morale in the class.

With Mooshak, the results of all the submissions
are public: if my task is “accepted”, all my col-
leagues will know that immediately; is it gets
“wrong answer”, likewise. This is very instructive:
one might think that publicizing failures is counter-
productive, but in the end, everybody knows that
doing things wrong when you are learning is normal.
You don’t have to feel ashamed or anxious for not
getting the program right immediately: nobody does.
And you don’t have to be surprised that it is so hard
to finalize all the tasks, even the simpler ones: you
can watch that everybody else is going through the
same troubles, and eventually succeeding. So will
you, by working well, calmly and cautiously. All the
above instils group spirit which according to Rovai
(2002) allows learners to challenge and to nurture
each other which in turn affects positively their abil-
ity to cope and to learn. On the contrary, what is
strange and becomes suspicious is someone who
always gets things right at the first attempt. Actually,
although the teachers do not take any explicit meas-
ures against cheating, some situations like those
have arisen and were checked. On the other hand,

TEACHING PROGRAMMING WITH A COMPETITIVE ATTITUDE TO FOSTER GROUP SPIRIT

417

we believe Mooshak induces some type of “social
cheat control” that works by itself: even if the teach-
ers are not aware that some student or group of stu-
dents is not playing fair, their colleagues will know.
According to Rovai (2002), when there is trust the
members of a community will feel safe and subse-
quently expose gaps in their learning and feel that
other members will respond in supportive ways. So,
strengthening the community feeling the need of
cheating will be minimized.

Mooshak also ranks the students in each contest
by the number of submissions and then by the total
time, adding in some penalty for submissions that
have not been accepted. Although we do not use this
ranking in our pedagogy, some students enjoy being
the first to submit, thus appearing in the top places.
Others, who have not been the first, take the chal-
lenge, and try not to get too behind. As a result, most
students finish their assignments well before the
deadline.

This implicit competition has a number of inter-
esting side effects. For example, although we pro-
pose many problems and tasks, students do not com-
plain for excess of work, even if that might be the
case for many. We believe this is because they see in
the ranking that some colleagues have submitted all
tasks in the assignment a few hours or days after it
has been published. If those colleagues have done it
all say within 48 hours, how can they not be able to
do it in two weeks? Also, the common excuse that
“there was not enough time to complete the assign-
ment” all but disappeared, and was replaced, when it
was the case, by the more objective “I did not have
time to complete the assignment (because of other
obligations)”.

Quite often, after they have submitted, those first
students show up in the forums giving advice to their
colleagues. Their opinion can be much more con-
vincing that the teacher’s, in many cases. For exam-
ple, in one occasion, some students complained that
one of the tasks required a technique that had not
been studied yet. Some of the students who had al-
ready solved the problem came forward in the forum
explained that that was not the case. The complaint
was readily defused and teachers did not have to
intervene.

Students quickly got used to be rigorous about
Mooshak deadlines. In the first assignments, some
students postponed their submission to the very last
minute and then, as something went wrong, they had
to go through the embarrassment of asking a special
extension. This phenomenon disappeared as the se-
mester went by.

Overall, Mooshak added a sparkle of excitement
to programming, first by the fear of getting “wrong
answer” and the joy of getting “accepted”, then by
the public recognitions of one’s achievements, and

finally by the implicit competition that it substanti-
ates.

In fact, some students were caught by this com-
petitive spirit, and they formed teams to compete in
a nationwide tournament in preparation for the na-
tional round of the ACM-ICPC. This tournament is
organized by a group of universities and has five
stages, one per month from March to September,
skipping July and August (http://www.di.uminho.pt
/tiup/).

In this latest edition of the course, we pushed the
competitive stance a bit further, with the final as-
signment: we used an IBM game for Eclipse, called
Code Invaders (http://www.alphaworks.ibm.com
/tech/codeinvaders) and students were called to pro-
gram the behaviour of a spaceship that was to fight
other spaceships, programmed by their colleagues,
for energy resources in space. During the prepara-
tion phase, students could test their programs fight-
ing against a number of standard spaceships that
came with package. They could also upload their
own spaceships to the server, thus making them
available to their colleagues. At the end of the prepa-
ration phase, all teams uploaded their final space-
ships separately, and we held a live tournament on
the last lecture.

The exercise had pedagogical value, because the
techniques required to program the spaceships were
precisely those that had just been studied in class.
Besides, because of the competitive aspect of the
assignment, and unlike common assignments that
have a closed specification, students did practise
their programming much more extensively than
usual, trying to devise better strategies for their
spaceships.

As a further incentive, one of the assistants up-
loaded his own spaceship. Students were thrilled
when they could beat it, and boasted about that.

This exercise had a great impact: the word about
it spread out and we heard of students from more
advanced years, and from other universities, regret-
ting that they did not have a chance to do a similar
thing in their courses. This is good to know, of
course, but what really matters is that students real-
ized indirectly that their own course was admired a
bit enviously by others, and this made them feel
proud of being a part of it.

We planned this exercise also as a means of
making the results of our course more understand-
able to non-programmers, namely the students’
families and friends. Computer programs are ab-
stract entities, which can give tremendous pleasure
to create, but this pleasure often stays with the crea-
tor and cannot be transmitted. With programs with a
strong visual component, such as this game, students
can indeed exhibit their newly acquired skills to
their own entourage (Ribeiro and Guerreiro, 2007].

WEBIST 2008 - International Conference on Web Information Systems and Technologies

418

3.3 Using the Learning Management
System

The online meeting point for students and teachers
was the course Moodle page. Moodle is the learning
management system in use at our department, even
though there is no explicit directive mandating its
use. Therefore, it is adopted or not depending on the
preferences of the professors responsible for each
course. We use it extensively, for posting informa-
tion about the course, for publishing assignments,
for collecting the reports of the students must submit
in relation to their scripted tasks (the tasks them-
selves are submitted to Mooshak), for conducting
surveys, for managing forums, and for online quiz-
zes. The first four are quite common, so we will
comment only on our utilization of forums and quiz-
zes, in those aspects that relate to the somewhat un-
usual competitive approach that we advocate.

3.4 Forums

One of the characteristics of our course is transpar-
ency: all those interested in the course may follow
what we, teachers and students, are doing. That is
one of the reasons why we record the lectures and
publish them. Also, the course page in Moodle is
open to guests, and we have had indeed interesting
feedback from people not related to the university.

As sense of community and social presence is re-
lated to learning as some research suggests (Culter,
1995); Russell, 1999; Rovai, 2002) we put a big
effort on building and nurturing a sense of commu-
nity, letting the students express themselves in all
issues. This is a delicate subject, since students may
be reluctant to make any negative remarks or criti-
cism, for fear of reprisals. Our strategy to gain their
confidence has been to provide many forums, one
for each important issue. For example, even before
classes started, a forum was opened so that students
could discuss whatever they wanted about the pre-
liminaries of the course. Every time grades are pub-
lished, a forum is created so that students can pub-
licly report errors. Right after the exam, we had a
forum where students could exchange their impres-
sions on the exam. And each posted assignment has
a corresponding forum.

The forums for the assignment are very popular
and students use them mostly to get help. One might
fear that other students would simply post their own
solutions, in response to the questions, thus ruining
the exercise for the others, but that has happened
only once or twice, early in the semester, and we
grabbed the opportunity to explain that that was not
adequate. From then on, more advanced students,
some of which have taken the course in previous

editions, do provide help, but always in a way that
does not defeat the purpose of the exercise.

Typically, once a new assignment is published
and the corresponding forum is opened, the first
discussions concern clarifications of the problem. In
that phase, the teachers must pop in and respond
promptly. After the first students have had all corre-
sponding tasks accepted in Mooshak, which usually
happens around 48 hours after the beginning, they
take over, and teachers merely have to watch from
afar, intervening only sporadically. This is a very
interesting pattern, not only because it saves work to
the teachers, but because it helps create a good at-
mosphere, and gives visibility to the leaders of the
class. In these circumstances, their advice can be
more effective than the teachers’.

We also used the forum for students to publish
the graphical output of their programs, for all to see
and enjoy. One of the assignments had to do with
creating fractals, drawing them on a window, and
making a simple animation. Although the automatic
judge can perform a certain kind of validation on
graphical programs, in this case we wanted students
to experiment and invent their own fractals, and
therefore it was not appropriate to accept these sub-
missions. Instead, the evidence that the task had
been accomplished lied on having the fractals and
the animations posted in the forum. Actually, some
students posted their work in other sites, such as
YouTube (http://www.youtube.com/), and merely
added the links in the forum.

Having all works visible in a forum had some
surprising effects. First, the students could freely
comment on their colleagues results, and again, we
could observe the student leaders encouraging the
others. Second, many students first published a sim-
ple fractal, only to guarantee that the assignment had
been completed but returned later, to publish more
substantial examples. Of course, this healthy emula-
tion would not be possible if the assignments had
been handed in to the teachers alone, even if a selec-
tion of best works was to be published later.

Actually, as far as emulation goes, we noticed
that overall the fractals were not as elaborate as last
year’s. Last year, in a similar setting, one of the as-
sistants published his own fractals, early in the sub-
mission period. This immediately established a
touchstone and challenged the students to match it or
do better. Without such a reference point, the aver-
age quality of the fractals was lower.

Indeed, this observation confirms that it is a
good idea to add a degree of challenge in the as-
signments, whenever possible, thus capitalizing on
the natural competitive attitude of the students. This
was precisely what happened in the Code Invaders
assignment, where the first goal was to beat the
spaceship of the assistant.

TEACHING PROGRAMMING WITH A COMPETITIVE ATTITUDE TO FOSTER GROUP SPIRIT

419

This type of assignment, bearing a competitive twist,
stimulates the creativity of the students, not only in
finding good solutions to the problem that was pre-
sented, but also in solving related problems that
were not clearly identified and that they have to in-
vestigate by themselves.

3.5 Quizzes

Moodle has a tool for online quizzes. We decided to
use it to create a small quiz after each lecture, with
10 questions about what had been discussed. Each
quiz would be open for 60 hours after the lecture.
The goal was to invite students to review the lecture,
shortly after they attended it, or, to have them watch
the recording, in case they had not been present.
Students would get points for their final mark in the
course if their score in the quiz was 70% or more.
They could take the quiz as many times as they
wanted, with no penalty.

In the final survey, we inquired about the quiz-
zes: 64% said the quizzes are useful, 14% said they
are a waste of time, 60% tried to make them all, or
most of them. However, the most interesting was the
response we got to the question “Do you quit after
having reached a score of 70%?” Only 32% said
they did, meaning a great majority was motivated to
find the right answer to all the questions, and not
merely to pass. Actually, we believe they were
driven by the puzzle-like nature of the questions,
some of which were brain-teasers that challenged
their wit, sometimes in areas not directly related to
the contents of the course.

In this case, students had no access to the scores
of their colleagues. Thus, when they were retaking
the quiz to reach a higher score (higher than 70%
anyway) it was for their own satisfaction and self-
esteem. We find here another example, albeit of a
different nature, where a certain form of competi-
tiveness can help raise the level of the participation.

We had experimented with the quizzes on a pre-
vious edition of the course, but at that time students
were not rewarded with points. Although the novelty
made quizzes very popular at first, with hundreds of
students replying, very soon the numbers decreased,
and by the end of semester only a dozen were doing
it. This is a clear sign that as much as an assignment
can be fun and admittedly important, if there is not a
clear and practical benefit to be withdrawn from it,
students will skip it.

Conversely, using the points as a lure, we man-
aged to have all the active students doing the quiz-
zes, adding one more common activity, thus foster-
ing group spirit. There was also a sparkle of compe-
tition involved, as some students relished on being
the first to solve the quiz, seconds after it was pub-
lished.

4 PLATFORM INTEGRATION

The fact that we use two systems, Moodle and
Mooshak, goes against the conventional wisdom of
e-learning, according to which students should be
exposed to a single interface. Indeed, the situation is
a bit more complicated, because for certain tasks
students must use the information system of the uni-
versity. On the other hand, since students develop
their programs using the Eclipse environment, also
process of explicitly submitting to the automatic
judge is a bit awkward.

Three integration efforts are in order: on the one
hand, Moodle plus the information system of the
university. This will be a major project that cannot
be carried out without proper central support. Then
we might want to integrate Moodle and Mooshak.
This project is within our reach, both platforms be-
ing open source. However, rather than integrating
Moodle and Mooshak only, it would be preferable to
integrate Eclipse and Mooshak also, so that students
could submit their programs to the automatic judge
without leaving Eclipse and then have the result
available in Moodle. On the other hand, other lan-
guages use different development environments, and
at times, it is acceptable to use a plain text editor,
together with a command line.

5 CONCLUSIONS

Exploiting of the natural competitive attitude of
young people can help raise the level of motivation
and participation in introductory programming
courses, and we can use the tools of our e-learning
platforms for that. On the one hand, we can use the
learning management system to establish a perma-
nent showcase of what happens in the course,
namely to publish the lectures as they are given and
to display the performance of the students. In the
latter case, we must handle privacy issues carefully,
of course. Actually, one of the ways to ensure pri-
vacy and at the same time distinguish the best stu-
dents is to publish rankings for each assignment
separately, and refrain from collecting the “current
standing”. It is acceptable to be late once or twice, or
to skip one task from time to time, but it would be-
come embarrassing to appear in the lowest places in
some global standing for the course.

We can also design assignments which pit stu-
dents against one another, individually or in teams.
Various disciplines may adapt different strategies in
this area. In programming, we can get inspiration in
the plethora of existing computer games and pro-
gramming competitions problems (Paxton, 2007;
Ladd, 2005). We can also use assignments in which

WEBIST 2008 - International Conference on Web Information Systems and Technologies

420

the results are published as they are submitted, thus
challenging the other students to do better. In both
cases, it pays to mix in the work of the assistants, or
of students from previous years, so that the students
have a clear reference with which they can evaluate
their own results, right from the start.

Carrying out many small quizzes is an effective
way of helping the students to remain synchronized
with the pace of the course. As a side benefit, we
build up a pool of questions than can be used in
other occasions. Also, by analysing the answers to
each question, we may identify issues that need to be
reinforced. And in classes with many students, in
which many do not come to lectures and some drop
out during the semester, with the frequent quizzes
we can keep track of set of students that remain ac-
tive.

If presented regularly with questions that test the
students’ ingenuity applied to the contents of the
course, the quizzes can be addictive, and students
solve them not as an obligation but for fun and ex-
citement. They also discuss them with their col-
leagues constantly, and in the process they discuss
the course issues that go with them, which is another
benefit.

Another interesting idea is to design students’
competitions modelled after popular television con-
tests (O’Shea 2006). Given that some of these con-
tests have become part of the popular culture, we
believe they can engage students outright. One such
game is 1 vs. 100 (http://en.wikipedia.org/wiki/
1_vs._100). This game involves multiple choice
questions (which we could reuse from the quizzes).
Many players participate in each match, which is a
good thing, because we can accommodate large
numbers of students. As an extra piquant, the win-
ners could get bonus points. The infrastructure could
be build using the computers in the labs and simple
ad-hoc software.

From the point of view of the teachers, all these
activities should be carried out harmoniously from
within a single platform, with a consistent interface.
This requires a certain effort of tool integration that
has yet to be done. Students of informatics, on the
other hand, seem comfortable in jumping from tool
to tool to perform the various activities. This obser-
vation will not hold us back from trying to make the
learning experience of our students more rewarding,
by providing the most adequate combination of tools
for the job.

REFERENCES

ACM/IEEE, 2001. Computing Curricula. Computer
Science Volume. Available: http://www.sigcse.org/
cc2001/

Cutler, R. H., 1995. Distributed presence and community
in cyberspace, Interpersonal Communication and
Technology: A Journal for the 21st Century, 3(2). Re-
trieved January 2007 from:
http://www.helsinki.fi/science/optek/1995/n2/cutler.txt

Felder, R., 2004. Teaching engineering at a research uni-
versity. Problems and possibilities. Educatión
Química, 15(1), 40-42.

Horstmann, C., 2005. Java Concepts. 4th ed., Wiley.
ICPC. The ACM-ICPC International Collegiate Program-

ming Contest (accessed November 2007),
http://icpc.baylor.edu/icpc/

IOI. International Olympiads in Informatics (accessed
November 2007), http://www.ioinformatics.org/

Ladd, B., Harcourt, E., 2005. Student competition and bots
in an introductory programming course. Journal of
Computer Sciences in Colleges, 20(5), 274-284.

Leal, J. P., Silva, F., 2003. Mooshak: a Web-based multi-
site programming contest system, Software Practice &
Experience, 33(6), 567-581.

O’Shea, P. 2006, On using popular culture to enhance
learning for engineering undergraduates, Journal of
Learning Design, 1(3), 73-81,

Paxton, P., 2007. Programming Competition Problems as
a basis for an Algorithms and Data Structures Course.
Journal of Computer Sciences in Colleges, 23(2), 27-
32.

Ribeiro, P., Guerreiro, P., 2007. Increasing the appeal of
programming contests with tasks involving graphical
user interfaces and computer graphics. Olympiads in
Informatics, vol. 1, pp. 149-164.

Roberts, E., 2000. Strategies for encouraging individual
achievement in introductory computer science courses.
Thirty-First SIGCSE Technical Symposium on Com-
puter Science Education, pp 295-299, ACM Press.

Rovai, A., 2001. Building Sense of Community at a Dis-
tance. International Review of Research in Open and
Distance Learning, vol. 3(1). http://www.irrodl.
org/index. php/irrodl/article/view/79/153

Russell, T. L., 1999. The no significant difference phe-
nomenon. Chapel Hill, NC: Office of Instructional
Telecommunications, North Carolina University.

Skiena, S., Revilla, M., 2003. Programming Challenges:
The Programming Contest Training Manual. New
York, NY: Springer-Verlag.

Wang, H. H., & Fwu, B. J., 2001. Why Teach? The Moti-
vation and Commitment of Graduate Students of a
Teacher Education Program in a Research-Oriented
University. Proceedings of the National Science
Council

TEACHING PROGRAMMING WITH A COMPETITIVE ATTITUDE TO FOSTER GROUP SPIRIT

421

