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Abstract: Recently, the Shortest-Remaining-Processing-Time (SRPT) has been proposed for scheduling static HTTP 
requests in web servers to reduce the mean response time. The SRPT assumes that the response time of the 
requested file is strongly proportional to its size. This assumption is unwarranted in Internet environment. 
Thus, we proposed the Shortest-Remaining-Response-Time (SRRT) that better estimates the response time 
for static HTTP. The SRRT prioritizes requests based on a combination of the current round-trip-time 
(RTT), TCP congestion window size (cwnd) and the size of what remains of the requested file. We compare 
SRRT to SRPT and Processor-Sharing (PS) policies. The SRRT shows the best improvement in the mean 
response time. SRRT gives an average improvement of about 7.5% over SRPT. This improvement comes at 
a negligible expense in response time for long requests. We found that under 100Mbps link, only 1.5% of 
long requests have longer response times than under PS. The longest request under SRRT has an increase in 
response time by a factor 1.7 over PS. For 10Mbps link, only 2.4% of requests are penalized, and SRRT 
increases the longest request time by a factor 2.2 over PS. 

1 INTRODUCTION 

Today busy web servers are required to service 
many clients simultaneously, sometimes up to tens 
of thousands of concurrent clients (Kegel, 2006). If a 
busy web server’s total request rate increases above 
the total link capacity or the total server concurrent 
users, the number of rejected requests increases 
dramatically and the server offers poor performance 
and long response time, where the response time of a 
client is defined as the duration from when the client 
makes a request until the entire file is received by 
the client. The slow response times and difficult 
navigation are the most common complaints of 
Internet users (King, 2003). Research shows the 
need for fast response time. The response time 
should be around 8 seconds as the limit of people's  
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ability to keep their attention focus while waiting 
(Nielsen, 1997). The question arises, what can we do 
to improve the response time at busy web servers?   

It is possible to reduce the mean response time of 
requests at a web server by simply changing the 
order in which we schedule the requests. A 
traditional scheduling policy in web servers is 
Processor-Sharing (PS) scheduling. In PS each of n 
competing requests (processes) gets 1/n of the CPU 
time, and is given an equal share of the bottleneck 
link. It has been known from queuing theory that 
Shortest-Remaining-Processing-Time (SRPT) 
scheduling policy is an optimal algorithm for 
minimizing mean response time (Schrage, 1968). 
However, the optimal efficiency of SRPT depends 
on knowing the response time of the requests in 
advance, and under the assumption that preemption 
in SRPT implies no additional overhead. 

The SRPT scheduling policies on web servers 
(Crovella et al, 1999; Harchol-Balter et al, 2003; 
Schroeder and Harchol-Balter, 2006) used the job 
size, which is well known to the server, to refer to 
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processing time (response time) of the job to 
implement SRPT for web servers to improve user-
perceived performance. In the Internet environment, 
depending only on the file size for estimating the 
response time is not enough since it does not take 
into consideration the client-server interaction 
parameters over the Internet like Round-Trip-Time 
(RTT), bandwidth diversity, and loss rate. Dong Lu 
et al. (Lu et al, 2005) have shown that the correlation 
between the file size and the response time are low, 
and that the performance of SRPT scheduling on 
web servers degrade dramatically due to weak 
correlation between the file size and the response 
time in many regimes. 

To better estimate the user response time we 
proposed a new scheduling policy in web servers 
which is called Shortest-Remaining-Response-Time 
(SRRT) to improve the mean response time of 
clients. The proposed method estimates the response 
time for a web client by benefiting from the TCP 
implementation at the server side only, without 
introducing extra traffic into the network or even 
storing historical data on the server. The SRRT 
estimates the client response time in each visit to a 
server, and then schedules the requests based on the 
shortest remaining response time request first. SRRT 
uses RTT and TCP congestion window size (cwnd) 
in addition to the size of the requested file for 
estimating the response time. The getsockopt() 
Linux system call is used by SRRT to get the RTT 
value and the cwnd “on-the-fly” for each 
connection. See section 3 for the complete 
description of SRRT algorithm. 

For our experiment, we use a web workload 
generator to generate requests with certain 
distribution and focus only on static HTTP requests 
which form a major percentage of the web traffic 
(Manley and Seltzer, 1997; Harchol-Balter et al, 
2003). In 2004, logs from proxy servers show that 
67-73% of the requests are for static contents 
(IRCache, 2004). The experiment uses the Linux 
operating system and Apache web server. Network 
Emulator represents the WAN environment.  

The SRRT is compared to the PS and SRPT 
scheduling policies in web servers. We find that the 
SRRT gives the minimum mean response time. We 
conclude that the client response time is affected by 
the Internet conditions. So the priority based 
scheduling policy in web servers should take into 
consideration the Internet conditions to prioritize the 
requests. 

The rest of the paper is structured as follows. 
Section 2 discusses relevant previous work in web 
server requests scheduling. The SRRT scheduling 

algorithm is presented in section 3. The 
modifications for Apache web server and Linux 
operating system to implement SRRT are covered in 
section 4. The experiment setup and results analysis 
are given in section 5. Section 6 summarizes the 
results obtained and discusses possible future work. 

2 LITERATURE REVIEW  

It is well known from scheduling theory literature 
(Schrage and Miller, 1966; Schrage, 1968; Smith, 
1976; Goerg, 1986) that if the task sizes are known, 
the SRPT scheduling is optimal for reducing the 
queuing time, therefore reducing the mean response 
time. The work based on the SRPT algorithm for 
web server scheduling can be divided into three 
categories: web server scheduling theoretical 
studies, scheduling simulation studies, and 
scheduling implementation. 

N. Bansal and M. Harchol-Balter (Bansal and 
Harchol-Balter, 2001) compare the SRPT policy and 
the PS policy analytically for an M/G/1 queue with 
job size distributions that are modelled by a 
Bounded Pareto distribution. They show that with 
link utilization 0.9, the large jobs perform better 
under the M/G/1 SRPT queue than the M/G/1 PS 
queue. Then they prove that for link utilization 0.5, 
the SRPT improves performance over PS with 
respect to mean response time for every job and for 
every job size distribution. For the largest jobs, the 
slowdown (response time divided by job size) under 
SRPT is only slightly worse than under PS (Bansal 
and Gamarnik, 2006). In (Bansal, 2003) and (Bansal 
and Gamarnik, 2006), interesting results on the mean 
response in heavy traffic were obtained that show 
that SRPT performs significantly better than FIFO if 
the system is under heavy traffic. 

C. Murta and T. Corlassoli (Murta  and 
Corlassoli, 2003) introduce and simulate an 
extension to SRPT scheduling called Fastest-
Connection-First (FCF) that takes into consideration 
the wide area network (WAN) conditions in addition 
to request size when making scheduling decisions. 
This scheduling policy gives higher priority to 
HTTP requests for smaller files issued through faster 
connections. This work is done only by simulation 
without providing a clear idea on how to implement 
it in real web servers. M. Gong and C. Williamson 
(Gong and Williamson, 2003) identify two different 
types of unfairness: endogenous unfairness that is 
caused by an inherent property of a job, such as its 
size. And exogenous unfairness caused by external 
conditions, such as the number of other jobs in the 
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system, their sizes, and their arrival times. They then 
continue to evaluate SRPT and other policies with 
respect to these types of unfairness. E. Friedman et 
al. (Friedman and Henderson, 2003) propose a new 
protocol called Fair-Sojourn-Protocol (FSP) for use 
in web servers. FSP orders the jobs according to the 
processor sharing (PS) policy and then gives full 
resources to the job with the earliest PS completion 
time. The FSP is a modified version of SRPT and it 
has been proven through analysis and simulation that 
FSP is always more efficient and fair than PS given 
any arrival sequence and distribution. Their 
simulation results show that FSP performs better 
than SRPT for large requests, while the SRPT is 
better than FSP for small requests. 

The work that implements scheduling for web 
servers based on the SRPT was done on both the 
application level, and at the kernel level to prioritize 
HTTP requests. M. Crovella et al. (Crovella et al, 
1999) experimented with the SRPT connection 
scheduling at the application level. They get an 
improvement in the mean response times, but at the 
cost of drop in the throughput by a factor of almost 
2. This drop comes as a result of no adequate control 
over the order in which the operating system 
services the requests. M. Harchol-Balter et al. 
(Harchol-Balter et al, 2003) implemented SRPT 
connection scheduling at the kernel level. They get 
much larger performance improvements than in 
(Crovella et al, 1999) and the drop in the throughput 
was eliminated. B. Schroeder et al. (Schroeder and 
Harchol-Balter, 2006) show an additional benefit 
from performing SRPT scheduling for static content 
web requests. They show that SRPT scheduling can 
be used to alleviate the response time effects of 
transient overload conditions without excessively 
penalizing large requests. SWIFT algorithm (Rawat 
and Kshemkayani, 2003) extend the work in 
(Harchol-Balter et al, 2003) based on SRPT, but 
taking into account in addition to the size of the file, 
the RTT to represent the distance between the client 
and the server. With this technique they obtained a 
response time improvement for large-sized files by 
2.5% to 10% additional to the SRPT. In the SWIFT 
algorithm implementation, they assumed that the 
HTTP requests are embedded with the RTT in their 
trace driven experiment. This assumption is not a 
realistic scenario. Moreover, the implementation of 
the SWIFT requires additional modifications on the 
web server to support functions that are parses 
request to extract the RTT that assumed to be part of 
client requests. Accordingly, we did not implement 
the SWIFT to compare it with SRRT. SRRT gets the 
RTT and congestion window size (cwnd) at the 

server side for each connection "on-the-fly" by using 
getsockopt() Linux system call to use it  with the file 
size to better estimate the response time in a WAN 
environment.  

3 SRRT ALGORITHM 

The SRRT algorithm benefits from TCP 
implementation to address most of the client-server 
interaction on the Internet. Due to TCP’s congestion 
control mechanism, TCP window sizes (cwnd) can 
be bound to the maximum transfer rate R = 
(cwnd/RTT) bps despite the actual bandwidth 
capacity of the network path. Also, the TCP 
congestion control mechanism involves Time-outs 
that cause retransmissions. RTT is monitored and 
Time-out is set based on RTT (Karn and Partridge, 
1995; Jacobson, 1995).  

After processing an HTTP request, the server 
code uses the getsockopt() to get these useful 
information about the network condition (cwnd, 
RTT) that will be used in estimating the remaining 
response time of the request on the server side. The 
requested file size is already known by the server. 
Hence, the remaining response time (RRT) can be 
approximated as follows: 
 
 
 
 
 
 
Where RFS is remaining length of the requested 
file(s) in bytes, R is the approximated TCP transfer 
rate, and MSS is the maximum segment size for the 
connection in bytes. 

As seen above, the estimating of RRT depends 
on three variables; RFS, current RTT, and the 
current cwnd. Thus we consider almost all aspects 
that affect data transfer over the Internet since the 
RTT and the cwnd change dynamically according to 
network conditions. The estimated RRT is 
influenced by network conditions. The highest 
priority is given to the connection that has the best-
estimated performance: the connection that needs to 
transfer small file through an un-congested path, 
which has short RTT and large cwnd.  

4 SRRT IMPLEMENTATION 

The experiments have been done using Apache web 
server since it is the most popular web server 
(Netcraft, 2007). To build SRRT based on Apache 
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Figure 1: Data flow in Linux operating system.

running on Linux, basically two things are needed. 
First, to set up several priority queues at the Ethernet 
interface. Second, to modify the Apache source code 
to assign priorities to the corresponding requests.  

The data being passed from user space is stored 
in socket buffers corresponding to each connection. 
When data streaming passes from the socket buffers 
to TCP layer and IP layer, the TCP headers and the 
IP headers are added to form packets. The packet 
flow corresponding to each socket is kept separate 
from other flows (Harchol-Balter et al, 2003).  After 
that, packets are sent from IP layer to queuing 
discipline (qdisc). The default qdisc under Linux is 
the pfifo_fast qdisc. Figure 1(a) shows the default 
data flow in standard Linux. pfifo_fast qdisc is a 
classless queuing discipline, so it cannot be 
configured. The packet priorities are determined by 
the kernel according to the so-called Type-Of- 
Service (TOS) flag and priority map (priomap) of 
packets. However, all packets using the default TOS 
value are queued to the same band (band 1 in the 
Figure 1(a)). So the three bands appear as a single 
FIFO queue in which all streams feed in a round-
robin service: all requests from processes or threads 
are given an equal share of CPU time and share the 
same amount of link capacity, Processor Sharing 
(PS). Packets leaving this queue drain in a network 
device (NIC) queue and then out to the physical 
medium (network link). 

To implement SRRT, we need several 
configurable priority queues. This can be achieved  

by Priority (prio) qdisc with 16 priority queues 
which can be configured. The prio qdisc works on a 
very simple principle. When it is ready to dequeue a 
packet, the first band (queue) is checked for a 
packet. If there is one, it gets dequeued. If there is no 
packet, then the next band is checked, until the 
queuing mechanism has no more classes to check. 
Figure 1(b) shows the prio queuing discipline to 
implement SRRT.  

In the SRRT implementation, the Apache code is 
responsible for assigning the priorities to the 
corresponding connection by using setsockopt () to 
determine in which band a packet will be enqueued. 
Therefore, we made changes to the Apache HTTP 
Server code to prioritize connections. The 
installation of the SRRT-modified Apache server is 
the same as the installation of standard Apache. The 
only thing that might need to change when 
experimenting with SRRT server is the priority array 
values, in the form of response time ranges, to 
determine the priority class of the socket according 
to the type of the load.  

TCP SYN-ACKs gets by default into the highest 
priority band (band 0). Here, we will take into 
consideration the recommendation given by 
(Harchol-Balter et al, 2003). Because the start up of 
the connection is an essential part of the total 
response delay, especially for short requests before 
the size of the file is known, no sockets are assigned 
to priority band 0, but are assigned to other bands of 
lower priority, to prevent packets sent during the 
connection start up waiting in a long queue. The
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Figure 2: Mean response time of all WANs under 10Mbps and 100Mbps.

SYN-ACKs constitute a negligible fraction of the 
total load. Thus assigning them to higher priority 
does not affect the performance. 

5 SETUP AND RESULTS 

5.1 Experiment Setup  

The experimental setup consists of seven machines 
connected by 10Mbps hub in the first experiment 
and by 100Mbps Fast Ethernet connection switch in 
the second experiment. Each machine has an Intel 
Pentium 4 CPU 3.20 GHz, 504 MB of RAM. We 
used the Linux 2.6.18. One of the machines (the 
server) runs Apache 2.2.3. The other machines act as 
web clients. The client machines generate loads 
using the Scalable URL Request GEnerator 
(SURGE) (Barford and Crovella, 1998). On each 
client machine, Network Emulator (netem) (Linux 
Foundation, 2007) is used to emulate the properties 
of a Wide Area Network (WAN). 

Request sizes in the WWW are known to follow 
a heavy-tailed distribution (Harchol-Balter et al, 
2003; Crovella et al, 1998). We chose SURGE to 
generate the HTTP 1.1 requests to the server such 
that they follow the heavy-tailed request size 
distribution. More than 300,000 requests were 
generated in each experiment run. We used 2000 
different file sizes at the server by running files 
program from SURGE package at the server 
machine. Most files have a size less than 10KBytes. 
The requested file sizes ranged from 77B to 3MB. 
We represent the system load by the number of 
concurrent users, defined as the number of user’s 
equivalents (UEs) generated by the SURGE 

workload generator. For each run we measure the 
mean response time at the client side by using the 
pbvalclient program from the SURGE package. 

In our experiments, we assume that clients 
experience heterogeneous WANs. We have divided 
our experimental space into six WANs; where each 
of the six client machines represents a different 
WAN that shares common WAN parameters by 
setting the netem parameters. The WAN factors on 
each client machine are shown in Table 1. We 
experiment with delays between 50ms and 350ms 
and loss rates from 0.5% to 3.0%. This range of 
values was chosen to cover values reported in the 
Internet Traffic Report (Network Services & 
Consulting Corporation, 2007). 

Table 1:  WANs parameters. 

WANs RTT(ms) Loss (%) 
WAN1 50±10 0.5 
WAN2 100±20 1.0 
WAN3 150±30 1.5 
WAN4 200±40 2.0 
WAN5 250±40 2.5 
WAN6 350±50 3.0 

5.2 Results  

We compare SRRT with the existing algorithms, 
namely PS and SRPT. We analyze our observations 
from the client’s point of view in terms of mean 
response time under the 10Mbps and 100Mbps link 
capacity. The graphs in Figure 2 show the mean 
response time for all WANs as a function of server 
load (number of UEs) for the 10Mbps and 100Mbps 
link capacities. SRRT an SRPT show an 
improvement in the mean response time over PS. 
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Figure 3: Average improvement of SRRT and SRPT over PS for 10/100Mbps links.

Also, the SRRT shows an improvement over SRPT. 
Table 2 shows the improvement percentage of SRRT 
over SRPT and PS, in addition to the percentage 
improvement of SRPT over PS for the two different 
link capacities; 10Mbps and 100Mbps. 

Table 2: Percentage improvement of SRRT and SRPT. 

Improvement Link Algorithms 
Average Max. 

SRRT:SRPT 7.5% 13.2% 
SRRT:PS 13.6% 24.2% 10Mbps 
SRPT: PS 6.8% 13.7% 
SRRT:SRPT 7.4% 11.6% 
SRRT:PS 7.1% 16.2% 100Mbps 
SRPT: PS 2.6% 5.8% 

 
SRRT and SRPT show an improvement in the 

mean response time over PS. This comes from the 
fact that the bandwidth is shared for all requests 
under PS. Therefore, all incomplete requests still 
take fair share of the bandwidth from other requests. 
Hence, the mean response time of short requests 
increases. While under the SRRT and SRPT, long 
requests do not receive any bandwidth and short 
requests are completely isolated from the long 
requests. Therefore, completing short requests first 
and then long requests do not increase the mean 
response time by giving the chance to the small 
requests to complete first without competition from 
long requests. As a result, the PS shows a faster 
increase in mean response time than under SRRT 
and SRPT. 

SRRT has the best results especially at high 
loads. This is likely because our approach better 
estimates the response time by taking into 
consideration the client-server interaction over the 

WAN environment. For low loads, the three 
algorithms show almost similar mean response time. 
Since for low load the available link capacity is large 
enough to serve all requests, which in turn results in 
keeping the number of packets in the transmission 
queue small so that the effect of scheduling is not 
noticeable. However, in the low load case the RTT 
dominates the total communication delay so SRRT 
shows better behaviour over SRPT in this region 
since SRRT takes into account RTT in estimating 
response time. For high load but before the link 
saturates, the improvement of SRRT over SRPT 
starts to become noticeable. For high load, the SRRT 
shows a great improvement over the SRPT for all 
WANs.  

The over all requests average percentage 
improvement of SRRT and SRPT over PS for 
10/100Mbps for all WANs is shown in Figure 3. The 
network WAN1 has the best network conditions 
(delay and loss) compared to other WANs, so the 
requests get higher priorities under SRRT and 
therefore minimize the mean response time. So 
WAN1 has the best average improvement 
percentage in SRRT over PS compared to the other 
WANs. Also, we can see that bad network 
conditions decrease the improvement of both SRRT 
and SRPT scheduling techniques over PS. However, 
SRPT is more affected by bad network conditions 
than SRRT since it uses only the file size to 
approximate the expected response time. Server 
delay dominates the response time for the case of a 
network with no loss, and in which we ignore RTT. 
In contrast, under bad condition WANs (large RTT 
and high loss rate) the transmission and 
retransmission delays are the dominant parts of the 
communication delay rather than the delay at the 
server. The mean response time increases as the 
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RTT and the loss rate increase. Higher RTTs make 
loss recovery more expensive since the 
retransmission time-outs (RTO) depend on the 
estimated RTT. Hence, lost packets cause very long 
delays based on the RTT and RTO values in TCP. 
SRRT takes these into consideration indirectly, TCP 
throughput for a connection being inversely 
proportional to the square root of the loss (Padhye et 
al, 2000), by decreasing the cwnd. When losses 
increase the cwnd decreases. Accordingly, the 
estimated response time in SRRT increases, so the 
corresponding connection receives less priority. 
Therefore, SRRT improvement is slightly decreased 
by the poor network conditions. As mentioned in 
(Harchol-Balter et al, 2003), “While propagation 
delay and loss diminish the improvement of SRPT 
over PS, loss has a much greater effect". SRRT 
considers the user’s network conditions by 
benefiting from the TCP interaction between the 
server and the network to take into consideration the 
realistic WAN factors that can dominate the mean 
response time.  

The SRRT/SRPT add an additional overhead 
compared to PS since they need to assign priorities 
to the request by invoking setsockopt() system call. 
In addition to setsockopt() call, SRRT uses 
getsockopt() system call to get the RTT and the 
cwnd. However, the additional overhead is not 
critical under the assumption that the CPU is not the 
bottleneck. We found about 1% increase in the CPU 
utilization under SRRT over the PS. 

5.3 Starvation Analysis  

To see if the improvement in mean response time 
comes at the expense of starvation for long requests, 
we look to the response time for each individual 
request under SRPT and SRRT scheduling 
algorithms. To quantify the starvation, we use the 
starvation stretch metric, which is introduced in 
(Jechlitschek and Gorinsky, 2007). Starvation stretch 
Sx(r) of request r under algorithm X is the ratio of 
response time RTx(r) under X to response time 
RTps(r) under PS (Sx(r)=RTx(r)/RTps(r)). The 
starvation occurs under the algorithm X if Sx(r)>1. 

Under SRPT, we found that 2.3% of the requests 
have starvation stretch greater than 1 under the 
100Mbps link capacity, and the largest file 
(3119822B) has a starvation stretch of 2.1. Under 
the 10Mps capacity, 2.6% of the requests starved. 
The largest file has a starvation stretch of 2.4.  The 
SRRT shows better performance than SRPT since it 
has more information about the response time. For 
SRRT only 1.5% of the long requests starved under 

the 100Mbps link. The longest response has a 
starvation stretch 1.7. Under the 10Mbps, 2.4% of 
the requests starved. The longest response has a 
starvation stretch 2.2.  

6 CONCLUSIONS  

The performance of SRPT degrades dramatically in 
the Internet environment which has high diversity in 
bandwidth, propagation delay and packet loss rate. 
Thus, we proposed SRRT to better estimate the 
response time by getting useful TCP information, 
which is available at web server about the 
connection, in addition to the file size, without 
producing additional traffic. The SRRT uses the 
RTT, the congestion window size, and the file size 
to approximate the response time. The request with 
shortest SRRT receives the highest priority. 

We proposed, implemented and evaluated the 
SRRT scheduling policy for web servers. The SRRT 
improves the client-perceived response time in 
comparison to the default Linux scheduling (PS) and 
the SRPT scheduling policies. The SRRT performs 
better than SRPT and PS at high and moderate 
uplink load and especially under overload condition. 
The performance improvement is achieved under 
different uplink capacities, for a variable range of 
network parameters (RTTs and loss rate). This 
improvement does not unduly penalize the long 
requests and without loss in byte throughput. The 
implementation of SRRT was done on an Apache 
web server running Linux to prioritize the order in 
which the socket buffers are drained within the 
kernel. The priority of the requests is determined 
based on the priority array values we have coded in 
the Apache source code. The choice of these values 
is based on the experiment trials. But we do not 
claim that this choice is optimal. Also, it is better to 
make these values configurable by the Apache 
configuration file to be able to change them as 
needed or even learn them during experimentation. 

Another improvement on SRRT may be done by 
trying to take other factors that may affect the 
response time like queue delay approximation and 
the TCP connection loss rate. To check the validity 
of this algorithm, it is better to test it on a real web 
server. Also, it is good to evaluate the SRRT 
algorithm analytically to examine the validity of the 
experimental results if possible. 

The SRRT is applied to static web requests. 
Future work can be enhancing it to also schedule 
dynamic requests where the approximation of the 
response time is not as easy as for static requests. 
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Also, this work may extend to other operating 
systems and other web servers.  Also, SRRT 
algorithm may combine with other quality of 
service. For example, if connectivity quality is bad 
for one client, the server selects a lower quality 
image to send to the client to improve the response 
time. 

We believe that SRRT scheduling will continue 
to be applicable in the future, although better link 
speeds become available and the bandwidth cost 
decreases. Due to financial constrains, many users 
will not upgrade their connectivity conditions. Also, 
the variance in network distance and environment 
will persist and diversity in delay will be continued 
to exist. 
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