
A SECURE WEB APPLICATION PROVIDING PUBLIC ACCESS
TO HIGH-PERFORMANCE DATA INTENSIVE SCIENTIFIC

RESOURCES
ScalaBLAST Web Application

Darren Curtis, Elena Peterson and Christopher Oehmen
Pacific Northwest National Laboratory, PO Box 999 MSIN: K7-28, Richland, WA 99352, U.S.A.

Keywords: Scalable, Grid Computing, Access Control, Web Application, Security, ScalaBLAST, Portable Batch
System.

Abstract: This work presents the ScalaBLAST Web Application (SWA), a web based application implemented using
the PHP script language, MySQL DBMS, and Apache web server under a GNU/Linux platform. SWA is an
application built as part of the Data Intensive Computer for Complex Biological Systems (DICCBS) project
at the Pacific Northwest National Laboratory (PNNL). SWA delivers accelerated throughput of
bioinformatics analysis via high-performance computing through a convenient, easy-to-use web interface.
This approach greatly enhances emerging fields of study in biology such as ontology-based homology, and
multiple whole genome comparisons which, in the absence of a tool like SWA, require a heroic effort to
overcome the computational bottleneck associated with genome analysis. The current version of SWA
includes a user account management system, a web based user interface, and a backend process that
generates the files necessary for the Internet scientific community to submit a ScalaBLAST parallel
processing job on a dedicated cluster.

1 INTRODUCTION

Biological sequence analysis is a computational
methodology for helping characterize newly
sequenced genomes. The fundamental task in
sequence analysis is a comparison of an
uncharacterized gene or protein to a collection of
sequences from previously sequenced genomes.
Through sequence analysis, one can build evidence
for the functional role of a newly sequenced gene or
protein. New genomes are being sequenced at an
exponentially increasing rate resulting in a sequence
data ‘avalanche’.
 Efficiently managing sequence analysis on this
growing dataset is a challenge that must be
addressed using high performance computing.
However, requiring the biology community to use
high-end hardware is not practical. We instead strive
to deliver high-end computing capacity for large-
scale sequence analysis through convenient, intuitive
and secure interfaces to advanced hardware and
software.

 ScalaBLAST is a high-performance sequence
analysis implementation, (Oehmen & Nieplocha,
2006), which accommodates very large databases
and which scales linearly to as many as thousands of
processors on both distributed memory and shared
memory architectures. This paper represents a web
application front-end to ScalaBLAST (SWA) that
allows users to take advantage of the high-
performance sequence alignment running on a 64
processor cluster from a public web-site and have
full access to the results. Several issues are
addressed by the web application including:
• Security
• User account management system
• Server side processing which includes:

o File management that allows the user to
upload data files and download results

o Script generation to create jobs control files
o Notification that sends email when jobs start

and finish
o Maintaining a history of the user’s jobs

The SWA is currently in production at
http://www.biopilot.org.

244 Curtis D., Peterson E. and Oehmen C. (2008).
A SECURE WEB APPLICATION PROVIDING PUBLIC ACCESS TO HIGH-PERFORMANCE DATA INTENSIVE SCIENTIFIC RESOURCES -
ScalaBLAST Web Application.
In Proceedings of the Fourth International Conference on Web Information Systems and Technologies, pages 244-251
DOI: 10.5220/0001521902440251
Copyright c© SciTePress

2 MOTIVATION AND DESIGN
GOALS

The primary motivation for developing SWA is to
provide the bioinformatics scientific community
with access to high-performance sequence alignment
via a web application.

2.1 Provide Scientists Internet Access
to High Performance ScalaBLAST
Application

ScalaBLAST is an application that runs on a variety
of shared and distributed memory multiprocessor
architectures. The source code is available to
scientists upon request but most scientists do not
have access to large multiprocessor systems.
ScalaBLAST is an optimized implementation of the
popular BLAST (Altschul, Gish, Miller, Myers, &
Lipman, 1990) (Altschul et al. 1997) algorithm used
by the scientific community for sequence analysis.
Providing scientists with access to the ScalaBLAST
application on high-performance systems at PNNL
allows them to perform large-scale sequence
analysis which may be beyond the reach of
conventional BLAST installations.

2.2 Provide a Web Based Interface to
ScalaBLAST

ScalaBLAST has a command line interface with
over 20 command line options. Most of the options
have default values that are commonly used and can
be considered “advanced” options. The user
interface has been greatly simplified so that most
users only need to select the “Program Type” of
Nucleotide (blastn) or Protein (blastp), “Output
Format” of Text file, Zipped file, or Tar file,
“Database” to run their query against, and the query
file they want to upload.

2.3 Provide a User Interface Consistent
with Existing BLAST User
Interfaces

There are several software applications available
that provide a basic graphical or web-based user
interface to BLAST. We used user interface
elements that were consistent with tools and
applications like BLAST (NCBI, 2007),
BatchBLAST (Harvard, 2007), and GSC Batch
Server (Washington University, 2007). Users
familiar with these BLAST user interfaces will be

able to take advantage of the performance
improvements of ScalaBLAST without having to
learn another user interface. This approach helps
bridge the gap between existing tools and high
performance tools without forcing the user to learn a
new system.

3 RELATED WORK

There are many user account management systems
ranging from publicly available scripts on websites
to portal and content management frameworks. In
addition, there are several BLAST tools and
websites to upload data and perform queries. We
have addressed many challenges associated with
integrating these independently designed
components for scripting, scheduling, launching and
monitoring user tasks in SWA.

3.1 Publicly Available Scripts

Many public domain scripts written in PHP do not
provide adequate user account management. The
user registration and login pages pass the user’s
password in unencrypted ASCII text. These scripts
often store the password in a database as
unencrypted ASCII text so that email can be sent to
the user with their password. Some of the scripts use
.htaccess and .htpasswd files to implement access
control which is not very flexible for system
administrators or application developers. Some of
the scripts require the use of cookies which forces
the user to have cookies enabled to use the
application. Some scripts are older and do not work
well with PHP 5.X so they were not used. An
exhaustive analysis of these scripts is beyond the
scope of this paper.

3.2 Drupal

Drupal (VanDyk & Westgate, 2007) is a
comprehensive content management framework to
create customized web sites. The development of
Drupal-based applications is a great solution for
many applications but it can be difficult to migrate
or rewrite existing web applications or PHP libraries
to Drupal Modules. Drupal requires more advanced
programming experience and is beyond the skill
level of many junior programmers that could use the
techniques mentioned here to successfully
implement an application similar to SWA.

A SECURE WEB APPLICATION PROVIDING PUBLIC ACCESS TO HIGH-PERFORMANCE DATA INTENSIVE
SCIENTIFIC RESOURCES - ScalaBLAST Web Application

245

3.3 BLAST Web-Based Applications

Most of the BLAST web-based applications are
interfaces to BLAST so they do not take advantage
of the performance improvements of ScalaBLAST.
The Harvard BatchBLAST application gives the
user the ability to perform multiple BLAST queries
at the same time which is an improvement over
BLAST but not as significant as the performance
gains of ScalaBLAST.

4 DESIGN AND
IMPLEMENTATION

4.1 Development Tools and
Environment

Our intent is to demonstrate the success of our
approach to SWA using multiple tools to develop
web-based applications. We do not advocate any
given tool or endorse any vendor. The purpose of
discussing software tools is instead to present a
comprehensive approach to deal with the challenges
of developing web-based applications. We used the
PhpED IDE (NuSphere, 2007) for writing PHP,
JavaScript, HTML, SQL, and XML files. PhpED
helps the developer by providing code completion,
code highlighting, and other functionality. The
biggest reason we used PhpED was for the
integrated PHP debugger and embedded versions of
Mozilla and Internet Explorer. We used Firefox 2.0
for debugging JavaScript and the Firefox Firebug
add-on to debug CSS layout issues. For use case
testing we used the Firefox Selenium IDE add-on to
generate the initial Selenium test files.

During the development process we took the
time to use tools like Adobe DreamWeaver CS3 to
check spelling and do a site-wide checks to make
sure all the links on the pages worked correctly.
Unfortunately, DreamWeaver still does not have an
automated site-wide check for spelling so each page
had to be loaded and checked for spelling.

Selenium (OpenQA, 2007) is the tool we used
for automated testing. There are several API
libraries available for languages like Java, PHP,
Python, PERL, etc, which all produce HTML
commands to interface with Selenium.

Test cases written for Selenium use simple
HTML tables. An example test case for typing
“hello world” on the Google search engine might
look like:

<table>
<tr><td>Google</td></tr>
<tr><td>open</td>
<td>http://www.google.com</td></tr>
<tr><td>type</td>
<td>q</td><td>”hello world”</td></tr>
<tr><td>click</td><td>btnG</td></tr>
</table>
The first row of the table is the title for the test case.
The rest of the rows are the actions used to mimic
what a user might do. The first column of the action
row is the command. The second and third columns
are for any arguments to the command. The second
column is typically a URL to open or the name or id
of the HTML element that is to be controlled. The
third column is typically used to specify a value. In
the example above, the first action is to open the
Google web page. The second action is to type
“hello world” in the HTML input field that is named
q. The last command is to do a left mouse click on
the input button named btnG.

There are some limitations to using Selenium.
For example, to upload a file to the server, you
cannot specify the file to be uploaded. The reason is
that browsers ignore any file you specify in an input
field with a type of filename. This is a security
safeguard so that hackers cannot use javascript to
grab files from your system when you visit their web
page. Selenium is very full-featured but it cannot be
used to test features that are added to thwart Internet
bots. It cannot be used to test a user registration page
that uses the technique of displaying an image with
distorted text that the user has to interpret and input
before they can submit a form.

Another challenge is testing the dynamic
generation of URLs. Our Google test case fills out
the search form and submits the form for processing.
The resulting URL on the Google page is
http://www.google.com/search?num=100&hl
=en&rls=GGLD%2CGGLD%3A2003-
41%2CGGLD%3Aen&q=%22hello+world%22
which is generated. Trying to add an action that can
verify that the resulting page had the correct URL is
challenging.

Normal testing issues include setup and teardown
of tests that insert or delete records in databases. For
example, adding a user to the system using the user
account registration page requires the test to remove
the user prior to starting the test. Care must be taken
when testing web pages that require username and
password to use the page.

Rather than use the PHP API for Selenium, we
took the approach of using the libraries we wrote to
embed PHP into our HTML tables. The action to

WEBIST 2008 - International Conference on Web Information Systems and Technologies

246

check that the test is currently at the first page of the
web site looks like:
<td>verifyLocation</td>
<td><?= getServerRootUrl() ?></td>
This allows us to test our internal functions and our
higher level integration tests at the same time.

4.2 Security

The primary goal of any user access control and
authorization system is to protect the user’s
password to mitigate risk of compromising the
user’s data or the application server. We approach
this using several design philosophies.

4.2.1 Protected and Public Access

Most web sites have content that is available to the
public as anonymous users. The public content
should not require a user to obtain a user account to
view the information. The protected content should
only be accessible after the user has registered with
the system and has used the proper credentials to
access the protected areas of the system.

4.2.2 Protecting Directories

Directories can be protected by server-level access
control (e.g. Apache httpd.conf), virtual server
access control, .htaccess file overriding the server
access control, or index.html redirects to an error,
login, or site index page. One problem with server
access control is that a system or web administrators
could modify the server configuration files and
unintentionally turn off access restrictions to your
web application and expose your application to the
public. Another problem is that the administrator
could modify the server configuration files to no
longer allow an .htaccess to override the server level
access control which would block valid users from
your application. We chose to put an index.html in
each protected directory that redirects the user to the
front page of the web site.

The index.html pages in protected directories use
an HTML meta tag such as:
<meta http-equiv="refresh"
content="5;URL=/" />

As an additional security measure, we also
include JavaScript code in the HTML head section
such as:
<script type="text/javascript">
 window.location.href='/';
</script>

4.2.3 Protecting PHP Source Code

The web application is organized using a directory
structure that separates the PHP source code from
the web pages that use PHP. This can be done a
number of different ways but we use the following
directory structure where /path is the physical
directory on the disk and <N> is the name of the site
(e.g. biopilot.org):
/path/conf
/path/data
/path/lib
/path/www/Root/<N>/

The directory, /path/www/Root/<N>/ is
configured as the top level directory of the web site.
In Apache httpd.conf this may look like:
Alias /dev/ /path/dev/www/Root/<N>/
Alias /tst/ /path/tst/www/Root/<N>/
Alias /prd/ /path/prd/www/Root/<N>/

The directory structure and alias allows for a
development site, testing site, and production site on
the same server. By putting all the PHP source code
in /path/lib, the code cannot be accessed through
the web browser using source code viewing tools
(Source Viewer, 2007). This is very important if you
have to put a username and password in your source
code to access a database. The PHP code and HTML
at the top of every page is based on a common page
template.

4.2.4 Protecting Web Pages

We use a page template for every page on the web
site. The template has a conditional section that
specifies a web page as a document or an
application. The first few lines of the template
include some PHP code to include the PHP libraries
and classes that determine if the page is public or
private. This code is executed before the
<!DOCTYPE> and <html> tags so that it is
redirected to the login page if the page is protected
and the user has not successfully logged in yet.
 1 <?php
 2 $WEBENV_DIR =
 preg_replace("/\/www\/Root\/.*/",
 '/lib',
 $_SERVER['SCRIPT_FILENAME']);
 3 require("$WEBENV_DIR/webenv.php");
 4 $title = ‘PUT TITLE HERE’;
 5 $doc = ‘document’;
 6 // Put Extra PHP Code Here
 7 ?>
 8 <!DOCTYPE>
 9 <html>
10 <head>
11 <title><?= $title ?></title>
12 <!-- Stylesheets start -->

A SECURE WEB APPLICATION PROVIDING PUBLIC ACCESS TO HIGH-PERFORMANCE DATA INTENSIVE
SCIENTIFIC RESOURCES - ScalaBLAST Web Application

247

13 <!-- Stylesheets stop -->
14 <!-- Head JavaScript start -->
15 <!-- Head JavaScript stop -->
16 </head>
17 <body>
18 <div id="page">
19 <div id="container">
20 <div id="main">
21 <!-- content start -->
22 <h2><?= $title ?></h2>
23 <!-- content stop -->
24 </div> <!--main -->
25 </div> <!--container-->
26 <? vInclude($doc, 'navigation')?>
27 <? vInclude($doc, 'footer')?>
28 </div> <!--page-->
29 <!-- Tail JavaScript start -->
30 <!-- Tail JavaScript stop -->
31 </body>
32 </html>

Line #2 may look complicated but it is simply
finding the absolute path to the main PHP library for
this site. Line #3 performs a PHP require on the
main PHP library, webenv.php, which knows if the
document is protected or public based on the
directory where the file is located. In addition,
simply moving a document from a public directory
into a protected directory causes the behavior of the
file to be protected. Indentation and several parts of
the template such as site specific CSS references and
JavaScript have been left out for simplicity. The site
specific CSS references and JavaScript would be
located in the <head> section of the file. The author
would add any document specific CSS references
between lines 12-13 and any document specific
JavaScript between lines 14-15. Line #26 will call a
function to include the appropriate navigation for the
web page based on whether the value of $doc on
line #5 is ‘document’ or ‘application’.

4.2.5 Protecting Databases

The web application may be running on the same
system as the web server or another system. The
web application should be designed to access the
database using a hostname, port number, username,
and password that are stored in a configuration file
in case any of those values change. Many developers
make the mistake of putting these values in their
source code. The database administrator should limit
access to the web application by granting access to
only the database that is used by the application.

NOTE: If the system administrator installs
MySQL in a directory other than the default location
or configures MySQL (e.g. /etc/mysql/my.conf)
to use a datadir other than /var/lib/mysql, then it is
very important to modify the mysql.default_sock

value in the php.ini file to the actual location of the
mysql.sock named pipe file.

4.2.6 Protecting Passwords

The user’s password needs to be protected. The
SWA uses several techniques to make sure that the
user’s password is never sent across the network in
clear ASCII text. In addition, SWA requires the user
to choose a good password with minimum
requirements. A good minimum requirement is at
least on number, one uppercase letter, no common
words, no username (forwards or backwards), and a
length of 8 characters.

Some public domain scripts encrypt the
password in JavaScript before submitting the HTML
form for processing on the server. The most
common mistake is that the developer has a
password (and maybe a confirm password) input
field and a hidden input field used to store the
encrypted password on a web page. The user types
their password and clicks on the Submit button. The
form calls a JavaScript function that encrypts the
password from the password input field and assigns
it to the encrypted input field before submitting the
form to the server. The problem is that the password
input field still has the password in clear ASCII text
and it is sent to the server as part of the form. This
problem is easily corrected if the JavaScript function
deletes the text from the password input field and
double checks to make sure the password input field
is empty before submitting the form.

The SWA stores the encrypted version of the
password from the form in the database. All
encrypting is done in the client’s browser using
JavaScript functions. This eliminates the need for
any encryption in PHP or MySQL. The server side
processing is reduced to comparing the encrypted
form of the password from the browser with the
value stored in the database.

If the user forgets their password, the user puts
their email address in a form and submits it for
processing. If the email address is in the SWA
database, an email is sent to the user with a link
containing an id and temporary key. The user can
use the link to set a new password. A password is
never stored in clear ASCII text so it cannot be
emailed to the user. There is still the risk of the
user’s email being compromised. If a hacker can get
into a user’s email, they can use the SWA form to
request the forgotten password and use the link in
the email to set the password and then use the user’s
account. SWA stores the IP address of every login
which could be used to track down the hacker.

WEBIST 2008 - International Conference on Web Information Systems and Technologies

248

4.2.7 Protecting User Data and the System

The user is placing their trust in the system that it
will protect their data from other users and outside
hackers. The SWA software does not inherently trust
the user and takes precautions to protect the system
from potential security risks.

 There is a “hard” limit placed on the maximum
file size that a user can upload to the server which is
currently 10 MB.. The file upload routines use the
standard security measures provided by the PHP
libraries. Several additional precautions are taken to
ensure that the uploaded file is protected. The file is
uploaded to a temporary directory. A directory is
created for each job submitted by the user and the
data file is moved to a unique filename (e.g.
/path/user/uniqJobName/data.input). This
helps eliminate the security risk of a user submitting
a job with a filename `mail hacker@bad.com <
/etc/password`. NOTE: The original filename
that the user put in the HTML form is saved in a
database table that stores all information about the
job being submitted. The files that are uploaded and
generated are stored in a directory structure that is
not web accessible. The only way to get files into
that directory structure is for SWA to put, generate,
or get them from the protected directory area.

4.3 User Account System

The user account management component allows a
user to register for an account, update their
information (password, email, organization), and
reset their password if they forgot it. It also allows
an administrator to allow users to self-register or
require user registrations to be reviewed and
activated. The component provides the ability for the
user to login and use the protected applications and
logout from the system. These HTML form pages
were easy to implement using JavaScript and PHP
libraries to implement the Security component and
the page template mentioned in the section,
Protecting Web Pages.

4.4 Web-Based User Interface

The user interface was designed to help the user put
in only the information they need to submit a new
job or view a job’s current status or a previous job’s
history. It was designed to be intuitive for users of
common sequence analysis web-based tools, but has
the added value of allowing for large-scale sequence
analysis tasks.

4.4.1 Submit New Job

The SWA user interface makes it very easy for users
to submit a new job by specifying the job title,
BLAST program type (e.g. Protein-protein
(blastp)), file to upload, output format (e.g. tabular
text vs. conventional results), and database to use.
The job title is used when sending email to the user
to help them identify which job is being referenced.
It is also used to help the user reference a job from
the “Job History” web page.

SWA helps the user by dynamically changing the
default values in the user interface based on which
program type is selected. For instance, if blastp is
selected, the databases are limited to the selection of
protein databases available. This reduces the
possible errors that could occur if the user selects the
Protein-protein program and a Nucleotide-
Nucleotide database. The user also has the ability to
override the default ScalaBLAST options such as
filtering, word size, probability matrix, alignments,
descriptions, etc. The user submits their job and is
taken to the “Job History” page rather than an output
view page because the jobs can take hours or days.
The SWA does not assume any default values for the
program type, the database, or output type. An
invalid assumption by the program could result in a
significant delay for the user and wasted CPU cycles
on a large multiprocessor system or cluster.

All error checking is done in JavaScript on the
client side to avoid round-trip delays. As an extra
level of protection, the same error checking is done
on the server side in case a hacker figures out how to
submit the form bypassing the JavaScript checks.

4.4.2 Job History

After a job has been submitted, the SWA takes the
user to the “Job History” tab on the user interface.
The user can see all their input values and the page
has a simple timer that refreshes the page every N
minutes where N is computed based on the size of
the job. If the number of queries in the job is small,
the user interface refreshes every 5 minutes. If the
number of queries is large and the job is estimated to
take several hours or days, the user interface
refreshes every other hour. If the output file exists
when the page is refreshed then a link is provided
for the user to download their output. The job
history page allows the user to select any job that
they have previously submitted and view all the
input parameters to ScalaBLAST. In addition,
metadata for the job is available such as the
time/date the job started and finished, how many

A SECURE WEB APPLICATION PROVIDING PUBLIC ACCESS TO HIGH-PERFORMANCE DATA INTENSIVE
SCIENTIFIC RESOURCES - ScalaBLAST Web Application

249

queries were in the input file, the standard output
and standard error messages from ScalaBLAST, and
when the output was retrieved by the user.

4.5 Server Side Processing

4.5.1 User Environment

One significant problem that we encountered was
having an Apache 2.X web server running from the
user account, apache, with minimal permissions.
Most system and web administrators try to limit the
capabilities of this account running the web server.

We had to configure the web server so that the
apache user could create directories, files, and run
programs from PHP. In addition, the compute nodes
in the cluster had to share a common directory
structure so that jobs could be distributed to many
compute nodes and still have them access the user
input file and create output files. The ScalaBLAST
application parses the input file and creates N input
files, one for each compute node. Each compute
processor creates a single output file.

The controlling script that starts the job makes
calls to job scheduling software and other legacy
applications that use environment variables. To
minimize the impact of future upgrades to the
Apache web server, we assumed that the apache user
account does not have a user environment or
environment variables. Environment variables
necessary for the software applications to run are
embedded in scripts that are generated by the SWA.

Another issue that we encountered was the need
for developers to test their code. The problem was
that the files created by the SWA were owned by the
apache user and apache group. The solution we
chose was to add the developers to the apache group
and make all directories and files group writeable.

4.5.2 File Management

Though many aspects of file management were
addressed in the security sections, there is an
additional need to clean up data files after the user
has downloaded them or after they have “expired”.
Files that have completed and are older than two
weeks are deleted by a cron job that runs nightly.

4.5.3 Script Generation

The approach used to provide an interface between
the web application and submitting a ScalaBLAST
job was to automate what a ScalaBLAST user would
do. To protect the user from accidentally submitting
the same job multiple times the web application

redirects the user to the job history page. If the user
goes back to the new job page, the values are now
empty. A directory is created for each user that
submits a job. A unique directory is created for each
job that is submitted under the user’s directory. The
web application uses PHP to generate several files:
• A shell script to execute, send email to the user

that the job has started, and submit the job to the
Portable Batch System (PBS) (OpenPBS, 2007)
queue.

• A PBS script with directives for the number of
nodes and processors to use.

• A shell script that monitors the job directory and
job queue for output and error files created by
PBS, packages the output files, gather runtime
statistics, update the job history database, and
send email to user that the job has finished.

• A PERL script to calculate the statistics about the
job.

The reason for multiple scripts is because the
compute nodes do not have all the necessary
programs such as email or PERL or MySQL.

4.5.4 Miscellaneous

The deployment goal for SWA was a production
level service that user’s can rely on while still
making it easy to understand and use. Part of the
effort was implemented with policy decisions such
as not using default values in web forms. This
provided an additional benefit of minimizing
automated bots from creating bogus accounts.

A utility library was written to make it easy for
the developers to use utility function calls instead of
PHP function calls. The call to getSelf() was
used rather than $_SERVER[‘PHP_SELF’]. This
made it easier for web page designers to use a few
simple functions rather than having to learn and
understand PHP programming practices.

A function was written to let developers hide
email address from spam harvesters (Raz, 2007).
Page designers were able to use the PHP function
getMailTo() on a web page with an argument of a
real email address without worrying about it being
harvested. Since the function executed on the server
side before downloading the page, it generates a
JavaScript function in the page with a random key
and a function call to the function using the random
key. When the end user viewing the web page
moves their mouse over the link generated by
getMailTo(), they see the actual email address of the
user. If the link is clicked, the browser performs the
normal function of generating an email message. If
the user viewed the HTML source, the embedded

WEBIST 2008 - International Conference on Web Information Systems and Technologies

250

JavaScript and function call makes it more difficult
to find the email address. Since the key to encrypt
and decrypt the email address is randomly generated
each time the page is loaded, spam harvesters find
email addresses.

4.6 Future Work

Enhancements could be made to SWA that would
provide more context-sensitive help and examples.
As more data is gathered from actual users we may
need to enhance the user interface and job history to
allow users to run previous jobs again or we may
need to modify default values used by ScalaBLAST.
When more features are added to SWA which
complicated the design, we may revisit using a more
extensive development framework like Drupal. In
addition, we are expanding this approach to other
high-performance applications in bioinformatics and
computational biology, such as a high-performance
peptide identification tool called Polygraph (Cannon
et al. 2005) that will run from the same web portal
on the same cluster. Because of the extensibility of
this framework this addition will be accomplished in
a fraction of the time.

5 CONCLUSIONS

The SWA system provides secure yet public web-
based access to a high-performance sequence
alignment tool, ScalaBLAST. It was written to be
extensible and flexible while staying consistent with
BLAST applications currently in use. This project
used innovative design to integrate many pieces of
existing technology such as PHP, MySQL,
JavaScript, job launching, job monitoring, user-
notification, file management, et al. This system is
fully operational and can be found at
http://www.biopilot.org.

ACKNOWLEDGEMENTS

The research described in this paper was supported
in part by the US Department of Energy, Office of
Advanced Scientific Computing Research through
the “Data Intensive Computing for Complex
Biological Systems” project at the Pacific Northwest
National Laboratory, a multiprogram national
laboratory operated by Battelle for the US
Department of Energy under Contract DE-AC06-
76RL01830. The authors would like to thank Leigh

Williams for helping design the web page template
and working with scientists to generate most of the
public content on the web site.

REFERENCES
Altschul, S., Gish, W., Miller, W., Myers, E. & Lipman,

D. (1990). “Basic Local Alignment Search Tool”, J.
Molecular Biology. 215, p403-410.

Altschul, S., Madden, T., Schaffer, A., Zhang, J., Zhang,
Z., Miller, W. & Lipman, D. (1997). “Gapped BLAST
and PSI-BLAST”, Nucleic Acids Research. 25, p3389-
3402.

Cannon, W., Jarman, K.H., Webb-Robertson, B., Baxter,
D., Oehmen, C., Jarman, K.D., Heredia-Langner, A,
Auberry, K., Anderson, G. (2005). Comparison of
Probability and Likelihood Models for Peptide
Identification From Tandem Mass Spectrometry Data.
J. Proteome Res. 4(5), p1687-98.

Harvard. (2007). BatchBLAST: A Java Software With
Graphical User Interface To Blast Multiple Sequences
Against Multiple Databases In Batch Mode [online].
Available:
http://www.hip.harvard.edu/informatics/programs/JA
VA%20BLAST%20Parser.html [Accessed 15 October
2007].

NCBI - National Center for Biotechnology Information.
(2007). BLAST: Basic Local Alignment and Search
Tool [online]. Available:
http://www.ncbi.nlm.nih.gov/BLAST [Accessed 23
August 2007].

NuSphere. (2007). PHP IDE - Integrated Development
Environment for PHP [online]. Available:
http://www.nusphere.com/products/phped.htm
[Accessed 15 October 2007].

Oehmen, Christopher & Nieplocha, Jarek. (2006).
"ScalaBLAST: A Scalable Implementation of BLAST
for High-Performance Data-Intensive Bioinformatics
Analysis". IEEE Transactions on Parallel and
Distributed Systems. 17 (8), p740-749.

OpenPBS. (2007). OpenPBS: Portable Batch System
[online]. Available: http://www.openpbs.org/
[Accessed 15 October 2007].

OpenQA. (2007). OpenQA: Selenium [online]. Available:
http://www.openqa.org/selenium [Accessed 15
October 2007].

Raz, Uri. (2007). How do spammers harvest email
addresses? [online]. Available:
http://www.private.org.il/harvest.html [Accessed 15
October 2007].

Source Viewer. (2007). Source Viewer [online].
Available: http://source-viewer.softswot.qarchive.org
[Accessed 15 October 2007].

VanDyk, John K. & Westgate, Matt. (2007). Pro Drupal
Development. New York: Apress. p1-10.

Washington University in St. Louis, Genome Sequencing
Center. (2007). GSC: BLAST Server [online].
Available: http://genome.wustl.edu/tools/blast
[Accessed 15 October 2007].

A SECURE WEB APPLICATION PROVIDING PUBLIC ACCESS TO HIGH-PERFORMANCE DATA INTENSIVE
SCIENTIFIC RESOURCES - ScalaBLAST Web Application

251

