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Abstract: In this paper, we present a new and fast algorithm for generating the seeds set for web crawlers. A typical 
crawler normally starts from a fixed set like DMOZ links, and then continues crawling from URLs found in 
these web pages. Crawlers are supposed to download more good pages in less iterations. Crawled pages are 
good if they have high PageRanks and are from different communities. In this paper, we present a new 
algorithm with O(n) running time  for generating crawler's seeds set based on HITS algorithm. A crawler 
can download qualified web pages, from different communities, starting from generated seeds set using our 
algorithm in less iteration. 

1 INTRODUCTION 

A major question a crawler has to face is which 
pages are to be retrieved  to have the "most suitable" 
pages in a collection (Henzinger, 2003). Crawlers 
normally retrieve a limited number of pages. In this 
regard, the question is how fast a crawler collects the 
"most suitable" pages. A unique solution to this 
question is not likely to exist.  

Different algorithms with different metrics have 
been suggested to lead a crawl towards high quality 
pages (Cho et al., 1998), (Najork, 2001). In (Cho et 
al., 1998) Cho, Garcia-Molina, and Page suggested 
using connectivity-based metrics. To direct a crawl, 
they have used different ordering metrics: breadth-
first, backlink count, Page Rank (Brin and Page, 
1998), and random. They have revealed that 
performing a crawl in breadth-first order works 
nearly well if "most suitable" pages are defined to be 
pages with high PageRanks. 

Najork and Wiener extended the results of Cho et 
al. They examined the average page quality over the 
time of pages downloaded during a web crawl of 
328 million unique pages and showed that traversing 

the web graph in breadth-first search order is a good 
crawling strategy(Najork, 2001). 

Based on Henzinger's work (Henzinger, 2003) 
better understanding of graph structure might lead to 
a more efficient way to crawl the web. In this paper, 
we use this idea to develop our algorithm. First, we 
define the "most suitable" pages and then show how 
a crawler can retrieve them. We use three metrics to 
measure the quality of a page.  

We also present a new fast algorithm for 
extracting seeds set from previously crawled pages. 
Using offered metrics, we show that  starting from 
extracted seeds suggested by our algorithm, a 
crawler will quickly collect the most suitable pages 
from different communities.  

From the study of different community 
extraction algorithms: PageRank, Trawling, HITS, 
and Network flow base community discovery, we 
decided to use HITS-Ranking without keyword 
search  for community discovery and collecting 
seeds set. We have found that bipartite cores are 
useful for selecting seeds set. Bipartite cores contain  
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Hub and Authority pages. Since we are interested in 
having Authority pages in our crawl, we would need 
to start crawling from Hub pages. Hubs are durable 
pages, so we can rely upon them for crawling. 

The main idea in our method is to use HITS-
Ranking on the whole graph for extracting the most 
important bipartite cores. We offer two bipartite core 
extraction algorithms.  

We have compared the results of the crawls 
starting from our extracted seeds set with crawls 
starting random nodes. Our experiments show that 
the crawl starting from our seeds finds the most 
suitable pages of web very faster.  

To the best of  our knowledge, this is the first 
such seeds extraction algorithm. The running time of 
proposed algorithm is O(n). Low running time with 
community base properties makes this algorithm 
unique in comparison with previous algorithms. 

2 DISCOVERING SEEDS SET IN 
LARGE WEB GRAPH  

A crawler usually retrieves a limited number of 
pages. Crawlers are expected to collect the "most 
suitable" pages of web rapidly. We define the "most 
suitable" pages of web as those pages with high 
Page Rank. In terms of HITS algorithm, these are 
called Authority pages. The difference is that HITS  
finds the authority pages relating to keywords but 
PageRank shows the importance of a page in the 
whole web. We know that good hubs link to good 
authorities. If we are able to extract good hubs from 
a web graph and different communities, we will be 
able to download good authorities that have high 
PageRank of different communities.  

2.1 Iterative HITS-Ranking & Pruning  

We assume that we have the crawled web graph. 
The goal is to extract seeds set from this graph so 
that a crawler can collect the most important pages 
of the web in less iteration. To do this we run HITS-
Ranking algorithm on this graph. This is the second 
step of HITS algorithm. In the first step, it searches 
the keywords in an index-based search engine. For 
our purpose, we ignore this step and only run the 
ranking step on the whole graph. In this way, 
bipartite cores with high Hub and Authority rank 
will become visible in the graph. Then, we select the 
most highly ranked bipartite core using two 
algorithms. We suggest, extracting seeds with fixed 
size, and extracting seeds with fixed density; we 

remove this sub-graph from the graph, repeat 
ranking, seed extraction, and sub-graph removal 
steps up to a point that we have enough seeds set.  

Why do we run HITS-Ranking repeatedly? The 
answer is: removing bipartite core in each step 
modifies the web-graph structure. In fact, re-ranking 
changes the hub and authority ranks of bipartite 
cores. Removing high-ranked bipartite core and re-
ranking web-graph drive, bipartite cores appeared to 
be from different communities. Thus, a crawler will 
be able to download pages from different 
communities starting from these seeds. Our 
experiments prove that extracted bipartite cores have 
a reasonable distance from each other.  

We expect to crawl the most suitable pages, 
because, in iterations of algorithm, we select and 
extract high-ranked bipartite cores which have high 
hub or authority ranks. It is expected that such pages 
link to pages with high PageRank. Our experiments 
prove the correctness of this hypothesis.  

2.2 Extracting Seeds with Fixed Size  

The procedure in Figure 1, extracts one bipartite 
sub-graph with highest hub and authority ranks with 
predetermined size given as an input. The procedure 
is given a directed graph G, BipartiteCoreSize, 
NewMemberCount and h, and a vectors. 
BipartiteCoreSize specifies the desired size of 
bipartite core we like to be extracted. 
NewMemberCount indicates in each iteration of 
algorithm how many hub or authority nodes should 
be added to the hub or authority sets; h and a vectors 
are hub and authority ranks of nodes in the input 
graph G. 

In the initial steps, the Algorithm sets HubSet to 
empty and adds the node with highest authority rank 
to AuthoritySet. While the sum of AuthoritySet size 
and HubSet size is less than BipartiteCoreSize, it 
continues to find new hubs and authorities regarding 
the NewMemberCount and adds them to the related 
set. We use this procedure when we like to extract 
bipartite sub-graph with fixed size. Figure 1 shows 
the details of this procedure. An interesting result we 
have found in our experiments is that at the very first 
steps, all the hubs have links to all authorities which 
is a complete bipartite sub-graph. This leaded us to 
suggest a density base extraction algorithm. 

2.3 Extracting Seeds with Fixed 
Cover-Density  

The procedure in Figure 2 extracts one bipartite sub-
graph with highest hub and authority ranks in a way 
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that the sub-graph has the desired cover-density 
function. 

We define Cover-Density as follows: 

(1) ||||
|),(|*100

etAuthoritySHubSet
etAuthoritySHubSetE  

This measure shows how many nodes in the 
authority set are covered by nodes in hub set.  

In initial steps, procedure sets HubSet to empty 
set and adds the node with highest authority rank to 
AuthoritySet. In addition, it sets CoverDensityCur to 
100. 

While CoverDensityCur is bigger than or equal 
to input CoverDensity, procedure continues to find 
new hubs and authorities. This algorithm adds only 
one new node to the sets at each iteration of the 
algorithm. If we increase the number of new nodes 
to more than 1, this might cause the reduction of the 
accuracy of desired cover density. 

 

 
Figure 1: Extracting Bipartite Cores with Fixed Size. 

2.4 Putting it All Together  

Up to now, we have presented algorithms for HITS-
Ranking and bipartite core extraction based on hub 
and authority ranks. Our goal is to extract a set of 
desired number of seeds to crawl and download 
pages from different web communities with high 

PageRank in less iteration. We use the proposed 
algorithms to achieve this goal. We assume that we 
have a crawled web graph. Then we run HITS-
Ranking algorithm on the whole graph and use one 
of the bipartite core extraction algorithms we have 
presented. Then, we select arbitrarily one of the 
nodes in the extracted hub set and add it to our seeds 
set. Finally, we remove the extracted core from the 
input graph and repeat these steps until we find the 
ideal number of seeds. 

We can use one of these two bipartite core 
extraction algorithms that we have proposed: 
Extract-Bipartite-Cores-with-Fixed-Size, Extract-
Bipartite-Cores-with-Fixed-CoverDensity. If we 
wish bipartite cores to have a fixed size we use the 
first algorithm and if we are looking for bipartite 
cores having desired cover density, then we use the 
second algorithm.  

 

 
Figure 2: Extracting Bipartite Cores with Fixed Density. 

We have experimented both of these algorithms. 
As we cannot guess the suitable size of a web 
community, we use the second method. The second 
method can calculate the density of links between 
hubs and authorities. If we have a complete bipartite 
core then we are sure that all the authority pages are 

Procedure Extract-Bipartite-Cores-with-Fixed-Size 
       Input: graph: G=(V,E) , integer: 
BipartiteCoreSize, NewMemberCount; 
                  vector: h,a. 
1)       HubSet = ∅; 
2)       AuthoritySet= Add v with highest a(v) to             
                     AuthoritySet; 
3)       While |AuthoritySet| + |HubSet| <  
                     BipartiteCoreSize do 
 
4)     HubSet = HubSet ∪ (Find Top 

NewMemberCount h(v) where v,w∈ E 
and w in AuthoritySet and v not in 
HubSet); 

 
5)      AuthoritySet= AuthoritySet ∪ (Find Top 

NewMemberCount a(v) where w,v∈ E 
and v in AuthoritySet and w not in 
HubSet );      

 
6)       End While 
       output:  HubSet, AuthoritySet 
End Procedure 

Procedure Extract-Bipartite-Cores-with-Fixed-
CoverDensity 

       Input: graph: G=(V,E) , integer: 
CoverDensity; 
                  vector: h,a. 
1)       HubSet = ∅; 
2)       AuthoritySet = Add v with highest a(v) to 
AuthoritySet; 
3)      CoverDensityCur = 100; 
4)       While CoverDensityCur ≥ CoverDensity do       
5)              HubSet = HubSet ∪ (Find Top 

NewMemberCount h(v) where v,w∈ 
E                                                            
and w in AuthoritySet and v not in 
HubSet); 

 
6)               AuthoritySet= AuthoritySet ∪ (Find 

Top NewMemberCount a(v) where 
w,v∈ E and v in AuthoritySet and w 
not in HubSet ); 

7)              CoverDensityCur = 

||||
|),(|*100

etAuthoritySHubSet
etAuthoritySHubSetE ; 

8)       End While 
       output:  HubSet, AuthoritySet 
End Procedure 
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from the same community. By decreasing the Cover-
Density measure, we decrease the degree of 
relationship between authority pages. Because the 
second method is more reliable than the first one, in 
this paper we only present experimental results 
achieved from using Extract-Bipartite-Cores-with-
Fixed-CoverDensity. The Extract-Seeds procedure 
(Figure 3) use this bipartite core extraction algorithm 
to return a valuable seeds set. 

 

 
Figure 3: Seeds Extraction Algorithm. 

The Extract-Seeds algorithm receives a directed 
graph G and SeedCount as input. At the initial step, 
algorithm sets SeedSet to empty. While the size of 
SeedSet is less than SeedCount, the algorithm keeps 
running. In the first line of While section, algorithm 
calls HITS-Ranking procedure with G as the input 
graph and 60 as HITSIterationCount. Kleinberg's 
work shows that HITSIterationCount equal to 20, is 
enough for convergence of  hub and authority ranks 
in a small sub-graph (Jon M. Kleinberg, 1999). We 
have found experimentally that a number of more 
than 50 is enough for convergence of hub and 
authority ranks with the dataset we use. HITS-
Ranking algorithm returns two vectors, h and a, 
containing result of hub and authority ranks of all 
nodes in graph G. In the next line algorithm calls 
Extracting-Bipartite-Cores-with-Fixed-CoverDensity 
with G as input graph, 100 as cover density value, 
and h and a as hub and authority vectors. This 
function finds complete bipartite cores in the input 
graph and returns complete bipartite nodes in 
HubSet and AuthoritySet. In the next line, a node 
randomly is selected from hub set and is added to 

the SeedSet. Now algorithm removes the hub and 
authority nodes and their edges from graph G. The 
removal step helps us to find seeds from different 
communities. 

2.5 Complexity of Proposed Seeds 
Extraction Algorithm  

The running time of Seeds-ExtractionAlgorithm, 
(Figure 3), is O(n), where n is the number of nodes 
in the input graph. 

The While loop of lines 2-12 is executed at most 
|SeedCount| times. The work of line 4 is done in 
O(n). Because the complexity of HITS-Ranking is 
equal to Θ(K*2*L*n) where L the average number 
of  neighborhoods of a node, K |HitsIterationCount|, 
and n is the number of nodes in the input graph. This 
complexity is multiplied by 2 because there are two 
steps for this kind of computation, one for hub 
vector and the other for authority vector. In addition, 
the normalization steps can be done in Θ(3n). So, 
the complexity of HITS-Ranking is O(n). 

The running time of Extracting-Bipartite-Cores-
with-Fixed-CoverDensity in line 4 is O(n). The 
While loop of lines 4-8, in figure 2, is executed at 
most |HubSet + AuthoritySet| times which can be 
viewed as a constant number k. Finding and adding a 
distinct hub node with highest rank to hub set, in line 
5, takes Θ(k*n). Finding and adding a distinct 
authority node with highest rank to authority set, in 
line 6, takes Θ(k*n). So, the running time of 
Extracting-Bipartite-Cores-with-Fixed-
CoverDensity is at most O(n). 

The removal steps of lines 6-11, in Figure 3, 
takes O(n) for removing identified hubs and 
authorities. 

Therefore, the total running time of Seed-
Extraction Algorithm is O(|SeedCount|*n), which is 
equal to O(n). 

3 EXPERIMENTAL RESULTS  

In this section, we apply our proposed algorithm, to 
find seeds set from previously crawled pages. Then, 
we start a crawl using extracted seeds on the same 
graph to evaluate the result. To show how applying 
algorithm on old data can provide good seeds for a 
new crawl, we start the crawl on a newer graph 
using seeds set extracted from a previous crawl. 

Procedure Extract-Seeds 
         Input: graph: G=(V,E) , integer: SeedCount; 
1)       SeedSet = ∅  
2)       While |SeedSet| < SeedCount do 
3)               h, a = HITS-Ranking( G , 60); 
4)               HubSet, AuthoritySet = Extracting-

Bipartite-Cores-with-Fixed-
CoverDensity(G, 100,  h, a); 

5)              SeedsSet = SeedsSet ∪ Select a node 
arbitrarily from HubSet; 

6)             For all v in HubSet do 
7)                    Remove v and all E(v) from G; 
8)             End For             
9)             For all v in AuthoritySet do 
10)                   Remove v and all E(v) from G; 
11)            End For              
12)       End While 
            output:  SeedsSet 
End Procedure 
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3.1 Data Sets  

The laboratory for Web Algorithmics at the 
University of Milan provides different web graph 
data sets (Laboratory for Web Algorithmics, 2007). 
In our experiments, we have used UK-2002 and UK-
2005 web graph data sets provided by this 
laboratory. These data sets are compressed using 
WebGraph library. WebGraph is a framework for 
studying the web graph (Boldi and Vigna, 2004). It 
provides simple ways to manage very large graphs, 
exploiting modern compression techniques. With 
WebGraph, we can access and analyze a very large 
web graph on a PC. 

3.1.1 UK-2002 

This data set has been obtained from a 2002 crawl of 
the .uk domain performed by UbiCrawler in 2002 
(Boldi et. al, 2004). The graph contains 18,520,486 
nodes and 298,113,762 links. 

3.1.2 UK-2005 

This data set has been obtained from a 2005 crawl of 
the .uk domain performed by UbiCrawler in 2005. 
The crawl was very shallow, and aimed at gathering 
a large number of hosts, but from each host a small 
number of pages. This graph contains 39.459.935 
nodes and 936,364,282 links. 

3.2 Data Set Characteristics  

3.2.1 Degree Distribution 

We had investigated the degree distribution of UK-
2002 and UK-2005. The results show that the In-
degree and Out-degree distribution are power laws 
in these two datasets. 

3.2.2 Diameter  

The diameter of a web-graph is defined as the length 
of shortest path from u to v, averaged over all 
ordered pairs (u,v) (Albert et. al, 2000). Of course, 
we omit the infinite distance between pairs that there 
is not a path between them. This is called average 
connected distance in (Broder et. al, 2000). We 
estimated this measure on UK-2002 and UK-2005 
data sets through experiments. Table 1 shows the 
estimated diameter of these data sets together with 
the number of nodes and edges. 

We use the resulted diameter to evaluate the 
distances between our extracted bipartite cores. 

3.3 Date Preparation  

3.3.1 Pruning 

Most of the links between pages in a site are for 
navigational purposes. These links may distort the 
result of presented algorithm. The result of the 
HITS-Ranking algorithm on this un-pruned graph 
will result in hub and authority pages to be found in 
a site. To eliminate this effect we remove all links 
between pages in the same site.  

We assume pages with the same host-name are 
in the same site. Table 2 shows the number of nodes 
and edges after pruning in the UK data sets. 

Table 1: UK 2002 and 2005 Data Sets information before 
pruning. 

Data Set Nodes Edges Diameter 
Estimate 

UK-2002 18,520,486 298,113,762 14.9 
UK-2005 39.459.935 936,364,282 15.7 

Table 2: UK 2002 and 2005 Data Sets information after 
pruning. 

Data Set Nodes Edges 
UK-2002 18,520,486 22,720,534 
UK-2005 39.459.935 183,874,700 

3.4 Results of Extracted Seeds  

We run our algorithm for seeds extraction, Extract-
Seeds, on UK-2002 and UK-2005. This algorithm, 
as Figure 3 shows, sets CoverDensity to 100 for 
seeds extraction. Figure 4 shows the size of 
extracted hubs and authorities in different iteration 
from UK-2002. It is clear that these cores are 
complete-bipartite. To reduce the impact of outlier 
hub sizes in the graphical presentation, we have used 
a log diagram. Figure 5 depicts the size of the 
extracted hubs and authorities in different iterations 
for UK-2005. 

Normally, the hub sizes are bigger than the 
authority sizes. We obtained bipartite cores with 
very large hub sizes in UK-2002. So, we have 
limited the number of hubs to 999 in UK-2002 data 
set. 

3.5 Quality Analysis  

3.5.1 Metrics for Analysis  

We used some different metrics to evaluate the 
quality of extracted seeds. The first metric is the 
distance between extracted seeds. As we have 
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mentioned earlier, a crawler tends to extract web 
pages from different communities. Using HITS-
Ranking and Iterative pruning we can conclude that 
extracted seeds are from different communities. To 
prove this, we measure the distances between 
extracted cores. We have defined core-distances as 
the nearest directed path between one of the nodes in 
the source core to one of the nodes in the destination 
core. 

0
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1 2 3 4 5 6 7 8 9 10

Hub Authority
 

Figure 4: Log diagram of Hub and Authority sizes 
Extracted from UK 2002 in different iteration.  

The second metric, is the PageRank of pages that 
will be crawled starting from these seeds. If the 
average PageRank of crawled pages, at each step of 
crawl, is bigger than a random crawl, especially at 
the beginning, then we can conclude that a crawl 
that starts from those seeds identified by our 
algorithm will result in better pages. 

The third metric is the number of crawled pages 
at each step of crawling. If the number of crawled 
pages starting from extracted seeds by our method at 
each step is bigger than the number of crawled pages 
starting at random set, then we can conclude that our 
method leads a crawl toward visiting more pages in 
less iteration too. 

For the first metric, we measure the distance 
between the cores. For the other two metrics, we 
need to crawl the graph starting from seeds extracted 
with our method and compare it with a crawl starting 
from randomly selected seeds.  

3.5.2 Result of Bipartite Core Distances  

We have measured the distance between all bipartite 
cores that were extracted from UK datasets and they 
had a reasonable distance in comparison with the 
diameter of the related graph. Figure 7, shows the 
graphical representation of distances between 56 
cores extracted from UK-2002. The number on top 
of each node indicates the iteration number in which 
the core has been extracted. Because the distance 
graph between nodes may have not an Euclidian 
representation, distances in this figure do not exactly 
match with real distances. The other important 

information is that bipartite cores in close iterations 
have a distance equal or bigger than average 
distance of related web graph. The cores that are 
close to each other are identified in far iteration. As 
an example, the distance between core extracted 
from iteration 32 and the core extracted from 
iteration 47 is one. In this sample, the minimum 
distance between nodes is 1, maximum distance is 
13 and average distance is 7.15. As the diameter of 
UK-2002 data set is 14.9, core distances are fine. 
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Figure 5: Log diagram of Hub and Authority sizes 
Extracted from UK 2005 in different iteration. 

 
Figure 6: Graphical representation of distances between 56 
extracted seeds from UK-2002 by our algorithm. The 
number on top of each node(core) indicates the iteration 
number in which the related node has been extracted. 

3.5.3 Average PageRank and Visit Count  

In this section, we evaluate the second and third 
metrics we defined for evaluation. For UK-2002 we 
have executed the Extract-Seed algorithm with 
SeedCount=10. Therefore, the algorithm extracts one 
seed from each core in iteration. Then, we have 
started a crawling on UK-2002 data set 
implementing BFS strategy and measured the 
average PageRank of visited pages in each crawl 
depth, and the number of pages visited in each crawl 
depth. Then, we have compared the results with 
those gained from a crawl starting from random 
seeds for the same graph. 
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Figure 7 shows the comparison of average 
PageRank of crawl starting from seeds extracted 
with our method and a crawl starting from random 
seeds. Except the first depth (iteration) of crawl, in 
the other steps, up to step 4, the average PageRank 
of pages crawled with our method appear to be 
better. Specially, in the second and third iterations, 
the difference is superior. In the later iterations 
average PageRank of visited pages are close. 

Figure 8 shows the comparison of log-number of 
pages visited in each depth of crawl on UK-2002. 
For better graphical representation, we have 
computed log-count of visited pages. Apparently, 
the results of our method are always better than 
crawl starting random seeds and a crawl with seeds 
extracted with our method downloads more pages in 
less iteration. Figures 9 and 10 show the experiments 
on UK-2005. The same results appear here too. 
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Figure 8: Comparison between Log Count diagram of 
pages visited at each Iteration starting from 10 seeds 
extracted by our method and 10 seeds selected randomly 
from UK-2002. 

3.5.4 Good Seeds for a New Crawl  

Using proposed algorithm we have discovered seeds 
from UK 2002 and UK 2005. Then we have 
evaluated the utility of these seeds using three 
evaluation criteria. These evaluations are good, but a 
real crawler has not access to seeds of a web graph 
which it is going to crawl. We should show that the 

result is always good if we start the crawl using 
seeds extracted from an old crawled graph. 

In this section, we show the result of crawling on 
UK 2005 using seeds extracted by our method and 
compare it by randomly crawled seeds to simulate 
the real environment. Before algorithm's execution, 
we have checked the validity of seeds found from 
UK-2002 in UK-2005 data set. If a seed does not 
exist in the newer graph, then we remove that seed 
from our seeds set. Our experiments show that only 
11 percent of seeds exist in the new data set. In fact, 
we have extracted 100 seeds from UK 2002 to be 
sure that we have 11 valid seeds in UK 2005. 

 

 
Figure 9: Comparison between PageRank of Crawled 
pages starting 10 seeds extracted from UK-2005 by our 
method and 10 Random seeds selected from UK-2005.  

 
Figure 10: Comparison between Log Count Diagram of 
pages visited at each Iteration starting from 10 seeds 
extracted by our method from UK-2005 and 10 seeds 
selected randomly on UK-2005. 

 
Figure 11, shows the comparison of average 

PageRank of crawl starting from seeds extracted 
with our method and a crawl starting from random 
seeds. The result of our method is better until 
iteration 3. Figure 12, shows the comparison of log-
number of pages visited in each depth of the crawl. 
In this case, the result of our method is better than 
the random case between steps 4 and 15. In fact, our 
method download pages with high Page Rank till 
iteration 3 and next it crawls more pages than the 
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random case till iteration 15. After that, the result is 
nearly the same. Therefore, we can conclude that a 
crawler can download qualified web pages in less 
iteration; starting generated seeds set using our 
algorithm in less iteration. 
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Figure 11: Comparison between PageRank of Crawled 
pages starting 11 seeds extracted from UK-2002 by our 
method and 11 Random seeds selected from UK-2005.  
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Figure 12: Comparison between Log Count Diagram of 
pages visited at each Iteration starting from 11 seeds 
extracted by our method from UK-2002 and 11 seeds 
selected randomly on UK-2005. 

4 CONCLUSIONS 

Crawlers like to download more good pages in less 
iteration. In this paper, we have presented a new fast 
algorithm with running time O(n) for extracting 
seeds set from previously crawled web pages. In our 
experiments we have showed that if a crawler starts 
crawling from seeds set identified by our method, 
then it will crawl more pages with higher PageRank 
in less iteration and from different communities, 
than starting a random seeds set. In addition, we 
have measured the distance between selected seeds 
to be sure that our seeds set contains nodes from 
different communities. According to our knowledge, 
this is the first seeds extraction algorithm that is able 
to identify and extract seeds from different 
communities.  

Our experiments were on graphs containing at 
most 39M nodes and 183M edges. This method can 
be experienced on larger graph in order to 
investigate the resulting quality on them too.  

Another aspect where improvement may be 
possible is the implementation of the seeds that are 
not found in a new crawl. In our experiments, we 
have simply ignored nodes present in an older graph 
but not in the newer one. This aspect may be 
improved by finding similar nodes in the newer 
graph. 
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