
HARMONY - A FRAMEWORK FOR AUTOMATIC WEB
SERVICE COMPOSITION

Viorica R. Chifu, Ioan Salomie
Department of Computer Science, Technical University of Cluj-Napoca, Romania

Emil Şt. Chifu, Constantin Pârţac
Department of Computer Science, Technical University of Cluj-Napoca, Romania

Keywords: Web service, Web service composition, semantic Web, ontology.

Abstract: Web services are software components that were designed to improve interoperability and integration of
applications developed on different platforms. Web Service composition offers the facility to create new
services out of the existing services satisfying a complex functionality. This paper presents HARMONY, a
framework for automatic Web service composition. Our approach for automatic Web service composition is
based on the GraphPlan algorithm. In HARMONY we use ontologies for the semantic annotation of Web
services, so that the automatic service discovery, composition and execution can be realized based on
ontology inference.

1 INTRODUCTION

Web services provide a standard way to ensure the
interoperability among different software
applications running on a variety of platforms. The
current standard technologies for Web services
provide descriptions only at the syntactic level of
their functionality, without any formal description of
their semantics. This drawback prevents the use of
Web services in complex business contexts, where
the automation of these business processes is
necessary. Semantic Web Services (Akkiraju, 2005)
(Lausen, 2005) enhance WS standards by annotating
services with semantic descriptions provided by
ontologies.

This paper presents HARMONY, a framework
for automatic Web service composition and
execution based on ontologies. Our approach for
automatic Web service composition is based on the
GraphPlan (Blum and Furst, 1995) algorithm. The
paper is organized as follows. Section 2 presents the
ontology model. The framework architecture and
implementation is briefly described in section 3,
Conclusions and future directions are presented in
section 4.

2 ONTOLOGY

Our ontology model contains classes, individuals
and properties. The classes are concrete
representations of domain concepts. A property
either defines a relation between concepts or a
restriction. There are two types of relations in our
ontology model: hierarchical relations and non-
hierarchical relations. The hierarchical relations are
taxonomic relations while the non-hierarchical
relations are relating concepts across the hierarchical
structure. Restrictions describe a class of individuals
and possibly a number of relationships that they
participate in. In our ontology model we have
defined existential restrictions. An existential
restriction describes the class of individuals that are
in relationship with at least one individual member
of another class.

Three main generic classes can be identified as
the core of our model: WebService, Message and
WebServiceRestriction. WebService class is the root
class of the service classification tree. The Message
tree has two generic classes of concepts: Request
and Response, which are classifications of the inputs
and outputs of the services respectively. Finally, the
WebServiceRestriction tree is a classification of the
effects and preconditions of the services. The

240
R. Chifu V., Salomie I., Şt. Chifu E. and Pârţac C. (2008).
HARMONY - A FRAMEWORK FOR AUTOMATIC WEB SERVICE COMPOSITION.
In Proceedings of the Fourth International Conference on Web Information Systems and Technologies, pages 240-243
DOI: 10.5220/0001520402400243
Copyright c© SciTePress

generic properties of the Web services which are
taken into account by our model are the following:
(i) the endpoint as a data type property indicating
the address at which the service can be invoked; (ii)
the input as an object property representing a
request message as an output from another service;
(iii) the output as an object property representing a
response message; (iv) precondition and effect as
object properties representing conditions on the
information space before and after the services are
executed; (v) description as a data type property
representing the description of a Web service. Based
on this ontology model we have developed an
ontology for an online bookstore using the Protégé
OWL editor (Horridge, 2004) (Figure 1). This
ontology is used for semantic annotation of web
services, as a vocabulary for the graphical user
interface and for a “smart” planner. In our work, we
use SAWSDL (Verma, 2007) for the semantic
annotation of Web services. Because at this moment
there isn’t any final decision about representing the
preconditions and effects in SAWSDL, we have
chosen to extend SAWSDL with WSDL-S
(Akkiraju, 2005) schema, which provides a way of
representing the preconditions and effects.

Figure 1: Main OWL ontology classes.

3 FRAMEWORK
ARCHITECTURE

HARMONY is an experimental framework for
automatic Web service composition created to ease
the process of composition, thereby reducing the
complexity and the development time of a composite
Web service. HARMONY components were
designed to be independent of each other. An
overview of the HARMONY architecture is
presented in Figure 4, where the arrow connections
represent the data flow.

Figure 2: Framework architecture.

The UDDI Publisher takes the WSDL as input and
creates its corresponding tModel, bindingTemplates
and businessServices into the UDDI server. As
UDDI server we use jUDDI provided by the Apache
Foundation (jUDDI, 2007). The UDDI Inquirer
creates a cache of all the registry entries. This way,
inside the UDDI Inquirer cache, we create the
mappings of the inputs, outputs, preconditions and
effects of Web services to ontology classes. The
Ontology Manger consists of the Jena API
framework (Carroll, 2004) and a cache used to store
the ontology model. The GUI interacts with the Web
Service Composer and Invoker modules. The user
only needs to select by the GUI the inputs, outputs,
preconditions and effects (which are concept classes
from the ontology) of the desired services and to

HARMONY - A FRAMEWORK FOR AUTOMATIC WEB SERVICE COMPOSITION

241

invoke Web Service Composer. After the planner
finds the solution, it should be evaluated and
validated, and then Web Service Invoker is called in
order to execute the newly composed Web Service.
A more detailed description of each component is
presented in what follows.

3.1 Ontology Manager

The Ontology Manger uses the Jena Ontology API
(Carroll, 2004). The main drawback of Jena resides
in its speed inefficiency. In order to improve the
performance, our Ontology Manger has a caching
mechanism which stores the ontology model
between Jena interface calls. It allows for a
significant speed improvement mainly because the
same model is used by all of the framework modules
interacting with the ontology. If a new rule needs to
be inferred, the average loading time of the ontology
is between 2 and 5 seconds. By using the Jena
caching mechanism, a retrieval of the ontology
model takes approximatively 250 ms, but by using
our Ontology Manager caching mechanism it takes
up to 3 ms.

3.2 UDDI Publisher

A simple method for publishing Web services was
implemented in order to add a high degree of
automation to the publishing process. In our
approach we publish a service by simply providing
the SAWSDL files to our UDDI Publisher. The
UDDI Publisher consists of two modules: Interface
Publisher and Service Publisher. Interface Publisher
is responsible for publishing Service interfaces
which are mapped into UDDI tModels. The Service
Publisher is responsible for publishing the Service
implementation which is mapped into
businessServices and bindingTemplates.

3.3 UDDI Inquirer

There are remarkable implementation efforts in the
area of service composition frameworks in general
and in UDDI query in particular. The main
disadvantage of previous approaches (Châtel, 2006
and Verma, 2006) is that they are constrained to
using UDDI defined inquiry facilities. We took an
alternative approach by defining a separate UDDI
inquirer tool. A cache entry is defined for each
bindingTemplate, which corresponds to a Web
Service operation. In order to generate the cache
entry, the SAWSDL corresponding to a
bindingTemplate is parsed and the URIs of the

ontology classes representing the input, output,
preconditions and effects are extracted. Then, a call
to Ontology Manager is made in order to include the
actual ontology classes in the cache.

3.4 Web Service Composer

Our Web Service Composer implements the
GraphPlan algorithm, which takes into account the
inputs, outputs, preconditions and effects. The
GraphPlan algorithm takes into consideration only
the viable solutions. The GraphPlan algorithm finds
such viable solutions by evaluating at each state
whether the preconditions necessary to run a service
are met and whether all the inputs are present. The
java class implementing the GraphPlan algorithm
finds all the goals situated on the same depth in the
graph, but it can be configured to find the solution
until a certain depth is achieved or until it finds a
certain number of solutions. In order to be able to
reuse the solutions, they must be saved in an easily
serializable / deserializable format. The framework
saves the solutions provided by GraphPlanner in
XML format in a repository of reusable complex
services.

3.5 Invoker

The composite service invoker takes as input the list
of Web services to be invoked and the values to be
passed as inputs and generates an Axis engine client
for each call. The invoker parses the SAWSDL files
in order to configure the clients and assigns a
serializer for each input and a deserializer for each
output. Then, it constructs the java bean classes
corresponding to each input of the first service. The
result of the first service is automatically converted
by the Axis engine to a java bean. Then, the second
service is invoked, and so on, until the last one. In
this execution scenario, a java bean must be
generated for each concept class described in the
ontology.

3.6 GUI

The graphical user interface is composed out of two
functional parts: the composer GUI and the invoker
GUI. In the former, the user selects the ontology
whose concepts he wants to use in the automatic
composition of Web Services, followed by selecting
the inputs, outputs, preconditions and effects of the
desired service. The inputs, outputs, preconditions
and effects are chosen from the previously selected
ontology classes. After invoking the service

WEBIST 2008 - International Conference on Web Information Systems and Technologies

242

composer, the invocation interface is presented,
where the available solutions are shown, allowing
the user to select the input values for the composed
service.

4 CONCLUSIONS

In this paper we have presented HARMONY, a
framework for automatic Web service composition
based on ontologies. In our approach, the ontology is
used in all the steps of the automatic composition
process: for the semantic annotation of Web
services, as a vocabulary for the graphical user
interface, and for implementing a “smart” planner by
using semantics. The proposed solution is rather
generic, and could be used in different contexts.
Framework components were designed to be
independent of each other, so that we can add /
replace framework components without major
modifications. The user interface is simple, but at
the same time powerful and intuitive. It drives the
user in the composition process in a friendly manner
by providing a controlled language that uses the
ontology concepts. The only task for the user when
he desires a new composed Web service is to change
the specification, i.e. the input, output, preconditions
and effects. In future work, we plan to extend our
framework with a QoS module in order to allow for
dynamic selection of the best solution from the set of
solutions generated by the planner. Another
important effort will be directed towards the addition
of heterogeneity handling. This would allow using
semantically compatible concepts from different
ontologies.

ACKNOWLEDGEMENTS

This work was supported by the PI-1020 (333/2007)
project within the framework of the “Research of
Excellence” program initiated by the Romanian
Ministry of Education and Research.

REFERENCES

Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M.,
Schmidt, M.-T., Sheth, A., Verma, K., 2005,
http://www.w3.org/Submission/WSDL-S/.

Bechhofer, S., van Harmelen, F., et al., 2004. OWL web
ontology language reference. W3C recommendation,
M. Dean, G. Schreiber (eds.).

Blum, A. and Furst, M., 1995. Fast planning through
planning graph analysis. In Proceedings of the 14th
International Joint Conference on Artificial
Intelligence (IJCAI 95), pp. 1636-1642.

Cardoso, J., Sheth, A., 2003. Semantic e-Workflow
Composition. Journal of Intelligent Inform. System,
21(3): pp. 191-225.

Carroll, J., Dickinson, I., Dollin, D., Reynolds, D.,
Seaborne, A., Wilkinson, A., 2004. Jena:
Implementing the Semantic Web Recommendations.
Proceedings of the 13

th
World Wide Web conference

on Alternate track papers & posters, New York, NY,
USA, pp. 74-83

Châtel, P., 2006. WSDL 2.0 to UDDI mapping SAWSDL
to UDDI mapping, Thales Group.

Farshad, H., et al., 2005. Semantic Web Service
Composition in IRS-III: The Structured Approach, in
Proc. of the 7 IEEE Intl Conf on Ecommerce
Technology (CEC'05).

Haarslev, V., Möller, R., 2003. Racer: An OWL reasoning
agent for the Semantic Web. Proceedings of the
International Workshop on Applications, Products and
Services of Web-based Support Systems, pp: 91-95.

Lausen, H., Polleres, A., Roman, D., (Eds), 2005. Web
Service Modeling Ontology (WSMO). W3C Member
Submission, http://www.w3.org/Submission/WSMO/.

McIlraith, S. and Son, T., 2002. Adapting Golog for
Composition of Semantic Web Services. In the
Proceedings of the Eighth International Conference
on Knowledge Representation and Reasoning
(KR2002).

Roman, D., et. al. , 2005. Web Service Modeling
Ontology. Applied Ontology 1 (2005) pp.77–106

Sirin, E., et al., 2005. Template-based Composition of
Semantic Web Services, AAAI Fall Symposium on
Agents and the Semantic Web, Virginia.

Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., and Katz
Y.,2006. Pellet: A Practical OWL-DL reasoner. In the
Journal of Web Semantics.

Verma, K., Gomadam, K., Sheth, A. P., Miller A.J., Wu,
Z., 2005. The METEOR-S Approach for Configuring
and Executing Dynamic Web Processes, Technical
Report.

Verma, K., 2006. Configuration and Adaptation of
Semantic Web Processes. PhD thesis, Department of
Computer Science, University of Georgia.

Verma, K., Sheth, A. P, 2007. Semantically Annotating a
Web Service, IEEE Internet Computing, pp. 83-85B.

Horridge, M., Knublauch, H., et al., 2004. A practical
guide to building OWL ontologies using the Protege-
OWL plugin and CO-ODE Tools. The University Of
Manchester.

Wu, Z., Ranabahu, A., Gomadam, K., Sheth, A.P., Miller,
J.A.,2007. Automatic Composition of Semantic Web
Services using Process and Data Mediation, LSDIS
lab, University of Georgia.

jUDDI, http://ws.apache.org/juddi/, accessed June 2007

HARMONY - A FRAMEWORK FOR AUTOMATIC WEB SERVICE COMPOSITION

243

