
BRINGING TOGETHER WHAT TOGETHER BELONGS
Applying Web Services to Couple SOA and Grid in Smaller Environments

Carsten Kleiner and Arne Koschel
University of Applied Sciences and Arts

Ricklinger Stadtweg 120, 30459 Hannover, Germany

Keywords: Grid computing, SOA, Web services, Case studies, SME.

Abstract: This paper describes practical experiences from a project to couple Grid and SOA technologies in smaller
environments. Web services have been applied in two structurally different case studies to solve tasks with a
Grid that is integrated into a SOA and vice versa. The case studies have revealed important insight on how
and when to couple SOA and Grid technologies including monitoring aspects. Some interesting general
rules are derived on what has to be observed when combining SOA and Grid in smaller environments.
Performance and software technical analysis have been used in validating the results. They also clearly
showed the benefits gained by employing SOA and Grid concepts form both a performance as well as an
architectural perspective.

1 INTRODUCTION

1.1 Motivation

Today’s IT systems are often comprised of quite
different technical parts. A heterogeneous
communication infrastructure is thus used to connect
them. To exchange information between such
systems XML has established itself as some lingua
franca. Based on the XML fundament more
specialized languages became popular for service
description and communication between systems, A
well known example is the combination of service
interface description based on WSDL and abstracted
service communication with SOAP, in this paper
jointly called SOAP/Web Services (SOAP/WS).

No wonder, that SOAP/WS is examined for
communication nowadays within enterprise software
architectures as well. Especially enterprise IT tries to
utilize SOA to become more flexible and to allow
for better control. At the same time distributed,
parallel problem processing across heterogeneous
hardware became more and more popular recently;
Grid technology, which couples such systems to
become virtual super computers is here the means of
choice. Since in both cases (SOA and Grid)
communication is required, a common usage of
XML-based SOAP/WS ((W3C, 2007), (Conrad et
al., 2005), (Erl, 2005)), SOA ((Conrad et al., 2005),

(Erl, 2005), (Krafzig, Banke and Slama, 2005)) and
Grid ((Foster and Kesselman, 2003), (Conrad et al.,
2005)) seems interesting for further investigation.
Moreover this combination can be seen as an
advanced project experience for students.

This experience report thus describes two case
studies from student projects in the SOA/Grid space
and presents experiences gained within them. While
the first case study focuses on Grid computing
technology for parallel problem solving with some
smaller SOA part, the second study uses an SOA
combined with a simulated data Grid. Both case
studies commonly use SOAP/WS as communication
base. Another requirement was the usage of Open
Source Software only. For example the Grid
technology Globus Toolkit (Foster, 2006) was used
and the Nagios (Nagios, 2007) monitoring tool was
extended to allow for initial SOA-Grid monitoring.
Some performance and software technical analysis
was performed as well.

1.2 Related Work

Related work comes from different areas: Coupling
of SOA and Grid in very large scale IT landscapes is
examined in (Holmes, Johnson and Miller, 2003)
and (Chen et al., 2006). There is even a widely
accepted proposed architecture (OGSA; (Foster et
al., 2005)) for these kind of systems. It is however a

30
Kleiner C. and Koschel A. (2008).
BRINGING TOGETHER WHAT TOGETHER BELONGS - Applying Web Services to Couple SOA and Grid in Smaller Environments.
In Proceedings of the Fourth International Conference on Web Information Systems and Technologies, pages 30-37
DOI: 10.5220/0001524900300037
Copyright c© SciTePress

very general architecture concept (similar in (Huang,
2003)) not focused on a specific problem context.

More specific work just occurs sporadically in
some kind of individual solution, e.g. for astronomy
(Wang et al., 2006), bioinformatics (Xu et al., 2006),
or geosciences ((Fraser, Rankine and Woodcock,
2007), (Patra and Das, 2005)). This paper thus adds
more specific work that especially addresses smaller
IT environments in the combined GRID/SOA space.
The fact that many of the subject related articles are
quite recent, supports the claim that there is still
much work needed in this area.

For distributed search in Grids a data structure is
proposed by (Tadepalli, 2006), not combined with
SOA however. Prototypes for easier WS
development in Grids are shown in ((Bocchi et al.,
2005), (Kwon, Choi and Cho, 2006)), but they
assume an SOA to communicate among the Grid
nodes only.

2 SOA, GRID AND WEB
SERVICES

To utilize the benefits of SOA and Grid within one
single IT system jointly, a concept is required to
couple both technologies. Two options are obvious:
Option one utilizes Web services as communication
technology between Grid nodes; option two is an
SOA, which uses a Grid as some super service for
calculation or data storage.

Within option one the nodes of a Grid can be
seen as services within an SOA. Each node can
typically be used via SOAP/WS and together the
services form a Grid. All communication within the
Grid is thus based on Web services. Part of the case
study for this option is to check, whether the
flexibility gained by the usage of Web services help
significantly or whether the overall Grid
performance is influenced negatively instead.
Possibly the decision about the practical relevance of
this option is even depending on the specific
application and the type of Grid (computing Grid,
data Grid, etc).

In the second option the whole Grid as one
(service) element within an SOA is examined. The
Grid offers its service to other components within
the SOA; again SOAP/WS is used, but only to
communicate with the node which controls the Grid
but not necessarily within the Grid itself. Internally
the Grid could instead use any kind of
communication protocol. This architectural option
seems well suited if an existing computing or data

Grid shall be utilized within an SOA. From an SOA
viewpoint the Grid is just another service like other
services. Grid specifics are not used.

The following chapter shows a case study for
both options. Based on the gained experienced both
architecture options are conclusively valued.

3 CASE STUDIES

For a practical evaluation of the combined Grid and
SOA concepts in smaller environments (smaller with
respect to hardware in use), two prototypes where
developed as case studies from Q3/2006 till mid
2007. Both prototypes used open source Grid- and
SOA technology (Globus IV-Toolkit (Foster, 2006),
Celtix 1.x (Celtix, 2007) or Apache CXF Enterprise
Service Bus (CXF, 2007)). The development was
executed by 11 bachelor students in their final study
year, supervised by 2 professors. Effort was 1 day
per week per student. Both prototypes were based on
medium size Linux PC workstations as well as 2
multi processor Linux servers.

3.1 Focus Grid: “RSA Key Challenge”

3.1.1 Description

The idea behind the first case study was to utilize a
computing Grid to break (reasonable easy) RSA
keys based on factorization of prim numbers.
Motivation for this prototype was the ”RSA Key
Challenge“ (RSA, 2007). Within this case study a
simple “brute force” factorization algorithm using
division by prim numbers was used. The focus was
on getting started with Grid and SOA technology
with a reasonable easy problem domain.

Figure 1 shows the architecture of the first case
study. Monitors mean end users, pc symbols mean
system components possibly distributed across
different computing nodes. SOAP/WS is used for
communication between nodes.

Starting point in figure 1 is the presentation
server component. It is a servlet, which takes user-
initiated tasks for factorization and passes them on
to the management server. In return it gets back
results and presents them to the end user. Core
component is the management server WS. It
distributes sub tasks for prim factorization to
different Grid nodes.

For some more technical detail, listing 1 in
appendix A shows an excerpt of the management
server’s WSDL. It contains operations to start and
delete (Grid node) jobs, get a list a of current jobs
etc. Note the relation to resource descriptions and

BRINGING TOGETHER WHAT TOGETHER BELONGS - Applying Web Services to Couple SOA and Grid in Smaller
Environments

31

stateful services, which occasionally occur in Grid
service architectures.

Each Grid node is a Web service itself, which
takes a number to be factorized and an interval to be
tested. If the factorization is successful, the result is
returned, otherwise an error. The Grid nodes process
their number intervals in parallel. Using the
monitoring tool Nagios runtime supervision of the
overall SOA-Grid is performed and visualized.

Figure 1: Case study 1 – “RSA Key Challenge”.

3.1.2 Experiences

Development of the software for this case study was
performed just as a typical standard application
would have been. No major problems were
encountered and the students had no problems to
develop software for this specific area. Even the new
technologies such as web services and Grid
computing did not pose any major challenges apart
from the standard setup time required to be familiar
with a new technology.

The project team of students was divided into
sub teams which were used as domain experts
during the course of the project. Domain experts
were concerned with tackling the following work
packages: project management, detailed
specification of the scenario, Grid technology,
enterprise service bus (ESB) technology, hardware
and system software as well as monitoring.

Some minor problems have been encountered in
the Grid software team. These were due to the
somewhat unhandy web services layer of the Grid
software used (Globus toolkit 4). Consequently this
layer has not been used directly in the case study but
rather the more basic GridFTP has been used for
data transfer on the Globus side. Since the case
study’s goal was to examine web services in a Grid
context the team developed its own web service
wrapper for the GridFTP base technology. This

wrapper has been based on another open source
product, namely the Celtix ESB implementation.

With this case study focusing on using a Grid to
solve a computationally complex problem it should
also be evaluated how and to what extent a Grid will
help to solve the problem faster than a single
machine could. Our lab environment for performing
this quantitative analysis consisted of up to 4
completely identical Grid nodes. Standard PCs with
exactly the same hardware and software components
have been used. Since only relative times are
relevant in this study the simple hardware is
sufficient as long as all nodes use the same.

Table 1: “RSA Key Challenge” – Grid speedup.

Number
of Nodes

Very
small
numbers

Small
numbers

Large
numbers

1 4.5 s 4.4 s 1254 s
2 4.4 s 4.5 s 618 s
3 4.4 s 4.5 s 419 s
4 4.7 s 3.6 s 120 s

As shown in Table 1 we can see that for very

small numbers only the Grid setup time dominates
and this using multiple Grid nodes is not reasonable.
With a little bit larger numbers we can detect the
first significant speedup, but still using a Grid does
not gain enough. This situation changes completely
with using really large numbers (in our study these
numbers consisted of 23 digits, but this is definitely
dependent on the hardware used). Here we can
observe a significant speedup by using a Grid. Since
the setup time of the Grid is negligible here
(compare the 4s for very small numbers to the
absolute time required now), even two Grid nodes
already lead to a near linear speedup. In the case of 4
nodes we even observed super-linear speedup which
is due to some specifics of our implementation. In
general at least relatively linear speedup can be
expected. Note, that we did not test speedup which
goes widely beyond 4 nodes, e.g. to 100 or 1000
nodes. However, due to the “linear design” of our
RSA scenario, we still expect at least very
reasonable speedup for larger scale environments as
well. This should hold at least as long as we do not
hit network speed or latency boundaries
significantly.

Figure 2 illustrates that the good performance
results by adding more Grid nodes are not dependent
on the existence of a solution to the factorization
problem (red line) or non-existence (green line). In
both cases similar speedup can be achieved. This test
has been using large numbers only.

WEBIST 2008 - International Conference on Web Information Systems and Technologies

32

Figure 2: “RSA Key Challenge” – Speedup with/without
solution (large numbers).

3.2 Focus SOA: Specialized Web
Search Engine – “IT Web Indexer”

3.2.1 Description

Figure 3 illustrates the second case study. It shows
an “IT” specialized Web search engine, an “IT Web
Indexer”. The components work jointly in a SOA,
which uses a simulated data Grid as a storage
service. For time reasons, this data Grid was
implemented as a distributed, replicated database.

The IT Web Indexer works as follows: a Web
crawler WS manages a list of URLs to be examined
in the data Grid. Each loaded Web page is reduced
to its text content only and passed to an analysis WS,
which examines the page for “IT relevance” by
means of a pre-defined IT glossary. If a certain score
is exceeded, the page is seen as relevant and stored
using the data Grid service. The value is passed to an
index server WS, which indexes the word from the
Web page, eliminates duplicates etc.

End users access the results by means of a Web
page, which interacts with the user (input gathering
and validation, result preparation) as well as with the
request server WS. The latter separates the user
query into IDs, which are prepared as queries for the
data Grid storage service. The query result is a list of
page IDs, from which the user can pick, like in
popular Web search engines.

Figure 3: Case study 2 – ”IT Web Indexer“.

3.2.2 Experiences

As expected using a SOA with Web Services for
communication lead to an extremely flexible system
architecture. On one hand the separation of the
whole software system into several functional
components induces a very well structured software
system. Single components (where a component can
be identified by the functionality it provides to the
system as a whole) can be replaced by different
implementations as desired. On the other hand the
different software components within the case study
could be distributed arbitrarily among the available
resources. This leads to a well improved usage of
resources which can even be adjusted dynamically
depending on the current need of the system. Thus it
was possible to achieve a pretty good system
throughput (measured in terms of web sites scanned
and hits found per time unit) even with the very
limited resources available in a student project.

As an example for the good flexibility, which the
SOA-based design provides, one could exchange the
front end easily with a self-developed application,
which just calls the appropriate Web service. Other
options would be specialized front-ends for mobile
devices like PDAs or highly interactive Web GUIs
based on Web 2.0 technologies like Ajax. Similarly,
the crawler Web service could be implemented in
different versions, e.g. to search other data sources
like local documents rather than the Web. Figure 4
shows such SOA-based architectural variations of
the “IT Web Indexer”.

BRINGING TOGETHER WHAT TOGETHER BELONGS - Applying Web Services to Couple SOA and Grid in Smaller
Environments

33

Figure 4: Architectural variations – ”IT Web Indexer”.

The data Grid providing database storage and access
capabilities for the search engine has been included
into the SOA as a “super service”, meaning that
communication with the data Grid is performed just
as communication with any service in the system
(thus making it a service); on the other hand the data
Grid provides much more functionality and its
internal complexity is much larger compared to a
classical service (making it a super service).
Nevertheless viewing the data Grid as a service
made it possible to include it smoothly into the
system: There was e.g. no need for any specific
interaction methods.

In total, the service-based design of the system
resulted in a highly flexible architecture, as
promised by SOA.

Similar to our study only limited resources will
be available in a realistic setting where Grid and
SOA are to be employed in smaller environments,
e.g. small companies. Our second case study shows
that even then a combination of the two technologies
can lead to a considerable performance boost due to
the flexible architecture and improved resource
usage.

As in the first case study a specifically extended
version of the open source tool Nagios provided
integrated monitoring capabilities of both SOA and
Grid. Such integrated capabilities proofed to be
essential for both the development as well as the
operation phase. During the development phase
monitoring is important for locating errors
originating from the distributed nature of the
application. During system operation, monitoring is
required for availability control as well as for system
tuning issues. The following Figure 5 shows a
screenshot of the running monitoring system, which
monitors the SOA-Grid. As can be seen, all nodes
run fine except node visogrid04 which is currently
down.

Figure 5: SOA-Grid-monitoring in action.

In our experience without proper monitoring of the
different nodes it is quite difficult to automatically
detect available resources which may be employed
by a different component for optimized system
performance. Without monitoring, the overall SOA-
Grid would be much harder to develop and almost
impossible to manage even in small environments
like ours.

4 CONCLUSION AND FUTURE
WORK

4.1 Lessons Learned from Case Studies

Both case studies showed that the combination of
SOA and Grid technologies is possible without any
problems. We can also conclude that both
architectural variants may be employed for
implementation. Which of the two variants should
be preferred is strongly application dependent.

The first architecture where a computing Grid
uses web services for internal communication has
been proven to provide an easy implementation of a
computing Grid. Without using web services (and by
using a proprietary communication protocol instead)
the system would have been much less flexible. I.e.
using different hardware and operating system on
some of the Grid nodes would not have been
possible without additional development effort. This
architecture is particularly beneficial, if the
messages exchanged among the Grid nodes are
diverse and the hardware, operating system and/or
software on the Grid nodes varies. Even though web
services incur a certain communication overhead we
observed a significant speedup of the Grid
application and the improved flexibility outweighs

WEBIST 2008 - International Conference on Web Information Systems and Technologies

34

the overhead in this context. The performance
analysis, which we performed, showed the
significant speedups, which are possible especially
even for small SOA-Grids like ours.

The architecture in the second case study, where
a database Grid was integrated into a distributed
application as a super web service, has also proven
to be efficient for this kind of application. In this
case the flexibility of the SOA has been used in
favor of implementation of the distributed
application. The advantage of flexible resource
allocation based on a possibly heterogeneous
computing infrastructure facilitates an efficient
implementation of this complex application.
Communication within the data Grid is proprietary
in this case, since the messages to be exchanged are
fixed and well-known. This holds since they are
defined by the database system used for
implementing the data Grid. Nevertheless Web
services are used to access the data Grid as a whole
in order to be able to use the data Grid as flexible
and wide spread as possible. The highly increased
flexibility shows, that SOA usage makes sense, even
for comparable small applications. The easy
integration of a Grid as a super-service, as well as
flexible exchange or additions of services within the
second case study pointed this clearly.

In both studies we observed that a loose coupling
of the two concepts Grid and SOA proved
beneficial. The Grids have been integrated into the
distributed application by means of services in both
cases. This makes flexible usage of the Grids
possible. Within the Grids services have been used
for the computing Grid but not for the data Grid. As
a general rule we can state that services within the
Grid provide an advantage as long as many diverse
services are used within the Grid and a
heterogeneous computing infrastructure is used. If
that is not the case proprietary communication
should be used within the Grid.

Distributed applications running on a
heterogeneous infrastructure require advanced
monitoring capabilities of the system as a whole. In
our studies the tool Nagios with specific extensions
developed within the scope of the studies proved to
be extremely valuable. It is possible to monitor
hardware as well as software status of the system.
Monitoring for both Grid and SOA could be nicely
integrated and a good overview of the system as a
whole is achieved.

All the software developed within the case
studies has been based on open source products. The
fact that the applications have been successfully
implemented based on this kind of software with
acceptable effort show that even in such complex
application scenarios open source software is an
alternative. Especially in the case of SMEs where

financial investments in IT have to be quite limited it
is important to be able to use open source software.
Cheap software complements the potential to use a
heterogeneous computing infrastructure and flexible
resource allocation very well. Jointly it is possible to
implement a complex and highly productive
software system at comparable low cost. This is
especially important for smaller environments in
SMEs.

Eventually, the results showed as well, that such
relatively complex integration projects are quite
feasible for teaching purposes in (advanced) student
courses respectively projects.

4.2 Future Work

The quantitative evaluations of the distributed
applications developed in the case studies should be
extended further. Especially many more different
hardware and software foundations on the Grid
nodes should be examined. This could potentially
lead to more insight into the influence of
heterogeneity for the Grid and SOA applications. Of
course interesting as well would be to add
significantly more Grid nodes, to validate the
scalability results. We plan to explore this in the
future. In this case care must be taken however, that
our targeted “smaller environments” are still
addressed here primarily.

If the customized extensions to Nagios would be
extended somewhat further, a tool for general Web
Service and Grid management and monitoring could
be obtained. Such a tool would be of great benefit to
many different SOA-based software systems and has
many potential use cases.

The combination of SOA and Grid should also
be employed for implementation of real-world
applications used within a SME. Practical
experiences gained from this kind of applications
and from the integration of the different technologies
into an actual IT landscape of a SME could reveal
further perception of the applicability of the
architectural variants. Finally more benefits of the
combination of Grid and SOA could be deduced and
the necessity for improvements could be detected.

ACKNOWLEDGEMENTS

We would like to thank our students from the
ViSoGrid project team for their highly productive
and enthusiastic work in this project. Special thanks
goes to the team members E. Friedrich, B. Hell-
mann, A. Reich, M. Schaaf, and J. Salzwedel.

BRINGING TOGETHER WHAT TOGETHER BELONGS - Applying Web Services to Couple SOA and Grid in Smaller
Environments

35

REFERENCES

Bocchi, L., Ciancarini, P., Moretti, R., Presutti, V., and
Rossi, D., 2005. An OWL-S based approach to express
Grid services coordination. Proc. 2005 ACM Symp.
on Applied Computing. Santa Fe, New Mexico. L. M.
Liebrock, Ed. SAC '05. ACM Press, New York, 1661-
1667.

Bunn, J., van Lingen, F., Newman, H., Steenberg, C.,
Thomas, M., Ali, A., Anjum, A., Azim, T., Khan, F.,
Rehman, W. u., McClatchey, R., and In, J. U., 2005.
JClarens: A Java Framework for Developing and
Deploying Web Services for Grid Computing. In Proc.
IEEE Conf. on Web Services (ICWS'05) - Volume 00
(2005). ICWS. IEEE CS, Washington, DC, 141-148.

Celtix, 2007. Celtix Enterprise Service Bus, 1.x.
objectweb.org. Acc. July 2007.

Chen, X., Cai, W., Turner, S. J., and Wang, Y., 2006.
SOAr-DSGrid: Service-Oriented Architecture for
Distributed Simulation on the Grid. In Proc. 20th
Workshop on Principles of Advanced and Distributed
Simulation. Workshop on Parallel and Distributed
Simulation. IEEE CS, Washington, DC, 65-73.

Conrad, S., Hasselbring, W., Koschel, A., Tritsch, R.,
2005. Enterprise Application Integration, Spektrum
Akademischer Verlag, Germany.

Apache CXF Enterprise Service Bus, 2007. apache,org.
Acc. July 2007.

Erl, T., 2005: SOA: Concepts, Technology, and Design,
Prentice-Hall.

Fang, L. 2006 A Scalable Capability-Based Authorization
Infrastructure for Web Services in Grids. Doctoral
Thesis. UMI Order No. AAI3215173., Indiana
University.

Foster, I., Kesselman, K. (eds), 2003. The Grid 2:
Blueprint for a New Computing Infrastructure.
Morgan Kaufmann.

Foster, I., Kishimoto, H., Savva, A., Berry, D., Djaoui, A.,
Grimshaw, A., Horn, B., Maciel, F., Siebenlist, F.,
Subramaniam, R., Treadwell, J., Von Reich, J., 2005.
The Open Grid Services Architecture, Version 1.0.
Informational Document, Global Grid Forum (GGF).

Foster, I., 2006. Globus Toolkit Version 4: Software for
Service-Oriented Systems. IFIP Intl. Conference on
Network and Parallel Computing, Springer-Verlag
LNCS 3779, 2-13.

Fraser, R., Rankine, T., Woodcock, R., 2007. Service
oriented grid architecture for geosciences community.
In: Proc. 5th Australasian symposium on ACSW
frontiers (ACSW07), Australian Computer Society,
Inc., Darlinghurst, Australia, 19 – 23.

Friese, T., Smith, M., and Freisleben, B. 2004. Hot service
deployment in an ad hoc Grid environment. Proc. 2nd
Intl. Conference on Service Oriented Computing (New
York, NY, USA, November 15-19, 2004).ICSOC '04.
ACM Press, New York, NY, 75-83.

Holmes, V., Johnson, W., Miller, D., 2003. Integrating
Web Service and Grid Enabling Technologies to
Provide Desktop Access to High-Performance Cluster-
Based Components for Large-Scale Data Services.

Proc. 36th annual symposium on Simulation
(ANSS03), IEEE Computer Society Press,
Washington, DC. 167.

Huang, Y., 2003. JISGA: A Jini-Based Service-Oriented
Grid Architecture. International Journal of High
Performance Computing Applications, Sage Publ.,
Thousand Oaks. 317-327.

Krafzig, D., Banke, K., Slama, D., 2005. Enterprise SOA.
Prentice Hall.

Kwon, S., Choi, J., and Cho, K., 2006. Light-weight
service-oriented Grid application toolkit. Proc. of the
'06 ACM Symp. on Applied Computing (Dijon,
France, April 23-27, '06). SAC '06. ACM Press, New
York, NY. 1482-1486.

Lomow, G., Newcomer, E., 2005. Understanding Service-
Oriented Architecture (SOA) with Web Services.
Addison-Wesley.

Nagios, 2007. Nagios Monitoring Toolkit, Nagios.org.
Acc. July 2007.

Patra, M., Das, R., 2007. SORIG: A service-oriented
framework for rural information grid -- an
implementation viewpoint. Proc. 1st Intl. Conf. on
Theory and practice of electronic gov. (ICEGOV07),
ACM Press, New York, NY. 49 – 52.

RSA, 2007. RSA Key Challenge. rsasecurity.com. Acc.
July 2007.

Starke G., Tilkov S. (Edts.), 2007. SOA-Expertenwissen,
dpunkt. Germany.

Tadepalli, P., 2006. Grid-based distributed search
structure. In: Proc. of the 44th annual ACM Southeast
regional conf., New York. 752-753.

WWW Consortium (W3C), 2007. Web Services
specifications, W3C.org. Acc. July 2007.

 Walker, D. W., 2003. Grid Computing: Infrastructure
and Applications. Intl. Journal High Performance
Computing, Appl. 17, 3, 207-208.

Wang, M., Du, Z., Chen, Y., and Cheng, Z., 2006. A SOA
Based Pipeline System to Deal with Astronomy
Telescope Data. In Proc. of the 2nd IEEE Intl.
Symposium on Service-Oriented System Engineering
(Sose'06)-Vol.00 (Oct. 25-26,'06). SOSE. IEEE
Computer Society, Washington, DC, 156-166.

Xu, G., Luo, Y., Yu, H., and Xu, Z. 2006. An Approach to
SOA-Based Bioinformatics Grid. In Proc. of the 2006
IEEE Asia-Pacific Conf. on Services Computing
(December 12 - 15, 2006). APSCC. IEEE Computer
Society, Washington, DC, 323-328.

APPENDIX A

The following listing 1 shows an excerpt of the
WSDL for the management server from the RSA
key challenge case study.

WEBIST 2008 - International Conference on Web Information Systems and Technologies

36

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions
 xmlns:soap= "http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns= "http://visogrid ... /Rsakc/"
 <wsdl:types>
 . . .
 <xsd:element name="addJob">
 <xsd:complexType> <xsd:sequence>
 <xsd:element name="name" type="string" />
 <xsd:element name="key" type="string" />
 </xsd:sequence> </xsd:complexType>
 </xsd:element>
 <xsd:element name="addJobResponse">
 <xsd:complexType> <xsd:sequence>
 <xsd:element name="id" type="int" />
 </xsd:sequence> </xsd:complexType>
 </xsd:element>
 <xsd:element name="deleteJob">
 <xsd:complexType> <xsd:sequence>
 <xsd:element name="id" type="int" />
 </xsd:sequence> </xsd:complexType>
 </xsd:element>
 . . .
 </wsdl:types>

 <wsdl:message name="addJobRequest">
 <wsdl:part name="in" element="tns:addJob" />
 </wsdl:message>
 <wsdl:message name="addJobResponse">
 <wsdl:part name="out" element="tns:addJobResponse"></wsdl:part>
 </wsdl:message>
 . . .

 <wsdl:portType name="Rsakc">
 <wsdl:operation name="addJob">
 <wsdl:input message="tns:addJobRequest" />
 <wsdl:output message="tns:addJobResponse" />
 </wsdl:operation>
 . . .
 </wsdl:portType>

 <wsdl:binding name="RsakcSOAP" type="tns:Rsakc">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="addJob">
 <soap:operation soapAction="http://visogrid .../Rsakc/NewOperation" />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 . . .
 </wsdl:operation>
 . . .
 </wsdl:binding>

 <wsdl:service name="Rsakc">
 <wsdl:port binding="tns:RsakcSOAP" name="RsakcSOAP">
 <soap:address location= "http://visogrid .../SoapContext/SoapPort" />
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

Listing 1: WSDL excerpt for RSA key challenge.

BRINGING TOGETHER WHAT TOGETHER BELONGS - Applying Web Services to Couple SOA and Grid in Smaller
Environments

37

