
A LOGIC PROGRAMMING MODEL FOR WEB RESOURCES

Giulio Piancastelli and Andrea Omicini
ALMA MATER STUDIORUM – Università di Bologna, via Venezia 52, 47037 Cesena, FC, Italy

Keywords: Representational State Transfer, Resource-Oriented Architecture, Contextual Logic Programming, Prolog.

Abstract: In the latest years, substantial achievements have been obtained in the description and formalization of the
architectural principles and design criteria underlying the World Wide Web. First, the Representational State
Transfer (REST) architectural style for distributed hypermedia systems was introduced, defining theresource
as the key abstraction of information; then, the Resource-Oriented Architecture (ROA) was presented as a
REST-based set of guidelines and best practices for implementing services on Web resources. However, a
resource programming model is still missing, since procedural and object-oriented web programming fo-
cussed on different abstractions, such aspage, controller, andservice. Instead, we adopt the logic declarative
paradigm to define our model for resource-oriented programming, also showing how its peculiar features lead
to novel possibilities for dynamic modification and extension of resource behavior at runtime. In this pa-
per, we first map novel REST and ROA abstractions onto elements of structured logic programming. Then,
we present Web Logic Programming as a Prolog-based language for the World Wide Web embedding the
core REST and ROA principles, by defining its computation model and discussing a bookshelf sharing web
application example.

1 INTRODUCTION

Despite the World Wide Web being increasingly used
as a successful platform for open distributed sys-
tems of heterogeneous nature, a proper description,
understanding, formalization, and divulgement of its
architectural principles and design criteria has been
achieved only recently. In the latest years, first the
Representational State Transfer (REST) architectural
style for distributed hypermedia systems was intro-
duced (Fielding, 2000); then, the Resource-Oriented
Architecture (ROA) was presented as a REST-based
set of guidelines and best practices for implement-
ing services that exploit the full potential of the Web
(Richardson and Ruby, 2007). Both REST and ROA
focussed on theresourceas the main data abstraction,
defined as any conceptual target of a hypertext ref-
erence; they also prescribed communication amongst
resources to happen through auniform interfaceby
transferring arepresentationof a resource’s current
state.

However, a resource programming model is still
missing. From the early years of procedural CGI
scripts to the modern days of object-oriented frame-

works and platforms, web application programming
focussed on abstractions such aspage(Lerdorf et al.,
2006),controller (Thomas et al., 2006), and more re-
centlyservice(Alonso et al., 2003), which are differ-
ent in nature from resources, despite seldom sharing
some similarities. Instead, the World Wide Web com-
putation model and the REST focus on resource rep-
resentations as the main driver of interaction suggest
that declarative languages could play a significant role
in the construction of resource-oriented applications.

We adopt the logic declarative paradigm to de-
fine our model for resource-oriented programming
for three main reasons. First, the mapping between
logic programming elements and the World Wide
Web computation model is natural and straightfor-
ward. Then, the foundational idea of treating pro-
grams as data, leading to resource representations
that are directly executable, allows the abstractions
to stay simple without reducing their expressiveness
and computational power. Finally, this very same idea
opens the novel possibility for dynamic modification
and extension of resource behavior at runtime.

The purpose of our research is to build a logic
framework for engineering web applications, design-

158
Piancastelli G. and Omicini A. (2008).
A LOGIC PROGRAMMING MODEL FOR WEB RESOURCES.
In Proceedings of the Fourth International Conference on Web Information Systems and Technologies, pages 158-164
DOI: 10.5220/0001524501580164
Copyright c© SciTePress



ing it so as to frame it within the principles and con-
straints of the World Wide Web architectural style. In
this paper, we first recall WWW concepts that are rel-
evant to our resource programming model. Then, we
show how to map those concepts onto elements of
structured logic programming (Monteiro and Porto,
1993; Brogi et al., 1994; Bugliesi et al., 1994) accord-
ing to REST and ROA principles. Finally, based on
this mapping, we present the first fundamental brick
of a logic web framework in terms of a logic language
extension specific to the domain of web applications,
namedWeb Logic Programming(WebLP). Notewor-
thy programming examples from a bookshelf sharing
application are delivered through the whole paper.

2 CONCEPTS AND PROPERTIES
OF REST AND ROA

The Representational State Transfer style (Fielding,
2000) is an abstraction of the architectural elements
within a distributed hypermedia system. The princi-
pal data element and key abstraction of information
is characterized as aresource: any conceptual target
of a hypertext reference. Any information that can
be named can be a resource, including a document,
an image, a temporal service, a collection of other re-
sources, and a non-virtual object (e.g. a person). More
precisely, a resource is a conceptual mapping to a set
of entities, not the entity that corresponds to the map-
ping at any particular point in time. Each resource
is further identified by a unique name, used to refer-
ence to the entities involved in an interaction amongst
components of a hypermedia distributed system archi-
tecture. It should be noted that, even in the context of
the Web, the REST style only deals with the abstract
definitions of a resource and its external representa-
tions, imposing constraints on the uniform interface
of resources whilst leaving the implementation of in-
formation sources free for the web application devel-
oper to design.

The Resource-Oriented Architecture,nomen
omen, recognizes resources, identifiers, and represen-
tations as key concepts to designing web applications
respectful of the REST architectural style constraints
(Richardson and Ruby, 2007). The most interesting
novel ROA proposal is that a resource and its Uni-
form Resource Identifier (Berners-Lee et al., 1998)
ought to have an intuitive correspondence; in other
words, that URIs should be descriptive. According
to ROA best practices, identifiers should also have
a definite structure, and that structure should vary
in predictable ways. Thisaddressabilityproperty of
web applications is accompanied by theconnected-

nessproperty, that is the quality of resources to be
linked to each other in meaningful ways, so as to
follow REST’s prescription to exploit hypermedia as
the engine of the application state (Fielding, 2000).
Also in the case of ROA, as it has been noted for
REST before, the architectural guidelines do not
impose any sort of constraint on the engineering of
resource systems.

According to REST and ROA, the World Wide
Web computation model revolves around transac-
tions in the HyperText Transfer Protocol (HTTP), a
document-oriented protocol aimed at transferringrep-
resentationsof a resource current state (Fielding et al.,
1999). Each transaction starts with arequest; the re-
quest contains the two key elements of web compu-
tations: themethod information, that indicates how
the sender expects the receiver to process the request,
and thescope information, that indicates on which
part of the data set the receiver should operate the
method (Richardson and Ruby, 2007). On systems re-
spectful of REST principles, the method information
is contained in the HTTP request method (e.g. GET,
POST, PUT, DELETE), and the scope information is
the URI of the resource to which the request is di-
rected. Computations, then, happen on the receiving
side of the HTTP transaction, where the resource that
is the request target needs to perform the operation
represented by the method information. The result of
a web computation, triggered by the HTTP transac-
tion, is a HTTPresponse, telling whether the request
has been successful or not. Typically, the most signifi-
cant HTTP responses contain the representation of the
target resource new state as the result of the computa-
tion.

3 FROM RESOURCES TO
CONTEXTS

Starting from the abstract definitions described in
Section 2, the main properties of resources can be im-
mediately identified: resources have a name, which in
the case of the World Wide Web is a unique1 iden-
tifier as defined by the URI standard (Berners-Lee
et al., 1998); resources have data representing their
state; and resources have behavior, to perform actions
such as changing their state and building up their rep-

1The uniqueness is to be intended in the sense that the
same identifier cannot be associated to two or more re-
sources at the same time; however, more than one name
can identify the same resource at any point in time. For
example (Richardson and Ruby, 2007), the sales numbers
available athttp://example.com/sales/2004/Q4 might
also be available athttp://example.com/sales/Q42004.

A LOGIC PROGRAMMING MODEL FOR WEB RESOURCES

159



resentations, or to manage interaction with other re-
sources. In particular, when carefully designed fol-
lowing the ROA best practices about structure and
predictability, resource names feature an interesting
property on their own: each name typically encom-
passes the names of other resources, and ultimately
the name of the resource associated with the domain
at the root of the URI. For example, given a bookshelf
sharing application, the name of the resource identi-
fying a particular book on the shelf of a specific user:

http://example.com/users/jdoe/shelf/5

encompasses the following names:

http://example.com/users/jdoe/shelf
http://example.com/users/jdoe
http://example.com/users
http://example.com

respectively identifying the list of books (that is, the
shelf) for thejdoe user, thejdoe user herself, the list
of users in the system, and the web application.

This naming structure suggests that each resource
does not exist in isolation, but lives in an informa-
tion contextcomposed by the resources associated to
the names encompassed by the name of that resource.
Since more than one name can identify the same re-
source, the context of a resource has to be associated
with its name rather than directly with the resource it-
self. Thus, a resource may live in different contexts at
the same time, and feature different behavior accord-
ing to the context where the interaction with other el-
ements of the system takes place.

From the point of view of logic programming,
the properties of web resources can be easily mapped
onto elements of well-known languages such as Pro-
log (Sterling and Shapiro, 1986). For each resource
R we specify its nameN(R) as the atom containing
the resource URI identifier; data and behavior can be
further recognized as facts and rules, respectively, in
a logic theoryT(R) containing the knowledge base
associated to the resource. In the bookshelf sharing
example, thehttp://example.com/users resource
is the target of HTTP POST requests aimed at creat-
ing new users in the system; as such, its logic the-
ory contains acreate user rule, declaring the ac-
tions needed to perform the creation of a new user,
and a series ofuser facts, storing data for each user
of the application. The advantage of using logic pro-
gramming elements lies in the representational foun-
dations of the World Wide Web computation model.
The declarative representation of resource data and
behavior as logic axioms can be directly executed by
an inferential interpreter when a resource is involved
in a computation, given the procedural interpretation
of Prolog clauses.

To account for the possible complexity of web
computations that may involve more information than
it is enclosed in a single isolated resource, we intro-
duce the contextC(R) as the locus of computation as-
sociated with each resource. Following the sugges-
tions given by ROA best practices with respect to re-
source naming structure, a resource context is defined
by the composition of the theories associated with the
resources linked to names which are encompassed by
the name of that resource, including the theory associ-
ated with the resource itself. Given a resourceR with
a nameN(R) for which it holds that:

N(R) ⊆ N(R1) ⊆ . . . ⊆ N(Rn)

then, the associated contextC(R) is generated by the
following composition:

C(R) = T(R) ·T(R1) · . . . ·T(Rn)

where anyT(Ri) can be empty, for instance when
there is no entity associated to the nameN(Ri).

4 WEB LOGIC PROGRAMMING

Web Logic Programming(WebLP) is a language to
program resources, as the key abstraction of the World
Wide Web, and their interaction, in application sys-
tems following the Resource-Oriented Architecture.
After the characterization of the structure of our main
data type offered in Sect. 3, we now need to define the
resource computation model underlying the language,
while maintaining compatibility with the constraints
of the REST architectural style (Fielding, 2000).

A computation in logic programming is a de-
duction of consequences of a set of facts and rules
defining relationships between entities (Sterling and
Shapiro, 1986). Sets of facts and rules are called
logic theories(also known asknowledge bases), and
logic queries(also calledgoals) are used to trigger
the application of deduction rules on a theory. An-
swering a query with respect to a theory is determin-
ing whether the query is a logical consequence of the
theory. Queries are also a means of retrieving infor-
mation from a logic theory. A query asks whether a
certain set of relations holds between the entities de-
scribed in the theory. When a query contains free vari-
ables, the unification algorithm at the core of the logic
programming computation model may bound them to
entities that augment the boolean result of a deduction
telling whether the query has been successful or not.

Adopting a logic programming view of the World
Wide Web computation model described in Sect. 2,
for each HTTP transaction the request gets translated
to represent a deduction by retaining the request scope

WEBIST 2008 - International Conference on Web Information Systems and Technologies

160



information to indicate the target set of facts and rules,
and by mapping the request method information onto
a logic goal. Then, the computation takes place on the
receiving side of the HTTP transaction, in the context
associated to the resource target of the request, as al-
ready stated in Sect. 3. Finally, the information result-
ing from goal solution is translated again to a suitable
representation, in order to be sent back as the payload
of the HTTP response. Therefore, to invoke a com-
putation represented by a goalG on a resourceR, we
adopt the following syntax:

N(R) : G (1)

which, using logic symbols, can be expressed as:

C(R) ⊢ G (2)

implying the triggering of a query answering process
by means of the application of the deduction rules on
the theories composing the context.

In the bookshelf sharing case study,
a HTTP POST request directed to the
http://example.com/users resource repre-
sents the invocation of a computation to create a new
user in the system. That request is translated to the
logic query:

’http://example.com/users’:post(Request,
Response,
View)

which, in the successful case, is handled by the fol-
lowing rule, contained in the theory associated to the
http://example.com/users resource:

post(Request, Response, _) :-
create_user(Request),
param(Request, (user, User)),
user_url(User, Url),
header(Response, (location, Url)),
status(Response, (201, created)).

whereuser url/2 is a commodity rule defined in the
application resource.

Being the contextC(R) the composition of a num-
ber of theories, the computation is carried on so that
the queryG is asked in turn to each theory. The goal
fails if no solution is found in any theory; the goal suc-
ceeds as soon as it is solved using the knowledge base
contained in a theoryT(Ri). Furthermore, when the
goal G gets substituted by the subgoalsSi(G) of the
matching rule in the theory, the computation proceeds
from the context of the resourceRi rather than being
restarted from the original context. The computation
steps can be expressed as follows:

T(Ri) ⊢ G (3)

C(Ri) ⊢ S1(G)∧ . . .∧Sn(G) (4)

As a more elaborated example involving the book-
shelf sharing case study, we consider a computation
on a typical resource pattern that is one of the bases
of modern web applications, involving lists and list
items. When the userjdoe is logged in, her shelf
is represented by theS resource, identified by the
URI http://example.com/jdoe/shelf. Each
book is filed under one of more category subjects.
The resourceB for biology books, for instance, lives
at http://example.com/jdoe/shelf/biology.
When a GET request is issued for that resource,
a predicate to pick the list of biology books is
ultimately invoked onB, such as:

pick_biology_books(Books) :-
parent_id(Shelf),
pick_books(Books, Shelf,

category(biology)).

whereparent id/1 is a predefined predicate return-
ing the identifier of the parent resource in the path
of the current context. Thepick books/3 predi-
cate is defined neither inB nor in S, since it is an
application-wide functionality. The theory chain in
the context forB is then traversed backwards up to
thehttp://example.com resource, where a suitable
definition forpick books/3 is found:

pick_books(Books, Shelf, category(C)) :-
findall(B, Shelf:book(B), AllBooks),
filter(AllBooks, C, Books).

and works by supposing that the shelf stores books by
means ofbook/1 facts. According to the computation
steps expressed in (3) and (4), a working definition for
thefilter/3 predicate is searched starting from the
content of thehttp://example.com resource rather
than the context ofB where the computation origi-
nally started. The final representation of the biology
books in the shelf further depends on some informa-
tion stored in the user resource, mapped on the URI
http://example.com/jdoe: for example, the name
of the user, and a setting to decide how the book view
is ordered.

Contexts as compositions of theories can be
seen as having a layered structure. The definition
of a generic computationG as given in (2), (3),
and (4) dictates a unique direction in which those
layers can be traversed: from the outermost (the
theory associated with the resource on which the
computation has been invoked) to the innermost,
passing through the theory belonging to each of the
composing resources, as the social bookmarking
computation example shows, passing from the
http://example.com/jdoe/shelf/biology re-
source to thehttp://example.com/ resource first
and to the http://example.com/jdoe resource

A LOGIC PROGRAMMING MODEL FOR WEB RESOURCES

161



afterwards. It must be noted that the moving direction
strictly follows the path in the URI identifying the
resource context where the computation has started.
Given a resource and its URI, the resource ancestors
in the URI path are always known, because of an
architectural constraint in the naming system of
the World Wide Web; on the contrary, the resource
descendants are unknown, unless it is the resource
itself that stores those data, because of a specific re-
quirement of a particular web application. Therefore,
the moving direction between theories within the
same context that makes sense to enforce as a default
at the language level is the one coherent with the
WWW architecture, that is the direction following a
resource ancestors up to the root of its path.

The N(R) : G syntax described in (1) is also the
preferred method to invoke a computation on a re-
source external to the path associated with the current
context. Switching context instead of merging pre-
serves the encapsulation of information that the repre-
sentation of resources as separated logic theories en-
courages. The assumption underlying both the Web
and the WebLP system is that resources encompassed
by a single path form a set of entities so strictly re-
lated that they get composed in a new entity called
context, where knowledge sharing and behavioral in-
fluence are favored. Resources external to a context
do not enjoy the same treatment with respect to that
context.

4.1 Dynamic Resource Behavior

The structure of identifiers and resources in the Web
architecture simplifies computations in that no need
for a dynamic context augmentation is envisioned.
When a resourceRi needs to ask a goal on a resource
Ri−1 on the same path, it has to invoke that compu-
tation directly on theRi−1 resource by using the no-
tation described in (1). As a consequence, compu-
tations are self-contained in the context where they
are resolved rather than invoked, making every goal
callable from every resource in the application space,
without performing artificial inclusion of (or exten-
sion to) the knowledge base of outer resources. The
order in the composition of theories forming a context
imposes the direction of computations within it.

However, the behavior of a resource can be re-
garded as dynamic under two independent aspects.
First and foremost, two or more URIs can be asso-
ciated to the same resource at any point in time: that
is, the namesN1(R), . . . ,Ni(R) may identify the same
resourceR, thus the same knowledge base contained
in the theoryT(R) associated to the resource. Each
different name also identifies a different context that

the same resource may live within; therefore, predi-
cates that are used inT(R), but are not defined there,
may behave in different ways following the definition
given by the context where the resource is called to
perform a computation.

The second dynamic aspect of a resource sprouts
from the ability to express behavioral rules as first-
class abstractions in a logic programming language:
on one hand, it is thus possible to exploit well-
known stateful mechanisms (e.g. theassertz/1 and
retract/1 predicates) to change the knowledge base
associated to a resource; on the other hand, the HTTP
protocol itself allows changing a resource by means
of the PUT method, wherein the entity enclosed as
the request payload should be considered as a mod-
ified version of the one residing on the origin server
(Fielding et al., 1999). Hence, it becomes possible to
imagine behavioral changes triggered at runtime not
only from peer resources, but also from external ac-
tors by using the resource uniform interface, accord-
ing to the architectural principles of the Web.

As an example of dynamic resource behavior,
imagine a bookshelf placed alongside of a reading
wish list. Under usual circumstances, when a book
is added to the wish list, the resource representing the
wish list could check local libraries for book avail-
ability, and eventually borrow it on user’s behalf; if
it is not possible to find the book, the resource could
check its availability in online bookstores, reporting
its price to the user for future purchase. This behavior
is codified by the following rules:

check(Book) :- library(L),
available(Book, L), borrow(Book, L), !.

check(Book) :- bookstore(S),
available(S, Book, Price).

Now imagine an online bookstore (e.g. Amazon) of-
fering discounts for a specific period of time. For that
period, the wish list resource should react to the inser-
tion of new books so as to check that store first instead
of libraries, directly placing an order if the possibly
discounted price is inferior to a certain threshold, and
to avoid checking other online stores. The new behav-
ior, relative to the store offering discounted prices, is
represented by the following rule:

check(Book) :-
available(amazon, Book, Price),
Price < Threshold,
place_order(amazon, Book), !.

The bookshelf sharing web application could then
be instructed to change the behavior of wish list re-
sources on a per user basis by issuing HTTP PUT re-
quests that modify the computational representation
of those resources. Those PUT requests would carry

WEBIST 2008 - International Conference on Web Information Systems and Technologies

162



the new rule and the rule dealing with libraries in the
payload, so that wish list resources would accordingly
modify theircheck/1 predicate by adopting that new
definition. The web application could then program-
matically restore the old behavior at the end of the
discount period, by sending another PUT request for
each wish list, with a payload adequately set up to the
previouscheck/1 rule set.

Finally, note that, with a proper hierarchy of iden-
tifiers, the behavioral changes described in the ex-
ample could also be carried out in an application-
wide fashion, by issuing PUT requests to a root re-
source common to all wish list contexts, and relying
on the WebLP compositional computation model to
have wish list resources find the appropriate actions
to perform when a new book is added.

5 RELATED WORKS IN LOGIC
PROGRAMMING

The primary concern of the Web Logic Programming
(WebLP) language was to follow the principles and
capture the key abstractions of the World Wide Web
as described by the REST architectural style (Field-
ing, 2000) and the Resource-Oriented Architecture
(Richardson and Ruby, 2007). We mapped there-
sourceabstraction to a logic theory, and maintained
the addressabilityproperty by using URIs with the
purpose of identifying theories and labeling queries
to be asked to specific resources. We respected the
uniform interfaceand let it access logic theories by
triggering deductions as a means of exchanging in-
formation. Finally, we embraced theconnectedness
property by tightly binding together, in the notion of
context, all resources along a single URI path.

The representation of resources as logic theories
has been analyzed at the programming model level;
yet, in the construction of a WebLP framework, that
representation could just play an intermediate role be-
tween the resource execution environment and the
data persistence system. Resource data could be
stored in a variety of different forms; for this pur-
pose, the use of a deductive database system (Ra-
mamohanarao and Harland, 1994) could also be en-
visioned. However, those systems are almost exclu-
sively based on a restricted logic programming model,
which could be suitable for some particular applica-
tion domains, but neither for the general case of het-
erogeneous web applications, nor for the WebLP ex-
tension of the logic computation model.

Since the resource programming model embodied
in WebLP is rooted in logic programming, we con-
sider most relevant for the remain of the present dis-

cussion to compare it with computation models that
extended the basic logic model described in Sect. 4
with abstractions such as contexts, modules, and ob-
jects. By using contexts as its primary computation
metaphor, the WebLP language is heavily indebted
with previous treatments on the topic, especially Con-
textual Logic Programming (CtxLP) (Monteiro and
Porto, 1993). Despite being a well-known abstrac-
tion, logic programming contexts on the World Wide
Web are a complete novelty, when built on resources
encompassing URIs as in WebLP fashion. Their in-
troduction would have not been possible without the
insights and best practices gathered around the defini-
tion of Resource-Oriented Architecture.

The constraints of the REST architectural style al-
lowed several simplifications of contexts with respect
to their original definition. For example, there is no
need of including logic variables in identifiers. In
CtxLP, the parameterization of names influences unit
identification and configuration. However, in WebLP
any identification problem is already intrinsically re-
solved, since names are already unique for each re-
source without the need for parameters; besides, re-
source configuration mechanisms should be exploited
at the moment of constructing new resources, without
having any impact on the identification process.

The requirement for context isolation lets WebLP
also drop many of the characteristics related to logic
modules (SC22, 2000; Brogi et al., 1994; Bugliesi
et al., 1994), which were extensively used by CtxLP.
The need for a restriction to forbid arbitrary imports
from a resource to any other resources (perhaps exter-
nal to its living context) led us to decide that the subdi-
vision of the application in logic theories correspond-
ing to web resources, and the navigation mechanisms
offered by our notion of context, were good enough
as modularization features for the WebLP language.

Indeed, resources are an abstraction simple
enough to consider WebLP as a radical simplification
of CtxLP, when applied to the domain of the World
Wide Web, rather than an extension, such as lan-
guages adding features from concurrency (Mello and
Natali, 1992) or object-orientation (Omicini and Na-
tali, 1994). In particular, resources are not objects in
the object-oriented sense, no more than object method
calls follow message passing in the distributed sys-
tems sense. For instance, the resource abstraction
does not bring any notion of inheritance with itself:
accounting for polymorphism, or adding explicit lazy
and eager binding operators, would have meant to
forcibly superimpose other programming metaphors
on a web-oriented language.

LogicWeb (Loke, 1998) is an example of web-
oriented logic language that predates the simpler

A LOGIC PROGRAMMING MODEL FOR WEB RESOURCES

163



Modular Logic Programming model (Brogi et al.,
1994) without dealing with more complex software
engineering paradigms. LogicWeb is also the web-
oriented logic language most resembling Web Logic
Programming. However, it is designed to be exploited
on the client side of the web: instead ofresources,
it modelspagesas HTML documents, which are but
just one possible representation of a resource; besides,
it unfortunately lacks the insight on the intrinsic rela-
tionship amongst resources encompassed by a single
URI that have been only achieved so recently, and that
have been included in modeling the WebLP language.

6 ONGOING AND FUTURE
WORK

We presented a logic programming language exten-
sion calledWeb Logic Programming, designed to
model resources, as the key abstraction of the World
Wide Web, and their interaction. WebLP is the
first web-oriented logic language to benefit from the
architectural specification of hypermedia distributed
systems as described by the Representational State
Transfer style (Fielding, 2000), and from the insights
and principles of the Resource-Oriented Architecture
(Richardson and Ruby, 2007).

The Web Logic Programming language is in-
tended to exploit the full potential of declarative tech-
nologies by representing the foundation of a logic
programming framework for engineering applications
on the World Wide Web so as to follow its archi-
tectural principles and design criteria. To fulfill this
broader aim, ongoing work is devoted on the one hand
to achieve a clear integration between the WebLP lan-
guage and Prolog, of which WebLP has been designed
as an extension; on the other hand, to explore the
possible ways of integrating interpreters of logic lan-
guages and server-side web technologies, and to study
suitable patterns of application architecture to lay on
top of the WebLP language.

In the future, more complex web applications
will be constructed, in order to iterate on the frame-
work building process and eventually find useful re-
finements of the WebLP programming model. Ap-
plications will also serve the purpose to both per-
form an expressiveness and usability comparison with
other languages (Lerdorf et al., 2006) and frameworks
(Thomas et al., 2006) now popular in the mainstream,
and showcase the full potential of the novel and pecu-
liar features of Web Logic Programming.

REFERENCES

Alonso, G., Casati, F., Kuno, H., and Machiraju, V. (2003).
Web Services: Concepts, Architectures and Applica-
tions. Springer-Verlag.

Berners-Lee, T., Fielding, R. T., and Mainster, L. (1998).
Uniform Resource Identifiers (URI): Generic Syntax.
Internet RFC 2396.

Brogi, A., Mancarella, P., Pedreschi, D., and Turini, F.
(1994). Modular Logic Programming.ACM Trans-
actions on Programming Languages and Systems,
16(3):1361–1398.

Bugliesi, M., Lamma, E., and Mello, P. (1994). Modular-
ity in logic programming.Journal of Logic Program-
ming, 19-20:443–502.

Fielding, R. T. (2000).Architectural Styles and the Design
of Network-based Software Architectures. PhD thesis,
University of California, Irvine.

Fielding, R. T., Gettys, J., Mogul, J., Frystyk, H., Masinter,
L., Leach, P., and Berners-Lee, T. (1999). Hypertext
Transfer Protocol – HTTP/1.1. Internet RFC 2616.

Lerdorf, R., Tatroe, K., and MacIntyre, P. (2006).Program-
ming PHP. O’Reilly.

Loke, S. W. (1998).Adding Logic Programming Behaviour
to the World Wide Web. PhD thesis, University of Mel-
bourne, Australia.

Mello, P. and Natali, A. (1992). Extending Prolog with
Modularity, Concurrency and Metarules.New Gen-
eration Computing, 10(4):335–360.

Monteiro, L. and Porto, A. (1993). A Language for Con-
textual Logic Programming. InLogic Programming
Languages: Constraints, Functions, and Objects. The
MIT Press.

Omicini, A. and Natali, A. (1994). Object-oriented com-
putations in logic programming. In Tokoro, M.
and Pareschi, R., editors,Object-Oriented Program-
ming, volume 821 ofLNCS, pages 194–212. Springer-
Verlag. 8th European Conference (ECOOP’94),
Bologna, Italy, 4–8 July 1994. Proceedings.

Ramamohanarao, K. and Harland, J. (1994). An introduc-
tion to deductive database languages and systems.The
VLDB Journal, 3(2):107–122.

Richardson, L. and Ruby, S. (2007).RESTful Web Services.
O’Reilly.

SC22, J. T. C. I. J. (2000). Information technology — Pro-
gramming languages — Prolog — Part 2: Modules.
International Standard ISO/IEC 13211-2.

Sterling, L. and Shapiro, E. (1986).The Art of Prolog. The
MIT Press.

Thomas, D., Heinemeier Hansson, D., Breedt, L., Clark,
M., Davidson, J. D., Gehtland, J., and Schwarz, A.
(2006).Agile Web Development with Rails. Pragmatic
Bookshelf.

WEBIST 2008 - International Conference on Web Information Systems and Technologies

164


