

A FAST COMMUNITY BASED ALGORITHM FOR
GENERATING WEB CRAWLER SEEDS SET

Shervin Daneshpajouh, Mojtaba Mohammadi Nasiri ¹
Computer Engineering Department, Sharif University of Technology, Tehran, Iran

Mohammad Ghodsi ²
Computer Engineering Department, Sharif University of Technology, Tehran, Iran

School of Computer Science, Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran

Keywords: Crawling, Communities, Seed Quality Metric, Crawl Quality Metric, HITS, Web Graph, Hyperlink
Analysis.

Abstract: In this paper, we present a new and fast algorithm for generating the seeds set for web crawlers. A typical
crawler normally starts from a fixed set like DMOZ links, and then continues crawling from URLs found in
these web pages. Crawlers are supposed to download more good pages in less iterations. Crawled pages are
good if they have high PageRanks and are from different communities. In this paper, we present a new
algorithm with O(n) running time for generating crawler's seeds set based on HITS algorithm. A crawler
can download qualified web pages, from different communities, starting from generated seeds set using our
algorithm in less iteration.

1 INTRODUCTION

A major question a crawler has to face is which
pages are to be retrieved to have the "most suitable"
pages in a collection (Henzinger, 2003). Crawlers
normally retrieve a limited number of pages. In this
regard, the question is how fast a crawler collects the
"most suitable" pages. A unique solution to this
question is not likely to exist.

Different algorithms with different metrics have
been suggested to lead a crawl towards high quality
pages (Cho et al., 1998), (Najork, 2001). In (Cho et
al., 1998) Cho, Garcia-Molina, and Page suggested
using connectivity-based metrics. To direct a crawl,
they have used different ordering metrics: breadth-
first, backlink count, Page Rank (Brin and Page,
1998), and random. They have revealed that
performing a crawl in breadth-first order works
nearly well if "most suitable" pages are defined to be
pages with high PageRanks.

Najork and Wiener extended the results of Cho et
al. They examined the average page quality over the
time of pages downloaded during a web crawl of
328 million unique pages and showed that traversing

the web graph in breadth-first search order is a good
crawling strategy(Najork, 2001).

Based on Henzinger's work (Henzinger, 2003)
better understanding of graph structure might lead to
a more efficient way to crawl the web. In this paper,
we use this idea to develop our algorithm. First, we
define the "most suitable" pages and then show how
a crawler can retrieve them. We use three metrics to
measure the quality of a page.

We also present a new fast algorithm for
extracting seeds set from previously crawled pages.
Using offered metrics, we show that starting from
extracted seeds suggested by our algorithm, a
crawler will quickly collect the most suitable pages
from different communities.

From the study of different community
extraction algorithms: PageRank, Trawling, HITS,
and Network flow base community discovery, we
decided to use HITS-Ranking without keyword
search for community discovery and collecting
seeds set. We have found that bipartite cores are
useful for selecting seeds set. Bipartite cores contain
¹ This author's work was in part supported by a grant from
ITRC (N. T-500-1895-86-2-17.)
² This author's work was in part supported by a grant from
IPM (N. CS2386-2-01.)

98
Daneshpajouh S., Mohammadi Nasiri M. and Ghodsi M. (2008).
A FAST COMMUNITY BASED ALGORITHM FOR GENERATING WEB CRAWLER SEEDS SET.
In Proceedings of the Fourth International Conference on Web Information Systems and Technologies, pages 98-105
DOI: 10.5220/0001527400980105
Copyright c© SciTePress

Hub and Authority pages. Since we are interested in
having Authority pages in our crawl, we would need
to start crawling from Hub pages. Hubs are durable
pages, so we can rely upon them for crawling.

The main idea in our method is to use HITS-
Ranking on the whole graph for extracting the most
important bipartite cores. We offer two bipartite core
extraction algorithms.

We have compared the results of the crawls
starting from our extracted seeds set with crawls
starting random nodes. Our experiments show that
the crawl starting from our seeds finds the most
suitable pages of web very faster.

To the best of our knowledge, this is the first
such seeds extraction algorithm. The running time of
proposed algorithm is O(n). Low running time with
community base properties makes this algorithm
unique in comparison with previous algorithms.

2 DISCOVERING SEEDS SET IN
LARGE WEB GRAPH

A crawler usually retrieves a limited number of
pages. Crawlers are expected to collect the "most
suitable" pages of web rapidly. We define the "most
suitable" pages of web as those pages with high
Page Rank. In terms of HITS algorithm, these are
called Authority pages. The difference is that HITS
finds the authority pages relating to keywords but
PageRank shows the importance of a page in the
whole web. We know that good hubs link to good
authorities. If we are able to extract good hubs from
a web graph and different communities, we will be
able to download good authorities that have high
PageRank of different communities.

2.1 Iterative HITS-Ranking & Pruning

We assume that we have the crawled web graph.
The goal is to extract seeds set from this graph so
that a crawler can collect the most important pages
of the web in less iteration. To do this we run HITS-
Ranking algorithm on this graph. This is the second
step of HITS algorithm. In the first step, it searches
the keywords in an index-based search engine. For
our purpose, we ignore this step and only run the
ranking step on the whole graph. In this way,
bipartite cores with high Hub and Authority rank
will become visible in the graph. Then, we select the
most highly ranked bipartite core using two
algorithms. We suggest, extracting seeds with fixed
size, and extracting seeds with fixed density; we

remove this sub-graph from the graph, repeat
ranking, seed extraction, and sub-graph removal
steps up to a point that we have enough seeds set.

Why do we run HITS-Ranking repeatedly? The
answer is: removing bipartite core in each step
modifies the web-graph structure. In fact, re-ranking
changes the hub and authority ranks of bipartite
cores. Removing high-ranked bipartite core and re-
ranking web-graph drive, bipartite cores appeared to
be from different communities. Thus, a crawler will
be able to download pages from different
communities starting from these seeds. Our
experiments prove that extracted bipartite cores have
a reasonable distance from each other.

We expect to crawl the most suitable pages,
because, in iterations of algorithm, we select and
extract high-ranked bipartite cores which have high
hub or authority ranks. It is expected that such pages
link to pages with high PageRank. Our experiments
prove the correctness of this hypothesis.

2.2 Extracting Seeds with Fixed Size

The procedure in Figure 1, extracts one bipartite
sub-graph with highest hub and authority ranks with
predetermined size given as an input. The procedure
is given a directed graph G, BipartiteCoreSize,
NewMemberCount and h, and a vectors.
BipartiteCoreSize specifies the desired size of
bipartite core we like to be extracted.
NewMemberCount indicates in each iteration of
algorithm how many hub or authority nodes should
be added to the hub or authority sets; h and a vectors
are hub and authority ranks of nodes in the input
graph G.

In the initial steps, the Algorithm sets HubSet to
empty and adds the node with highest authority rank
to AuthoritySet. While the sum of AuthoritySet size
and HubSet size is less than BipartiteCoreSize, it
continues to find new hubs and authorities regarding
the NewMemberCount and adds them to the related
set. We use this procedure when we like to extract
bipartite sub-graph with fixed size. Figure 1 shows
the details of this procedure. An interesting result we
have found in our experiments is that at the very first
steps, all the hubs have links to all authorities which
is a complete bipartite sub-graph. This leaded us to
suggest a density base extraction algorithm.

2.3 Extracting Seeds with Fixed
Cover-Density

The procedure in Figure 2 extracts one bipartite sub-
graph with highest hub and authority ranks in a way

A FAST COMMUNITY BASED ALGORITHM FOR GENERATING WEB CRAWLER SEEDS SET

99

that the sub-graph has the desired cover-density
function.

We define Cover-Density as follows:

(1) ||||
|),(|*100

etAuthoritySHubSet
etAuthoritySHubSetE

This measure shows how many nodes in the
authority set are covered by nodes in hub set.

In initial steps, procedure sets HubSet to empty
set and adds the node with highest authority rank to
AuthoritySet. In addition, it sets CoverDensityCur to
100.

While CoverDensityCur is bigger than or equal
to input CoverDensity, procedure continues to find
new hubs and authorities. This algorithm adds only
one new node to the sets at each iteration of the
algorithm. If we increase the number of new nodes
to more than 1, this might cause the reduction of the
accuracy of desired cover density.

Figure 1: Extracting Bipartite Cores with Fixed Size.

2.4 Putting it All Together

Up to now, we have presented algorithms for HITS-
Ranking and bipartite core extraction based on hub
and authority ranks. Our goal is to extract a set of
desired number of seeds to crawl and download
pages from different web communities with high

PageRank in less iteration. We use the proposed
algorithms to achieve this goal. We assume that we
have a crawled web graph. Then we run HITS-
Ranking algorithm on the whole graph and use one
of the bipartite core extraction algorithms we have
presented. Then, we select arbitrarily one of the
nodes in the extracted hub set and add it to our seeds
set. Finally, we remove the extracted core from the
input graph and repeat these steps until we find the
ideal number of seeds.

We can use one of these two bipartite core
extraction algorithms that we have proposed:
Extract-Bipartite-Cores-with-Fixed-Size, Extract-
Bipartite-Cores-with-Fixed-CoverDensity. If we
wish bipartite cores to have a fixed size we use the
first algorithm and if we are looking for bipartite
cores having desired cover density, then we use the
second algorithm.

Figure 2: Extracting Bipartite Cores with Fixed Density.

We have experimented both of these algorithms.
As we cannot guess the suitable size of a web
community, we use the second method. The second
method can calculate the density of links between
hubs and authorities. If we have a complete bipartite
core then we are sure that all the authority pages are

Procedure Extract-Bipartite-Cores-with-Fixed-Size
 Input: graph: G=(V,E) , integer:
BipartiteCoreSize, NewMemberCount;
 vector: h,a.
1) HubSet = ∅;
2) AuthoritySet= Add v with highest a(v) to
 AuthoritySet;
3) While |AuthoritySet| + |HubSet| <
 BipartiteCoreSize do

4) HubSet = HubSet ∪ (Find Top

NewMemberCount h(v) where v,w∈ E
and w in AuthoritySet and v not in
HubSet);

5) AuthoritySet= AuthoritySet ∪ (Find Top

NewMemberCount a(v) where w,v∈ E
and v in AuthoritySet and w not in
HubSet);

6) End While
 output: HubSet, AuthoritySet
End Procedure

Procedure Extract-Bipartite-Cores-with-Fixed-
CoverDensity

 Input: graph: G=(V,E) , integer:
CoverDensity;
 vector: h,a.
1) HubSet = ∅;
2) AuthoritySet = Add v with highest a(v) to
AuthoritySet;
3) CoverDensityCur = 100;
4) While CoverDensityCur ≥ CoverDensity do
5) HubSet = HubSet ∪ (Find Top

NewMemberCount h(v) where v,w∈
E
and w in AuthoritySet and v not in
HubSet);

6) AuthoritySet= AuthoritySet ∪ (Find

Top NewMemberCount a(v) where
w,v∈ E and v in AuthoritySet and w
not in HubSet);

7) CoverDensityCur =

||||
|),(|*100

etAuthoritySHubSet
etAuthoritySHubSetE ;

8) End While
 output: HubSet, AuthoritySet
End Procedure

WEBIST 2008 - International Conference on Web Information Systems and Technologies

100

from the same community. By decreasing the Cover-
Density measure, we decrease the degree of
relationship between authority pages. Because the
second method is more reliable than the first one, in
this paper we only present experimental results
achieved from using Extract-Bipartite-Cores-with-
Fixed-CoverDensity. The Extract-Seeds procedure
(Figure 3) use this bipartite core extraction algorithm
to return a valuable seeds set.

Figure 3: Seeds Extraction Algorithm.

The Extract-Seeds algorithm receives a directed
graph G and SeedCount as input. At the initial step,
algorithm sets SeedSet to empty. While the size of
SeedSet is less than SeedCount, the algorithm keeps
running. In the first line of While section, algorithm
calls HITS-Ranking procedure with G as the input
graph and 60 as HITSIterationCount. Kleinberg's
work shows that HITSIterationCount equal to 20, is
enough for convergence of hub and authority ranks
in a small sub-graph (Jon M. Kleinberg, 1999). We
have found experimentally that a number of more
than 50 is enough for convergence of hub and
authority ranks with the dataset we use. HITS-
Ranking algorithm returns two vectors, h and a,
containing result of hub and authority ranks of all
nodes in graph G. In the next line algorithm calls
Extracting-Bipartite-Cores-with-Fixed-CoverDensity
with G as input graph, 100 as cover density value,
and h and a as hub and authority vectors. This
function finds complete bipartite cores in the input
graph and returns complete bipartite nodes in
HubSet and AuthoritySet. In the next line, a node
randomly is selected from hub set and is added to

the SeedSet. Now algorithm removes the hub and
authority nodes and their edges from graph G. The
removal step helps us to find seeds from different
communities.

2.5 Complexity of Proposed Seeds
Extraction Algorithm

The running time of Seeds-ExtractionAlgorithm,
(Figure 3), is O(n), where n is the number of nodes
in the input graph.

The While loop of lines 2-12 is executed at most
|SeedCount| times. The work of line 4 is done in
O(n). Because the complexity of HITS-Ranking is
equal to Θ(K*2*L*n) where L the average number
of neighborhoods of a node, K |HitsIterationCount|,
and n is the number of nodes in the input graph. This
complexity is multiplied by 2 because there are two
steps for this kind of computation, one for hub
vector and the other for authority vector. In addition,
the normalization steps can be done in Θ(3n). So,
the complexity of HITS-Ranking is O(n).

The running time of Extracting-Bipartite-Cores-
with-Fixed-CoverDensity in line 4 is O(n). The
While loop of lines 4-8, in figure 2, is executed at
most |HubSet + AuthoritySet| times which can be
viewed as a constant number k. Finding and adding a
distinct hub node with highest rank to hub set, in line
5, takes Θ(k*n). Finding and adding a distinct
authority node with highest rank to authority set, in
line 6, takes Θ(k*n). So, the running time of
Extracting-Bipartite-Cores-with-Fixed-
CoverDensity is at most O(n).

The removal steps of lines 6-11, in Figure 3,
takes O(n) for removing identified hubs and
authorities.

Therefore, the total running time of Seed-
Extraction Algorithm is O(|SeedCount|*n), which is
equal to O(n).

3 EXPERIMENTAL RESULTS

In this section, we apply our proposed algorithm, to
find seeds set from previously crawled pages. Then,
we start a crawl using extracted seeds on the same
graph to evaluate the result. To show how applying
algorithm on old data can provide good seeds for a
new crawl, we start the crawl on a newer graph
using seeds set extracted from a previous crawl.

Procedure Extract-Seeds
 Input: graph: G=(V,E) , integer: SeedCount;
1) SeedSet = ∅
2) While |SeedSet| < SeedCount do
3) h, a = HITS-Ranking(G , 60);
4) HubSet, AuthoritySet = Extracting-

Bipartite-Cores-with-Fixed-
CoverDensity(G, 100, h, a);

5) SeedsSet = SeedsSet ∪ Select a node
arbitrarily from HubSet;

6) For all v in HubSet do
7) Remove v and all E(v) from G;
8) End For
9) For all v in AuthoritySet do
10) Remove v and all E(v) from G;
11) End For
12) End While
 output: SeedsSet
End Procedure

A FAST COMMUNITY BASED ALGORITHM FOR GENERATING WEB CRAWLER SEEDS SET

101

3.1 Data Sets

The laboratory for Web Algorithmics at the
University of Milan provides different web graph
data sets (Laboratory for Web Algorithmics, 2007).
In our experiments, we have used UK-2002 and UK-
2005 web graph data sets provided by this
laboratory. These data sets are compressed using
WebGraph library. WebGraph is a framework for
studying the web graph (Boldi and Vigna, 2004). It
provides simple ways to manage very large graphs,
exploiting modern compression techniques. With
WebGraph, we can access and analyze a very large
web graph on a PC.

3.1.1 UK-2002

This data set has been obtained from a 2002 crawl of
the .uk domain performed by UbiCrawler in 2002
(Boldi et. al, 2004). The graph contains 18,520,486
nodes and 298,113,762 links.

3.1.2 UK-2005

This data set has been obtained from a 2005 crawl of
the .uk domain performed by UbiCrawler in 2005.
The crawl was very shallow, and aimed at gathering
a large number of hosts, but from each host a small
number of pages. This graph contains 39.459.935
nodes and 936,364,282 links.

3.2 Data Set Characteristics

3.2.1 Degree Distribution

We had investigated the degree distribution of UK-
2002 and UK-2005. The results show that the In-
degree and Out-degree distribution are power laws
in these two datasets.

3.2.2 Diameter

The diameter of a web-graph is defined as the length
of shortest path from u to v, averaged over all
ordered pairs (u,v) (Albert et. al, 2000). Of course,
we omit the infinite distance between pairs that there
is not a path between them. This is called average
connected distance in (Broder et. al, 2000). We
estimated this measure on UK-2002 and UK-2005
data sets through experiments. Table 1 shows the
estimated diameter of these data sets together with
the number of nodes and edges.

We use the resulted diameter to evaluate the
distances between our extracted bipartite cores.

3.3 Date Preparation

3.3.1 Pruning

Most of the links between pages in a site are for
navigational purposes. These links may distort the
result of presented algorithm. The result of the
HITS-Ranking algorithm on this un-pruned graph
will result in hub and authority pages to be found in
a site. To eliminate this effect we remove all links
between pages in the same site.

We assume pages with the same host-name are
in the same site. Table 2 shows the number of nodes
and edges after pruning in the UK data sets.

Table 1: UK 2002 and 2005 Data Sets information before
pruning.

Data Set Nodes Edges Diameter
Estimate

UK-2002 18,520,486 298,113,762 14.9
UK-2005 39.459.935 936,364,282 15.7

Table 2: UK 2002 and 2005 Data Sets information after
pruning.

Data Set Nodes Edges
UK-2002 18,520,486 22,720,534
UK-2005 39.459.935 183,874,700

3.4 Results of Extracted Seeds

We run our algorithm for seeds extraction, Extract-
Seeds, on UK-2002 and UK-2005. This algorithm,
as Figure 3 shows, sets CoverDensity to 100 for
seeds extraction. Figure 4 shows the size of
extracted hubs and authorities in different iteration
from UK-2002. It is clear that these cores are
complete-bipartite. To reduce the impact of outlier
hub sizes in the graphical presentation, we have used
a log diagram. Figure 5 depicts the size of the
extracted hubs and authorities in different iterations
for UK-2005.

Normally, the hub sizes are bigger than the
authority sizes. We obtained bipartite cores with
very large hub sizes in UK-2002. So, we have
limited the number of hubs to 999 in UK-2002 data
set.

3.5 Quality Analysis

3.5.1 Metrics for Analysis

We used some different metrics to evaluate the
quality of extracted seeds. The first metric is the
distance between extracted seeds. As we have

WEBIST 2008 - International Conference on Web Information Systems and Technologies

102

mentioned earlier, a crawler tends to extract web
pages from different communities. Using HITS-
Ranking and Iterative pruning we can conclude that
extracted seeds are from different communities. To
prove this, we measure the distances between
extracted cores. We have defined core-distances as
the nearest directed path between one of the nodes in
the source core to one of the nodes in the destination
core.

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10

Hub Authority

Figure 4: Log diagram of Hub and Authority sizes
Extracted from UK 2002 in different iteration.

The second metric, is the PageRank of pages that
will be crawled starting from these seeds. If the
average PageRank of crawled pages, at each step of
crawl, is bigger than a random crawl, especially at
the beginning, then we can conclude that a crawl
that starts from those seeds identified by our
algorithm will result in better pages.

The third metric is the number of crawled pages
at each step of crawling. If the number of crawled
pages starting from extracted seeds by our method at
each step is bigger than the number of crawled pages
starting at random set, then we can conclude that our
method leads a crawl toward visiting more pages in
less iteration too.

For the first metric, we measure the distance
between the cores. For the other two metrics, we
need to crawl the graph starting from seeds extracted
with our method and compare it with a crawl starting
from randomly selected seeds.

3.5.2 Result of Bipartite Core Distances

We have measured the distance between all bipartite
cores that were extracted from UK datasets and they
had a reasonable distance in comparison with the
diameter of the related graph. Figure 7, shows the
graphical representation of distances between 56
cores extracted from UK-2002. The number on top
of each node indicates the iteration number in which
the core has been extracted. Because the distance
graph between nodes may have not an Euclidian
representation, distances in this figure do not exactly
match with real distances. The other important

information is that bipartite cores in close iterations
have a distance equal or bigger than average
distance of related web graph. The cores that are
close to each other are identified in far iteration. As
an example, the distance between core extracted
from iteration 32 and the core extracted from
iteration 47 is one. In this sample, the minimum
distance between nodes is 1, maximum distance is
13 and average distance is 7.15. As the diameter of
UK-2002 data set is 14.9, core distances are fine.

0
0.5

1
1.5

2
2.5

3
3.5

4

1 2 3 4 5 6 7 8 9 10

Hub Authority

Figure 5: Log diagram of Hub and Authority sizes
Extracted from UK 2005 in different iteration.

Figure 6: Graphical representation of distances between 56
extracted seeds from UK-2002 by our algorithm. The
number on top of each node(core) indicates the iteration
number in which the related node has been extracted.

3.5.3 Average PageRank and Visit Count

In this section, we evaluate the second and third
metrics we defined for evaluation. For UK-2002 we
have executed the Extract-Seed algorithm with
SeedCount=10. Therefore, the algorithm extracts one
seed from each core in iteration. Then, we have
started a crawling on UK-2002 data set
implementing BFS strategy and measured the
average PageRank of visited pages in each crawl
depth, and the number of pages visited in each crawl
depth. Then, we have compared the results with
those gained from a crawl starting from random
seeds for the same graph.

A FAST COMMUNITY BASED ALGORITHM FOR GENERATING WEB CRAWLER SEEDS SET

103

Figure 7 shows the comparison of average
PageRank of crawl starting from seeds extracted
with our method and a crawl starting from random
seeds. Except the first depth (iteration) of crawl, in
the other steps, up to step 4, the average PageRank
of pages crawled with our method appear to be
better. Specially, in the second and third iterations,
the difference is superior. In the later iterations
average PageRank of visited pages are close.

Figure 8 shows the comparison of log-number of
pages visited in each depth of crawl on UK-2002.
For better graphical representation, we have
computed log-count of visited pages. Apparently,
the results of our method are always better than
crawl starting random seeds and a crawl with seeds
extracted with our method downloads more pages in
less iteration. Figures 9 and 10 show the experiments
on UK-2005. The same results appear here too.

0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

2.50E-04

3.00E-04

3.50E-04

1 3 5 7 9 11 13 15 17 19

Iteration

Pa
ge

R
an

k

Our Algorithm Mean PageRank Random Algorithm Mean PageRank
Figure 7: Comparison between PageRank of Crawled
pages starting from 10 seeds extracted by our method on
UK-2002 and Random Seeds.

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Iteration

Lo
g-

C
ou

nt
 T

ra
ve

rs
ed

 p
ag

es

Our Method Random
Figure 8: Comparison between Log Count diagram of
pages visited at each Iteration starting from 10 seeds
extracted by our method and 10 seeds selected randomly
from UK-2002.

3.5.4 Good Seeds for a New Crawl

Using proposed algorithm we have discovered seeds
from UK 2002 and UK 2005. Then we have
evaluated the utility of these seeds using three
evaluation criteria. These evaluations are good, but a
real crawler has not access to seeds of a web graph
which it is going to crawl. We should show that the

result is always good if we start the crawl using
seeds extracted from an old crawled graph.

In this section, we show the result of crawling on
UK 2005 using seeds extracted by our method and
compare it by randomly crawled seeds to simulate
the real environment. Before algorithm's execution,
we have checked the validity of seeds found from
UK-2002 in UK-2005 data set. If a seed does not
exist in the newer graph, then we remove that seed
from our seeds set. Our experiments show that only
11 percent of seeds exist in the new data set. In fact,
we have extracted 100 seeds from UK 2002 to be
sure that we have 11 valid seeds in UK 2005.

Figure 9: Comparison between PageRank of Crawled
pages starting 10 seeds extracted from UK-2005 by our
method and 10 Random seeds selected from UK-2005.

Figure 10: Comparison between Log Count Diagram of
pages visited at each Iteration starting from 10 seeds
extracted by our method from UK-2005 and 10 seeds
selected randomly on UK-2005.

Figure 11, shows the comparison of average

PageRank of crawl starting from seeds extracted
with our method and a crawl starting from random
seeds. The result of our method is better until
iteration 3. Figure 12, shows the comparison of log-
number of pages visited in each depth of the crawl.
In this case, the result of our method is better than
the random case between steps 4 and 15. In fact, our
method download pages with high Page Rank till
iteration 3 and next it crawls more pages than the

1 3 4 5 6 7 8 9 10 11 12 15 16 17 18 19 202

0.00E+00

2.00E-04
4.00E-04
6.00E-04

8.00E-04
1.00E-03
1.20E-03
1.40E-03

1.60E-03

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Iteration
Our Method-Seed 2005

PageRank

Random Seeds

1

2

4

7

8

6

5

3

Our Method-Seed 2005 Random Seeds

WEBIST 2008 - International Conference on Web Information Systems and Technologies

104

random case till iteration 15. After that, the result is
nearly the same. Therefore, we can conclude that a
crawler can download qualified web pages in less
iteration; starting generated seeds set using our
algorithm in less iteration.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Our Method Seeds from UK 2002 Random Seeds from UK 2005
Figure 11: Comparison between PageRank of Crawled
pages starting 11 seeds extracted from UK-2002 by our
method and 11 Random seeds selected from UK-2005.

0

1

2

3

4

5

6

7

8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Our Method Seeds from UK2002 Random Seeds from UK2005
Figure 12: Comparison between Log Count Diagram of
pages visited at each Iteration starting from 11 seeds
extracted by our method from UK-2002 and 11 seeds
selected randomly on UK-2005.

4 CONCLUSIONS

Crawlers like to download more good pages in less
iteration. In this paper, we have presented a new fast
algorithm with running time O(n) for extracting
seeds set from previously crawled web pages. In our
experiments we have showed that if a crawler starts
crawling from seeds set identified by our method,
then it will crawl more pages with higher PageRank
in less iteration and from different communities,
than starting a random seeds set. In addition, we
have measured the distance between selected seeds
to be sure that our seeds set contains nodes from
different communities. According to our knowledge,
this is the first seeds extraction algorithm that is able
to identify and extract seeds from different
communities.

Our experiments were on graphs containing at
most 39M nodes and 183M edges. This method can
be experienced on larger graph in order to
investigate the resulting quality on them too.

Another aspect where improvement may be
possible is the implementation of the seeds that are
not found in a new crawl. In our experiments, we
have simply ignored nodes present in an older graph
but not in the newer one. This aspect may be
improved by finding similar nodes in the newer
graph.

ACKNOWLEDGEMENTS

Authors would like to thank Mohammad Mahdian
for his helpful and valuable comments on earlier
draft of this work.

REFERENCES

Henzinger, M. R., 2003. Algorithmic challenges in Web
Search Engines. Internet Mathematics, vol. 1, no. 1,
pp. 115-123.

Cho, J. Garcia-Molina, H. and Page, L., 1998. Efficient
Crawling through URL ordering. In Proceedings of
the 7th International World Wide Web Conference,
April, pp.161-172.

Najork, Wiener, J. L., 2001. Breadth-First Search
Crawling Yields High-Quality Pages, Proceedings of
the 10th international conference on World Wide
Web,pp. 114-118.

Brin, S. and Page, L., 1998. The anatomy of a large-scale
hypertextual Web search engine. Proceedings of the
seventh international conference on World Wide Web
7, pp. 107 – 117.

Jon M. Kleinberg, J., 1999. Authoritative Sources in a
Hyperlinked Environment. Proc. 9th ACM-SIAM
Symposium on Discrete Algorithms, pp.604-632.

Laboratory for Web Algorithmics, [Online], Available:
http://law.dsi.unimi.it/ [19 Jan. 2007]

Boldi, P., and Vigna, S., 2004. The WebGraph framework
I: Compression techniques. In Proc. of the Thirteenth
International World Wide Web Conference, pp. 595-601.

Boldi, P., Codenotti, B., Santini, M., Vigna, S., 2004,
UbiCrawler: A Scalable Fully Distributed Web
Crawler, Journal of Software: Practice & Experience,
vol.34, no 8, pp. 711-726.

Albert, R. Jeong, H. Barabasi, A. L., 2000, 'A random
Graph Model for massive graphs', ACM symposium on
the Theory and computing.

Andrei Z. Broder, Ravi Kumar, Farzin Maghoul,
Prabhakar Raghavan, Sridhar Rajagopalan, Raymie
Stata, Andrew Tomkins, Janet L. Wiener, 2000. Graph
structure in the Web. Computer Networks, pp. 309-320.

A FAST COMMUNITY BASED ALGORITHM FOR GENERATING WEB CRAWLER SEEDS SET

105

