
IMPLEMENTATION OF A NEW SCHEDULING POLICY IN
WEB SERVERS

Ahmad S. Al Sa'deh
Computer Engineering Department, Prince Fahad Bin Sultan National University, Tabuk, Saudi Arabia

Adnan H. Yahya
Computer Systems Engineering Department, Birzeit University, Birzeit, Palestine

Keywords: Web Server Performance, Request Scheduling Policy, Remaining Response Time Scheduling.

Abstract: Recently, the Shortest-Remaining-Processing-Time (SRPT) has been proposed for scheduling static HTTP
requests in web servers to reduce the mean response time. The SRPT assumes that the response time of the
requested file is strongly proportional to its size. This assumption is unwarranted in Internet environment.
Thus, we proposed the Shortest-Remaining-Response-Time (SRRT) that better estimates the response time
for static HTTP. The SRRT prioritizes requests based on a combination of the current round-trip-time
(RTT), TCP congestion window size (cwnd) and the size of what remains of the requested file. We compare
SRRT to SRPT and Processor-Sharing (PS) policies. The SRRT shows the best improvement in the mean
response time. SRRT gives an average improvement of about 7.5% over SRPT. This improvement comes at
a negligible expense in response time for long requests. We found that under 100Mbps link, only 1.5% of
long requests have longer response times than under PS. The longest request under SRRT has an increase in
response time by a factor 1.7 over PS. For 10Mbps link, only 2.4% of requests are penalized, and SRRT
increases the longest request time by a factor 2.2 over PS.

1 INTRODUCTION

Today busy web servers are required to service
many clients simultaneously, sometimes up to tens
of thousands of concurrent clients (Kegel, 2006). If a
busy web server’s total request rate increases above
the total link capacity or the total server concurrent
users, the number of rejected requests increases
dramatically and the server offers poor performance
and long response time, where the response time of a
client is defined as the duration from when the client
makes a request until the entire file is received by
the client. The slow response times and difficult
navigation are the most common complaints of
Internet users (King, 2003). Research shows the
need for fast response time. The response time
should be around 8 seconds as the limit of people's

*This paper is based on Ahmad Al Sa'deh's Master Thesis in
Scientific Computing work carried out at Birzeit University,
Birzeit, Palestine under the supervision of Prof. Adnan Yahya.

ability to keep their attention focus while waiting
(Nielsen, 1997). The question arises, what can we do
to improve the response time at busy web servers?

It is possible to reduce the mean response time of
requests at a web server by simply changing the
order in which we schedule the requests. A
traditional scheduling policy in web servers is
Processor-Sharing (PS) scheduling. In PS each of n
competing requests (processes) gets 1/n of the CPU
time, and is given an equal share of the bottleneck
link. It has been known from queuing theory that
Shortest-Remaining-Processing-Time (SRPT)
scheduling policy is an optimal algorithm for
minimizing mean response time (Schrage, 1968).
However, the optimal efficiency of SRPT depends
on knowing the response time of the requests in
advance, and under the assumption that preemption
in SRPT implies no additional overhead.

The SRPT scheduling policies on web servers
(Crovella et al, 1999; Harchol-Balter et al, 2003;
Schroeder and Harchol-Balter, 2006) used the job
size, which is well known to the server, to refer to

22
S. Al Sa’deh A. and H. Yahya A. (2008).
IMPLEMENTATION OF A NEW SCHEDULING POLICY IN WEB SERVERS.
In Proceedings of the Fourth International Conference on Web Information Systems and Technologies, pages 22-29
DOI: 10.5220/0001524200220029
Copyright c© SciTePress

processing time (response time) of the job to
implement SRPT for web servers to improve user-
perceived performance. In the Internet environment,
depending only on the file size for estimating the
response time is not enough since it does not take
into consideration the client-server interaction
parameters over the Internet like Round-Trip-Time
(RTT), bandwidth diversity, and loss rate. Dong Lu
et al. (Lu et al, 2005) have shown that the correlation
between the file size and the response time are low,
and that the performance of SRPT scheduling on
web servers degrade dramatically due to weak
correlation between the file size and the response
time in many regimes.

To better estimate the user response time we
proposed a new scheduling policy in web servers
which is called Shortest-Remaining-Response-Time
(SRRT) to improve the mean response time of
clients. The proposed method estimates the response
time for a web client by benefiting from the TCP
implementation at the server side only, without
introducing extra traffic into the network or even
storing historical data on the server. The SRRT
estimates the client response time in each visit to a
server, and then schedules the requests based on the
shortest remaining response time request first. SRRT
uses RTT and TCP congestion window size (cwnd)
in addition to the size of the requested file for
estimating the response time. The getsockopt()
Linux system call is used by SRRT to get the RTT
value and the cwnd “on-the-fly” for each
connection. See section 3 for the complete
description of SRRT algorithm.

For our experiment, we use a web workload
generator to generate requests with certain
distribution and focus only on static HTTP requests
which form a major percentage of the web traffic
(Manley and Seltzer, 1997; Harchol-Balter et al,
2003). In 2004, logs from proxy servers show that
67-73% of the requests are for static contents
(IRCache, 2004). The experiment uses the Linux
operating system and Apache web server. Network
Emulator represents the WAN environment.

The SRRT is compared to the PS and SRPT
scheduling policies in web servers. We find that the
SRRT gives the minimum mean response time. We
conclude that the client response time is affected by
the Internet conditions. So the priority based
scheduling policy in web servers should take into
consideration the Internet conditions to prioritize the
requests.

The rest of the paper is structured as follows.
Section 2 discusses relevant previous work in web
server requests scheduling. The SRRT scheduling

algorithm is presented in section 3. The
modifications for Apache web server and Linux
operating system to implement SRRT are covered in
section 4. The experiment setup and results analysis
are given in section 5. Section 6 summarizes the
results obtained and discusses possible future work.

2 LITERATURE REVIEW

It is well known from scheduling theory literature
(Schrage and Miller, 1966; Schrage, 1968; Smith,
1976; Goerg, 1986) that if the task sizes are known,
the SRPT scheduling is optimal for reducing the
queuing time, therefore reducing the mean response
time. The work based on the SRPT algorithm for
web server scheduling can be divided into three
categories: web server scheduling theoretical
studies, scheduling simulation studies, and
scheduling implementation.

N. Bansal and M. Harchol-Balter (Bansal and
Harchol-Balter, 2001) compare the SRPT policy and
the PS policy analytically for an M/G/1 queue with
job size distributions that are modelled by a
Bounded Pareto distribution. They show that with
link utilization 0.9, the large jobs perform better
under the M/G/1 SRPT queue than the M/G/1 PS
queue. Then they prove that for link utilization 0.5,
the SRPT improves performance over PS with
respect to mean response time for every job and for
every job size distribution. For the largest jobs, the
slowdown (response time divided by job size) under
SRPT is only slightly worse than under PS (Bansal
and Gamarnik, 2006). In (Bansal, 2003) and (Bansal
and Gamarnik, 2006), interesting results on the mean
response in heavy traffic were obtained that show
that SRPT performs significantly better than FIFO if
the system is under heavy traffic.

C. Murta and T. Corlassoli (Murta and
Corlassoli, 2003) introduce and simulate an
extension to SRPT scheduling called Fastest-
Connection-First (FCF) that takes into consideration
the wide area network (WAN) conditions in addition
to request size when making scheduling decisions.
This scheduling policy gives higher priority to
HTTP requests for smaller files issued through faster
connections. This work is done only by simulation
without providing a clear idea on how to implement
it in real web servers. M. Gong and C. Williamson
(Gong and Williamson, 2003) identify two different
types of unfairness: endogenous unfairness that is
caused by an inherent property of a job, such as its
size. And exogenous unfairness caused by external
conditions, such as the number of other jobs in the

IMPLEMENTATION OF A NEW SCHEDULING POLICY IN WEB SERVERS

23

system, their sizes, and their arrival times. They then
continue to evaluate SRPT and other policies with
respect to these types of unfairness. E. Friedman et
al. (Friedman and Henderson, 2003) propose a new
protocol called Fair-Sojourn-Protocol (FSP) for use
in web servers. FSP orders the jobs according to the
processor sharing (PS) policy and then gives full
resources to the job with the earliest PS completion
time. The FSP is a modified version of SRPT and it
has been proven through analysis and simulation that
FSP is always more efficient and fair than PS given
any arrival sequence and distribution. Their
simulation results show that FSP performs better
than SRPT for large requests, while the SRPT is
better than FSP for small requests.

The work that implements scheduling for web
servers based on the SRPT was done on both the
application level, and at the kernel level to prioritize
HTTP requests. M. Crovella et al. (Crovella et al,
1999) experimented with the SRPT connection
scheduling at the application level. They get an
improvement in the mean response times, but at the
cost of drop in the throughput by a factor of almost
2. This drop comes as a result of no adequate control
over the order in which the operating system
services the requests. M. Harchol-Balter et al.
(Harchol-Balter et al, 2003) implemented SRPT
connection scheduling at the kernel level. They get
much larger performance improvements than in
(Crovella et al, 1999) and the drop in the throughput
was eliminated. B. Schroeder et al. (Schroeder and
Harchol-Balter, 2006) show an additional benefit
from performing SRPT scheduling for static content
web requests. They show that SRPT scheduling can
be used to alleviate the response time effects of
transient overload conditions without excessively
penalizing large requests. SWIFT algorithm (Rawat
and Kshemkayani, 2003) extend the work in
(Harchol-Balter et al, 2003) based on SRPT, but
taking into account in addition to the size of the file,
the RTT to represent the distance between the client
and the server. With this technique they obtained a
response time improvement for large-sized files by
2.5% to 10% additional to the SRPT. In the SWIFT
algorithm implementation, they assumed that the
HTTP requests are embedded with the RTT in their
trace driven experiment. This assumption is not a
realistic scenario. Moreover, the implementation of
the SWIFT requires additional modifications on the
web server to support functions that are parses
request to extract the RTT that assumed to be part of
client requests. Accordingly, we did not implement
the SWIFT to compare it with SRRT. SRRT gets the
RTT and congestion window size (cwnd) at the

server side for each connection "on-the-fly" by using
getsockopt() Linux system call to use it with the file
size to better estimate the response time in a WAN
environment.

3 SRRT ALGORITHM

The SRRT algorithm benefits from TCP
implementation to address most of the client-server
interaction on the Internet. Due to TCP’s congestion
control mechanism, TCP window sizes (cwnd) can
be bound to the maximum transfer rate R =
(cwnd/RTT) bps despite the actual bandwidth
capacity of the network path. Also, the TCP
congestion control mechanism involves Time-outs
that cause retransmissions. RTT is monitored and
Time-out is set based on RTT (Karn and Partridge,
1995; Jacobson, 1995).

After processing an HTTP request, the server
code uses the getsockopt() to get these useful
information about the network condition (cwnd,
RTT) that will be used in estimating the remaining
response time of the request on the server side. The
requested file size is already known by the server.
Hence, the remaining response time (RRT) can be
approximated as follows:

Where RFS is remaining length of the requested
file(s) in bytes, R is the approximated TCP transfer
rate, and MSS is the maximum segment size for the
connection in bytes.

As seen above, the estimating of RRT depends
on three variables; RFS, current RTT, and the
current cwnd. Thus we consider almost all aspects
that affect data transfer over the Internet since the
RTT and the cwnd change dynamically according to
network conditions. The estimated RRT is
influenced by network conditions. The highest
priority is given to the connection that has the best-
estimated performance: the connection that needs to
transfer small file through an un-congested path,
which has short RTT and large cwnd.

4 SRRT IMPLEMENTATION

The experiments have been done using Apache web
server since it is the most popular web server
(Netcraft, 2007). To build SRRT based on Apache

⎟
⎠
⎞

⎜
⎝
⎛

×
+≈

+≈

MSScwnd
RFSRTTRRT

R
RFSRTTRRT

1

WEBIST 2008 - International Conference on Web Information Systems and Technologies

24

Figure 1: Data flow in Linux operating system.

running on Linux, basically two things are needed.
First, to set up several priority queues at the Ethernet
interface. Second, to modify the Apache source code
to assign priorities to the corresponding requests.

The data being passed from user space is stored
in socket buffers corresponding to each connection.
When data streaming passes from the socket buffers
to TCP layer and IP layer, the TCP headers and the
IP headers are added to form packets. The packet
flow corresponding to each socket is kept separate
from other flows (Harchol-Balter et al, 2003). After
that, packets are sent from IP layer to queuing
discipline (qdisc). The default qdisc under Linux is
the pfifo_fast qdisc. Figure 1(a) shows the default
data flow in standard Linux. pfifo_fast qdisc is a
classless queuing discipline, so it cannot be
configured. The packet priorities are determined by
the kernel according to the so-called Type-Of-
Service (TOS) flag and priority map (priomap) of
packets. However, all packets using the default TOS
value are queued to the same band (band 1 in the
Figure 1(a)). So the three bands appear as a single
FIFO queue in which all streams feed in a round-
robin service: all requests from processes or threads
are given an equal share of CPU time and share the
same amount of link capacity, Processor Sharing
(PS). Packets leaving this queue drain in a network
device (NIC) queue and then out to the physical
medium (network link).

To implement SRRT, we need several
configurable priority queues. This can be achieved

by Priority (prio) qdisc with 16 priority queues
which can be configured. The prio qdisc works on a
very simple principle. When it is ready to dequeue a
packet, the first band (queue) is checked for a
packet. If there is one, it gets dequeued. If there is no
packet, then the next band is checked, until the
queuing mechanism has no more classes to check.
Figure 1(b) shows the prio queuing discipline to
implement SRRT.

In the SRRT implementation, the Apache code is
responsible for assigning the priorities to the
corresponding connection by using setsockopt () to
determine in which band a packet will be enqueued.
Therefore, we made changes to the Apache HTTP
Server code to prioritize connections. The
installation of the SRRT-modified Apache server is
the same as the installation of standard Apache. The
only thing that might need to change when
experimenting with SRRT server is the priority array
values, in the form of response time ranges, to
determine the priority class of the socket according
to the type of the load.

TCP SYN-ACKs gets by default into the highest
priority band (band 0). Here, we will take into
consideration the recommendation given by
(Harchol-Balter et al, 2003). Because the start up of
the connection is an essential part of the total
response delay, especially for short requests before
the size of the file is known, no sockets are assigned
to priority band 0, but are assigned to other bands of
lower priority, to prevent packets sent during the
connection start up waiting in a long queue. The

IMPLEMENTATION OF A NEW SCHEDULING POLICY IN WEB SERVERS

25

Figure 2: Mean response time of all WANs under 10Mbps and 100Mbps.

SYN-ACKs constitute a negligible fraction of the
total load. Thus assigning them to higher priority
does not affect the performance.

5 SETUP AND RESULTS

5.1 Experiment Setup

The experimental setup consists of seven machines
connected by 10Mbps hub in the first experiment
and by 100Mbps Fast Ethernet connection switch in
the second experiment. Each machine has an Intel
Pentium 4 CPU 3.20 GHz, 504 MB of RAM. We
used the Linux 2.6.18. One of the machines (the
server) runs Apache 2.2.3. The other machines act as
web clients. The client machines generate loads
using the Scalable URL Request GEnerator
(SURGE) (Barford and Crovella, 1998). On each
client machine, Network Emulator (netem) (Linux
Foundation, 2007) is used to emulate the properties
of a Wide Area Network (WAN).

Request sizes in the WWW are known to follow
a heavy-tailed distribution (Harchol-Balter et al,
2003; Crovella et al, 1998). We chose SURGE to
generate the HTTP 1.1 requests to the server such
that they follow the heavy-tailed request size
distribution. More than 300,000 requests were
generated in each experiment run. We used 2000
different file sizes at the server by running files
program from SURGE package at the server
machine. Most files have a size less than 10KBytes.
The requested file sizes ranged from 77B to 3MB.
We represent the system load by the number of
concurrent users, defined as the number of user’s
equivalents (UEs) generated by the SURGE

workload generator. For each run we measure the
mean response time at the client side by using the
pbvalclient program from the SURGE package.

In our experiments, we assume that clients
experience heterogeneous WANs. We have divided
our experimental space into six WANs; where each
of the six client machines represents a different
WAN that shares common WAN parameters by
setting the netem parameters. The WAN factors on
each client machine are shown in Table 1. We
experiment with delays between 50ms and 350ms
and loss rates from 0.5% to 3.0%. This range of
values was chosen to cover values reported in the
Internet Traffic Report (Network Services &
Consulting Corporation, 2007).

Table 1: WANs parameters.

WANs RTT(ms) Loss (%)
WAN1 50±10 0.5
WAN2 100±20 1.0
WAN3 150±30 1.5
WAN4 200±40 2.0
WAN5 250±40 2.5
WAN6 350±50 3.0

5.2 Results

We compare SRRT with the existing algorithms,
namely PS and SRPT. We analyze our observations
from the client’s point of view in terms of mean
response time under the 10Mbps and 100Mbps link
capacity. The graphs in Figure 2 show the mean
response time for all WANs as a function of server
load (number of UEs) for the 10Mbps and 100Mbps
link capacities. SRRT an SRPT show an
improvement in the mean response time over PS.

WEBIST 2008 - International Conference on Web Information Systems and Technologies

26

Figure 3: Average improvement of SRRT and SRPT over PS for 10/100Mbps links.

Also, the SRRT shows an improvement over SRPT.
Table 2 shows the improvement percentage of SRRT
over SRPT and PS, in addition to the percentage
improvement of SRPT over PS for the two different
link capacities; 10Mbps and 100Mbps.

Table 2: Percentage improvement of SRRT and SRPT.

Improvement Link Algorithms
Average Max.

SRRT:SRPT 7.5% 13.2%
SRRT:PS 13.6% 24.2% 10Mbps
SRPT: PS 6.8% 13.7%
SRRT:SRPT 7.4% 11.6%
SRRT:PS 7.1% 16.2% 100Mbps
SRPT: PS 2.6% 5.8%

SRRT and SRPT show an improvement in the

mean response time over PS. This comes from the
fact that the bandwidth is shared for all requests
under PS. Therefore, all incomplete requests still
take fair share of the bandwidth from other requests.
Hence, the mean response time of short requests
increases. While under the SRRT and SRPT, long
requests do not receive any bandwidth and short
requests are completely isolated from the long
requests. Therefore, completing short requests first
and then long requests do not increase the mean
response time by giving the chance to the small
requests to complete first without competition from
long requests. As a result, the PS shows a faster
increase in mean response time than under SRRT
and SRPT.

SRRT has the best results especially at high
loads. This is likely because our approach better
estimates the response time by taking into
consideration the client-server interaction over the

WAN environment. For low loads, the three
algorithms show almost similar mean response time.
Since for low load the available link capacity is large
enough to serve all requests, which in turn results in
keeping the number of packets in the transmission
queue small so that the effect of scheduling is not
noticeable. However, in the low load case the RTT
dominates the total communication delay so SRRT
shows better behaviour over SRPT in this region
since SRRT takes into account RTT in estimating
response time. For high load but before the link
saturates, the improvement of SRRT over SRPT
starts to become noticeable. For high load, the SRRT
shows a great improvement over the SRPT for all
WANs.

The over all requests average percentage
improvement of SRRT and SRPT over PS for
10/100Mbps for all WANs is shown in Figure 3. The
network WAN1 has the best network conditions
(delay and loss) compared to other WANs, so the
requests get higher priorities under SRRT and
therefore minimize the mean response time. So
WAN1 has the best average improvement
percentage in SRRT over PS compared to the other
WANs. Also, we can see that bad network
conditions decrease the improvement of both SRRT
and SRPT scheduling techniques over PS. However,
SRPT is more affected by bad network conditions
than SRRT since it uses only the file size to
approximate the expected response time. Server
delay dominates the response time for the case of a
network with no loss, and in which we ignore RTT.
In contrast, under bad condition WANs (large RTT
and high loss rate) the transmission and
retransmission delays are the dominant parts of the
communication delay rather than the delay at the
server. The mean response time increases as the

IMPLEMENTATION OF A NEW SCHEDULING POLICY IN WEB SERVERS

27

RTT and the loss rate increase. Higher RTTs make
loss recovery more expensive since the
retransmission time-outs (RTO) depend on the
estimated RTT. Hence, lost packets cause very long
delays based on the RTT and RTO values in TCP.
SRRT takes these into consideration indirectly, TCP
throughput for a connection being inversely
proportional to the square root of the loss (Padhye et
al, 2000), by decreasing the cwnd. When losses
increase the cwnd decreases. Accordingly, the
estimated response time in SRRT increases, so the
corresponding connection receives less priority.
Therefore, SRRT improvement is slightly decreased
by the poor network conditions. As mentioned in
(Harchol-Balter et al, 2003), “While propagation
delay and loss diminish the improvement of SRPT
over PS, loss has a much greater effect". SRRT
considers the user’s network conditions by
benefiting from the TCP interaction between the
server and the network to take into consideration the
realistic WAN factors that can dominate the mean
response time.

The SRRT/SRPT add an additional overhead
compared to PS since they need to assign priorities
to the request by invoking setsockopt() system call.
In addition to setsockopt() call, SRRT uses
getsockopt() system call to get the RTT and the
cwnd. However, the additional overhead is not
critical under the assumption that the CPU is not the
bottleneck. We found about 1% increase in the CPU
utilization under SRRT over the PS.

5.3 Starvation Analysis

To see if the improvement in mean response time
comes at the expense of starvation for long requests,
we look to the response time for each individual
request under SRPT and SRRT scheduling
algorithms. To quantify the starvation, we use the
starvation stretch metric, which is introduced in
(Jechlitschek and Gorinsky, 2007). Starvation stretch
Sx(r) of request r under algorithm X is the ratio of
response time RTx(r) under X to response time
RTps(r) under PS (Sx(r)=RTx(r)/RTps(r)). The
starvation occurs under the algorithm X if Sx(r)>1.

Under SRPT, we found that 2.3% of the requests
have starvation stretch greater than 1 under the
100Mbps link capacity, and the largest file
(3119822B) has a starvation stretch of 2.1. Under
the 10Mps capacity, 2.6% of the requests starved.
The largest file has a starvation stretch of 2.4. The
SRRT shows better performance than SRPT since it
has more information about the response time. For
SRRT only 1.5% of the long requests starved under

the 100Mbps link. The longest response has a
starvation stretch 1.7. Under the 10Mbps, 2.4% of
the requests starved. The longest response has a
starvation stretch 2.2.

6 CONCLUSIONS

The performance of SRPT degrades dramatically in
the Internet environment which has high diversity in
bandwidth, propagation delay and packet loss rate.
Thus, we proposed SRRT to better estimate the
response time by getting useful TCP information,
which is available at web server about the
connection, in addition to the file size, without
producing additional traffic. The SRRT uses the
RTT, the congestion window size, and the file size
to approximate the response time. The request with
shortest SRRT receives the highest priority.

We proposed, implemented and evaluated the
SRRT scheduling policy for web servers. The SRRT
improves the client-perceived response time in
comparison to the default Linux scheduling (PS) and
the SRPT scheduling policies. The SRRT performs
better than SRPT and PS at high and moderate
uplink load and especially under overload condition.
The performance improvement is achieved under
different uplink capacities, for a variable range of
network parameters (RTTs and loss rate). This
improvement does not unduly penalize the long
requests and without loss in byte throughput. The
implementation of SRRT was done on an Apache
web server running Linux to prioritize the order in
which the socket buffers are drained within the
kernel. The priority of the requests is determined
based on the priority array values we have coded in
the Apache source code. The choice of these values
is based on the experiment trials. But we do not
claim that this choice is optimal. Also, it is better to
make these values configurable by the Apache
configuration file to be able to change them as
needed or even learn them during experimentation.

Another improvement on SRRT may be done by
trying to take other factors that may affect the
response time like queue delay approximation and
the TCP connection loss rate. To check the validity
of this algorithm, it is better to test it on a real web
server. Also, it is good to evaluate the SRRT
algorithm analytically to examine the validity of the
experimental results if possible.

The SRRT is applied to static web requests.
Future work can be enhancing it to also schedule
dynamic requests where the approximation of the
response time is not as easy as for static requests.

WEBIST 2008 - International Conference on Web Information Systems and Technologies

28

Also, this work may extend to other operating
systems and other web servers. Also, SRRT
algorithm may combine with other quality of
service. For example, if connectivity quality is bad
for one client, the server selects a lower quality
image to send to the client to improve the response
time.

We believe that SRRT scheduling will continue
to be applicable in the future, although better link
speeds become available and the bandwidth cost
decreases. Due to financial constrains, many users
will not upgrade their connectivity conditions. Also,
the variance in network distance and environment
will persist and diversity in delay will be continued
to exist.

REFERENCES

King, A., 2003. Speed up your site: web site
optimization, New Riders. Indiana, 1st edition.

Nielsen, J., 1997. The need for speed.
<http://www.useit.com/alertbox/9703a.html>.

Kegel, D., 2006. The C10K problem.
<http://www.kegel.com/c10k.html>.

Crovella, M., Frangioso, R., 1999. Connection scheduling
in web servers. In USENIX Symposium on Internet
Technologies and Systems.

Rawat, M., Kshemkayani, A., 2003. SWIFT: Scheduling
in web servers for fast response time. In Second IEEE
International Symposium on Network Computing and
Applications.

Jechlitschek, C., Gorinsky, S., 2007. Fair Efficiency, or
Low Average Delay without Starvation. In Computer
Communications and Networks, 2007.

Bansal, N., Harchol-Balter, M., 2001. Analysis of SRPT
scheduling: investigating unfairness. In ACM
SIGMETRICS Performance Evaluation Review, vol.
29, no. 1, pp. 279-290.

Manley, S., Seltzer, M., 1997. Web facts and fantasy. In
Proceedings of the 1997 USITS-97.

Murta, C., Corlassoli, T., 2003. Fastest connection first: A
new scheduling policy for web servers. In The 18th
International Teletra#c Congress (ITC-18).

Schrage, L., Miller, L., 1966. The queue M/G/1 with the
shortest remaining processing time discipline. In
Operations Research, vol. 14, no. 4, pp. 670-684.

Schrage, L., 1968. A proof of the optimality of the shortest
remaining processing time discipline. In Operations
Research, vol. 16, no. 3, pp. 678-690.

Smith, D., 1976. A new proof of the optimality of the
shortest remaining processing time discipline. In
Operations Research, vol. 26, no. 1, pp. 197-199.

Goerg, C., 1986. Evaluation of the optimal SRPT strategy
with overhead. In IEEE Transactions on
Communications, vol. 34, pp. 338-344.

Harchol-Balter, M., Schroeder, B., Agrawal, M., Bansal,
N., 2003. Size-based scheduling to improve web

performance. In ACM Transactions on Computer
Systems (TOCS), vol. 21, no. 2, pp. 207-233.

Schroeder, B., Harchol-Balter, M., 2006. Web servers
under overload: How schedule can help. In ACM
TOIT, vol. 6, no. 1, pp. 20-52.

Schroeder, B., Harchol-Balter, M., 2006. Web servers
under overload: How schedule can help. In ACM
TOIT, vol. 6, no. 1, pp. 20-52.

Gong, M., Williamson, C., 2003. Quantifying the
properties of SRPT scheduling. In MASCOTS, pp.
126-135.

Friedman, E., Henderson, S., 2003. Fairness and efficiency
in web server protocols. In ACM SIGMETRICS, pp.
229-237.

Lu, D., Sheng, H., 2005. Effects and implications of file
size/service time correlation on web server scheduling
policies. In MASCOTS, pp. 258-267.

 Bansal, N., 2003. On the average sojourn time under
M/M/1 SRPT. In ACM SIGMETRICS Performance
Evaluation Review, vol. 31, no. 2, pp. 34-35.

Bansal, N., Gamarnik, D., 2006. Handling load with less
stress. In Queueing Systems, vol. 54 , no. 1, pp. 45-54.

Barford, P., Crovella, M., 1998. Generating representative
web workloads for network and server performance
evaluation. In ACM joint international conference on
Measurement and modeling of computer systems, pp.
151-160.

Linux Foundation, 2007. Network Emulation (Netem).
<http://www.linux-foundation.org/en/Net:Netem>

Karn, P., Partridge, C., 1995. Improving round-trip time
estimates in reliable transport protocols. In ACM
SIGCOMM Computer Communication Review, vol.
25, no. 1, pp. 66-74.

Jacobson, V., 1995. Congestion avoidance and Control. In
ACM SIGCOMM Computer Communication Review,
vol. 25, no.1, pp. 157-187.

Network Services & Consulting Corporation, 2007.
Internet Traffic Report. <http://www.internettraffic
creport.com>

Padhye, J., Firoiu, V., Towsley, D., Kurose, J., 2000.
Modeling tcp reno performance: A simple model and
its empirical validation. In IEEE/ACM Transactions
on Networking (TON), vol. 8, no. 2, pp133-145.

Crovella, M., Taqqu, M., Bestavros, A., 1998. Heavy-
tailed probability distributions in the World Wide
Web. In A Practical Guide To Heavy Tails, pages 3–
26. Chapman & Hall, New York.

IRCache Home, 2004. The trace files.
<ttp://www.ircache.net/Traces>

Netcraft, 2007. Internet monitoring company.
<http://news.netcraft.com/>

IMPLEMENTATION OF A NEW SCHEDULING POLICY IN WEB SERVERS

29

