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Abstract: XML data compression is an important feature in XML data exchange, particularly when the data size may 
cause bottlenecks or when bandwidth and energy consumption limitations require reducing the amount of 
the exchanged XML data. However, applications based on XML data streams also require efficient path 
query processing on the structure of compressed XML data streams. We present a succinct representation of 
XML data streams, called Bit-Stream-Based-Compression (BSBC) that fulfills these requirements and addi-
tionally provides a compression ratio that is significantly better than that of other queriable XML compres-
sion techniques, i.e. XGrind and DTD subtraction, and that of non-queriable compression techniques like 
gzip. Finally, we present an empirical evaluation comparing BSBC with these compression techniques and 
with XMill that demonstrates the benefits of BSBC. 

1 INTRODUCTION 

1.1 Motivation  

XML is widely used in business applications and is 
the de facto standard for information exchange in 
fixed wired networks. Because of the verbose struc-
ture of XML, applications operating on continuous 
XML data streams or requiring very large amounts 
of XML data will likely benefit from XML compres-
sion techniques in platforms such as mobile net-
works where storage, bandwidth or energy are lim-
ited for the following reason. Applications save 
energy and processing time not only when loading 
compressed instead of uncompressed XML data, but 
also they can execute path queries directly on the 
compressed data format, i.e., without decompressing 
it. We propose an XML compression technique, 
called Bit-Stream-Based-Compression (BSBC), 
which supports path queries while achieving in our 
experiments a better compression ratio than other 
XML compression techniques for XML data streams 
which support path queries, i.e. XGrind and DTD 
subtraction. Furthermore, BSBC achieves an even 
better compression ratio than text compression tools 
like gzip, and it sometimes even beats XMill. 

1.2 Contributions  

This paper proposes a novel approach to XML com-
pression, called Bit-Stream-Based-Compression 
(BSBC) that combines the following properties:  
• It removes redundancies within the structure 

of the XML file by sharing identical sub-trees 
• It separates an XML data stream into its con-

stituent parts: its tree structure extended by 
pointers to common sub-trees, its names of ele-
ments and of attributes, and its values of text 
constants and of attributes.  

• It compresses the tree structure to a bit stream 
and a sub-tree pointer stream, it collects bit 
stream positions of names of elements and at-
tributes in inverted lists, and it groups structur-
ally related text and attribute values into con-
tainers to improve the compression ratio.  

• It stores compressed data into packages allow-
ing thus shorter relative addresses in inverted 
lists and value containers. 

• It combines a fast bit stream-based navigation 
technique along the child, descendant, follow-
ing-sibling, and following axes with direct ac-
cess to elements and attributes via inverted 
lists. As the navigation along these axes can be 
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done on the bit stream alone, it needs a mini-
mum of space and can be done very fast.  

• Combined with a preliminary step, which re-
writes queries containing backward axes into 
equivalent queries containing only on forward 
axes, BSBC allows fast navigation along all 
XML axes.  

As a result, BSBC has the following advantages. 
In comparison to other approaches to path queries on 
XML streams (e.g. AFilter (Candan et al., 2006)) 
that support only some axes and that require decom-
pression to process queries, BSBC supports the exe-
cution of path queries involving all XML axes, and 
it does not require decompression for the purpose of 
path query processing. Furthermore, our extensive 
evaluation demonstrates that the compression ratio 
achieved by BSBC outperforms that of other XML 
compression techniques (like XGrind and DTD sub-
traction) that support path queries. To the best of our 
knowledge, there is no other XML compression sys-
tem that combines the advantages of BSBC.  

1.3 Paper Organization 

The remainder of this paper is organized as follows. 
Section 2 describes how a SAX stream is com-
pressed by two compression steps each of which 
transforms an input data stream into two or three 
compressed output data streams, and it explains how 
the document structure is stored in a sub-tree pointer 
stream and in a bit stream and separated from the 
elements and attributes which are stored in inverted 
lists. Section 3 describes how to implement naviga-
tion along the XML axes and extended navigation 
on the bit stream, the sub-tree pointer stream, and 
the inverted lists. Section 4 compares the compres-
sion ratio of BSBC with that of other approaches. 
Section 5 compares BSBC to related work. Finally, 
Section 6 summarizes our contributions.   

2 THE STREAMS 
– KEY OF OUR SOLUTION 

BSBC views XML data as an input stream of SAX 
events that is transformed by two steps into four 
other streams (c.f. Figure 1). 

Step 1 transforms the SAX stream (a) into con-
stant containers (b) and an intermediate binary DAG 
stream (c), which is in Step 2 transformed into a 
sub-tree pointer stream (d) representing the back-
ward pointers to shared sub-trees within the DAG, a 
bit stream (e) capturing the tree structure of the 

XML data, and an inverted list (f), containing a 
mapping from element names to positions within the 
bit stream.  

 
Figure 1: Compression Steps of the BSBC system. 

2.1 Step 1: Separating XML into DAG 
Packages and Constant Containers 

As we expect a significantly higher repetition ratio 
for element and attribute names than for constants, 
we first separate element and attribute names from 
constants, and we then use a different technique for 
the compression of element and attribute names than 
we use for the compression of constants.  

Step 1 is done as follows (for an example see 
Figure 2). The input SAX stream (Figure 2(a)) is 
parsed and separated into a stream of two different 
kinds of packages: packages of constant containers 
(Figure 2(b)), which contain the constants, i.e., the 
text and attribute values of the SAX stream, and 
DAG packages which contain the XML structure. 
Figure 2(g) shows a graphical representation of the 
binary DAG of the SAX stream of Figure 2 (a), i.e., 
all text nodes have been replaced with “=T” and 
common binary sub-trees are shared, and Figure 2(c) 
shows the DAG package generated from the SAX 
stream.  

The DAG packages are constructed by a DAG 
processor like e.g. the one presented in (Böttcher 
and Steinmetz, 2007) and consist of the following 
kinds of events: startElement(id, label) and endEle-
ment(id, label), which are similar to the correspond-
ing SAX events, but which contain an additional, 
unique node ID, and the additional event common-
SubtreeFound(id) which represents a backward 
pointer to the sub-tree rooted by the node with ID id. 

The structure-oriented SAX events, i.e., start-
Document, startElement, endElement, and endDocu-
ment, are passed to the DAG compressor. Hereby 
the attributes are treated as follows: An attribute 
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definition of the form att=“value” is passed as an 
event sequence startElement(“@att”), endEle-
ment(“@att”), which is sent to the  DAG compres-
sor, whereas the pair (@att, value) is passed to the 
constant containers and will be processed later. 

Whenever a character-event is received, an event 
sequence startElement(“=T”), endElement(“=T”) is 
sent to the DAG compressor, and the pair (element, 
value) is passed to the constant containers, where 
element is the label of the parent node of the text 
node. 

However, if an event startElement(“E1”) is di-
rectly followed by an event endElement(“E1”) in 
the SAX stream, i.e., if an empty element tag is 
found, this is treated like a character-event receiving 
an empty text node. That is, an event sequence star-
tElement(“=T”), endElement(“=T”) is sent to the 
DAG compressor, and the pair (E1, “”) is passed to 
the constant containers, where “” is the empty con-
stant. This is done to ensure that all leaf nodes are 
either constants, which are represented by “=T”, or 
attribute nodes, which are represented by a name 
starting with ‘@’. 

 
Figure 2: (a) SAX stream, (b) constant containers, (c) bi-
nary DAG stream, (d) sub-tree pointer stream, (e) bit 
stream, (f) inverted lists of our example, and (g) graph of 
the binary DAG. 

For the storage of constants, we follow the idea pre-
sented in XMill (Liefke and Suciu, 2000) and sort 
the constants according to their parent element into 
separate data containers (i.e., the @title container, 
the author container, and the short container in Fig-
ure 2(b)). Each container for constants with a parent 
element Ei stores the text values included in Ei ele-
ments in the order in which they occur in the docu-
ment. Each container is then compressed using 
BZip2 which implements Burrows-Wheeler Block-
Sorting (Burrows and Wheeler, 1994) followed by 
Huffman-Encoding (Huffman, 1952). 

In order to support (unbounded) XML streams, 
we divide both structures (DAG and constants) into 
packages: Whenever a certain number n of events 
was received, the DAG that was compressed so far, 
the path of non-compressed nodes (i.e., the nodes 
from root to the current node, the next-siblings of 
which were not yet inserted into the DAG), and the 
compressed constant containers are passed to the 
second step. This allows a pipelined approach that is 
capable to compress (unbounded) XML data 
streams. 

2.2 Step 2: Transforming DAG  
Packages into Multiple Streams 

During decompression or query processing, we have 
to correctly recombine element and attribute names 
with included constants, i.e., we have to know the 
correct relative positions of both kinds of data. For 
this purpose, we generate the so called bit stream 
during compression. 

Within Step 2, we use the DAG stream for gen-
erating three new streams as follows. We separate 
element names from the structure of the DAG 
stream (Figure 2(c)), i.e., we transfer names to a 
separate stream, called inverted lists (Figure 2(f)) to 
hold the names of elements or their attributes. The 
remaining structure of the DAG stream is stored in 
the bit stream (Figure 2(e)) and the sub-tree pointer 
stream (Figure 2(d)). These three streams together 
enable the traversal of the XML document without 
requiring decompression. 

2.2.1 The Bit Stream and the Sub-tree 
Pointer Stream 

The bit stream simply contains a “1”-bit for each 
event startElement of the DAG stream, and a “0”-bit 
for each event endElement of the DAG stream. 

In an intermediate table, a mapping from node 
IDs to positions of the corresponding ‘1’-bit within 
the bit stream is stored. Whenever a commonSub-
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treeFound(id)-event is read, the position pID of the 
node with ID id is looked up, and the pair (current-
Pos, pID) representing the sub-tree pointer is written 
to the sub-tree pointer stream, where currentPos is 
the current position within the bit stream. 

2.2.2 The Inverted Lists 

In order to store the mapping of element names to 
positions within the bit stream, BSBC uses inverted 
lists, where each element name occurring in the 
package is associated with a list of relative addresses 
(N1,N2,…) where the elements with this element 
name occur.  

Each element name is thus stored only once per 
package within the inverted list, regardless of how 
often it occurs in the XML data. As furthermore no 
additional pointers are needed, this succinct repre-
sentation of elements and their positions can sig-
nificantly save space.  

While parsing the DAG stream, whenever re-
ceiving an event startElement(id, “E1”), a ‘1’-bit is 
inserted into the bit stream (as described above), but 
at the same time, the position P of the new ‘1’-bit 
within the bit stream is written to the inverted ele-
ment list of the element E1. 

This will be useful for the typical XPath location 
steps /E1 and //E1 as outlined in Section 3. In the 
rare case where the element name of an element at a 
specific position N, say N=10, is needed, it is still 
possible to search N in the sorted list of each ele-
ment E until the position N is found or until a num-
ber >N indicates that N will not occur in the sorted 
list of positions of E elements.  

Furthermore, it is possible to sort the inverted 
lists within each package such that the entries for all 
attribute names precede the entries for all elements. 
This makes unnecessary all the “@”-characters used 
as a prefix for each attribute name. Instead, all the 
“@”-characters can be replaced by a single pointer 
per package to the first inverted list of an element. 

In order to reach a better compression result, we 
do not repeat each element name in each package. 
Instead, we define a symbol SE1 for an element 
name E1 the first time it occurs in the compressed 
data. And we replace each further occurrence of E1 
in the following packages by its symbol SE1. 

The inverted element list for the text nodes, i.e., 
the inverted element list for the element “=T” is not 
stored in the final compressed data, as each ‘1’-bit 
position that is not included in any inverted element 
list has to be a text node. 

2.3 Optimizing Query Evaluation by 
Sparse Constant Pointers 

Within the evaluation of path queries, we will have 
to find a constant T for a given position P within the 
bit stream that represents the placeholder “=T” for T. 
With the help of the element label “E1” of the parent 
of T, we can identify the correct constant container 
CE1, but in order to identify the correct position of T 
within CE1, we have to know, how many nodes with 
label “=T” and with a parent node with label “E1” 
exist up to the current context node.  

Without any additional information, we would 
have to count these nodes from the start of the docu-
ment, i.e., we would not be able to skip parts of the 
compressed document during query evaluation. 

In order to avoid this disadvantage, we attach to 
every d-th bit D in the bit stream the information of 
how many nodes with label “=T” and with a parent 
node with label “E” exists up to D for each element 
label E that has occurred within the document so far. 

3 NAVIGATION ON THE 
STREAMS 

Each navigation step can start at the bit-stream posi-
tion Pstart of the start-element tag of an arbitrarily 
chosen current context node C. We first explain ba-
sic navigation steps, and then use them to compose 
more complex navigation steps on the compressed 
XML data.  

3.1 Basic Navigation using the  
First-attribute, First-child and 
Next-sibling Axes 

Given the bit-stream position Pstart of the current 
context node C, many navigation steps, e.g., finding 
C’s next–sibling, requires finding the bit-stream po-
sition Pend of C’s end-element tag.  

3.1.1 Finding the Position Pend of the  
End-tag 

In order to proceed to the bit stream position Pend of 
the “0”-bit in the bit stream that represents the end-
tag of the current context node, each start-tag has to 
be closed by exactly one end-tag, i.e., we search the 
corresponding “0”-bit for each “1”-bit on the bit 
stream as follows. The search counts “0”-bits and 
“1”-bits, starts at the bit stream position Pstart, and 
continues counting bits of the bit-stream until the 
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number of “1”-bits is equal to the number of “0”-
bits, i.e., each start-tag has been closed.  

Pend may occur in a later package than Pstart. Note 
that nevertheless, we can use relative addresses for 
Pstart and Pend because the operation ‘find position 
Pend of the corresponding end tag’ operates on the bit 
streams only, i.e., searching for Pend in the bit stream 
of a later package does not disturb the use of small 
relative addresses. 

3.1.2 Proceeding to the Next-sibling 

In order to find the bit stream Position PNSstart of the 
bit that tells us whether or not the current context 
node has a next sibling, we first proceed to the posi-
tion Pend of the “0”-bit in the bit stream that repre-
sents the end-tag of the current context node. The bit 
at position Pend+1, i.e., after the bit representing the 
end-tag, is a “1”-bit representing the next-sibling if a 
next-sibling exists, and a “0”-bit otherwise.  

3.1.3 Distinguishing Elements and  
Attributes from Text Constants 

The current context node represented by a “1”-bit at 
position Pstart in the bit-stream is an element name if 
the node is an inner node, i.e., if the next bit stream 
position Pstart+1 also contains a “1”-bit. However, if 
the next bit stream position Pstart+1 contains a “0”-
bit, the current context node represented by the “1”-
bit at position Pstart is a leaf node, i.e., it either is a 
constant, or it is an attribute name. It is a constant, if 
and only if Pstart can not be found in any inverted list 
of an attribute name. 

3.1.4 Determining Element Names and  
Attribute Names and Distinguishing 
Elements from Attributes 

Which name the element or attribute of the current 
context node C has, can be distinguished by search-
ing position Pstart in the inverted lists. C is an attrib-
ute or an element, depending on in which kind of an 
inverted list Pstart is found. Inverted lists for attributes 
are distinguished from inverted lists for elements by 
grouping inverted lists in each package and by pro-
viding a pointer to the first inverted list of an ele-
ment for each package.  

3.1.5 Proceeding to the First-attribute Node 

Let Pstart be the bit stream position of an element 
node C. C has a first-attribute if and only if bit 
stream position Pstart+1 contains a “1”-bit and repre-

sents an attribute. In this case, Pstart+1 represents C’s 
first-attribute.  

3.1.6 Proceeding to the First-child Node 

In order to find the bit stream Position PFCstart of the 
bit that tells us whether the current context node has 
a first-child, we have to proceed similar as when 
searching for the first-attribute, except that whenever 
a “1”-bit represents an attribute instead of the first-
child, we use the bit stream to proceed to the attrib-
ute’s next-sibling.1 The attribute’s next-sibling is ei-
ther the next attribute, in which case we continue to 
search for a next-sibling or it is the first-child or it 
does not exist, which means that there is no first-
child.  

3.2 Navigation using the other Forward 
Axes 

Given a position Pstart of the start-tag of the current 
context node, we first determine the position Pend of 
the end-tag of the current context node as explained 
before. The next step depends on the forward axis to 
be used. 

3.2.1 Proceeding to Descendant-or-Self::E1 

When a location step //E1 requires searching a de-
scendant-or-self E1 element, the search is signifi-
cantly easier than standard path search for a de-
scendant-or-self E1. Only E1 elements with a bit 
stream position PE1start in the interval of [Pstart, Pend) 
fulfill the descendant-or-self condition. Therefore, in 
the packages that match these addresses2, we simply 
lookup the inverted lists for E1 in order to find the 
bit stream positions PE1start of E1 descendant nodes 
with Pstart ≤ PE1start < Pend. 

3.2.2 Proceeding to Child::E1 or to  
Attribute::A1 

When we search a child::E1 or an attribute @A1 re-
spectively, we use the inverted lists of E1 or @A1 in 
all relevant packages to look for positions PE1start 
with Pstart < PE1start < Pend, and we use the bit streams 
to check that the depth of PE1start is exactly one more 

                                                           
1 This is where we find the first-child because further attributes of 
C are stored as siblings of the first-attribute and the first-child is 
stored as the ‘next-sibling’ of the last attribute in our simple ele-
ment stream. 
2 We use PE1start<Pend as a shortcut for ‘Pend belongs to a later 
package than PE1start or they belong to the same package and 
PE1start is less than Pend’. 
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than the depth of Pstart, i.e., the number of “1”-bits is 
exactly one more than the number of “0”-bits in the 
bit stream interval from Pstart to PE1start. These posi-
tions PE1start represent the element start-tags for the 
child::E1 elements or the attributes @A1 that we are 
looking for. 

3.2.3 Proceeding to Following-sibling::E1 

When we search a following-sibling::E1, we addi-
tionally lookup the bit stream position PPend of the 
end-tag of the parent of current context node. PPend 
is the first bit stream position after Pend where the 
number of “0”-bits exceeds the number of “1”-bits 
by one.  

Then, we use the inverted lists of E1 in all rele-
vant packages to look for positions PE1start with Pend 
< PE1start < PPend, and we use the bit streams to 
check that the depth of PE1start is the same as the 
depth of Pstart, i.e., the number of “1”-bits is equal to 
the number of “0”-bits in the bit stream interval from 
Pstart to PE1start. These positions PE1start represent the 
element start-tags for the following-sibling::E1 ele-
ments that we are looking for. 

3.2.4 Proceeding to Following::E1 

Finally, when we search a following::E1, we use the 
inverted lists of E1 to look for positions that are lar-
ger than Pend or occur in a later package. 

3.2.5 Looking-up a Specific Constant 

When searching a constant V for a given position X 
within the bit stream, we also regard the parent ele-
ment – or parent attribute in the case of attribute 
values – E of V in the bit stream.  

As described in Section 2.3, we have attached pe-
riodically sparse constant pointers to bit stream posi-
tions that define, how many text values V’ for a 
given parent element or parent attribute E’ have 
been parsed so far.  

In order to search the text value for a given posi-
tion X, we have to go back within the bit stream to 
the last constant pointer, i.e., to the last bit stream 
position C that contains the text container offset and 
lookup the offset O for the parent element – or par-
ent attribute – E. Afterwards, we start there to count 
the number N of text nodes that have the parent ele-
ment – or parent attribute – E. This has to be done in 
consideration of the sub-tree pointers as described in 
Section 3.3. As some of the elements might contain 
mixed mode, we have to consider, that one element 
may not only contain a single text node as child, but 
as well two or more. 

The text value that we are looking for, can then 
be found as the O+Nth text value within the constant 
container of the element – or attribute – E. 

3.3 Sub-tree Pointers 

So far, we did not handle the sub-tree pointers stored 
within the sub-tree pointer stream. Whenever we 
reach a position p within the bit stream for which an 
entry (p, pID) exists within the sub-tree pointer 
stream, we store the position p on a stack and con-
tinue to parse the bit stream at position pID. When 
the end of the sub-tree started at pID is reached, i.e., 
when we have read as many ‘1’-bits as ‘0’-bits, we 
jump back to the position which is given on top of 
the stack and remove this position from stack. 

3.4 Backward Axes  

We do not explicitly consider backward axes here, 
as it is possible to rewrite each XPath query using 
backward axes into an equivalent XPath query using 
forward axes only. An approach on how to rewrite 
backward axes is presented in (Olteanu et al., 2002). 

4 EVALUATION OF THE 
COMPRESSION 

We have implemented BSBC using Java 1.5 and a 
SAX parser for parsing XML documents. We have 
evaluated BSBC on the following datasets: 

1. XMark(XM) – an XML document that models 
auctions (Schmidt et al., 2002) 

2. hamlet(H) – an XML version of the famous 
Shakespeare play 

3. catalog-01(C1), catalog-02(C2), dictionary-01 
(D1), dictionary-02(D2) – XML documents that 
were generated by the XBench benchmark (Yao 
and Özsu, 2002) 

4. dblp(DB) – a bibliographic collection of publica-
tions 

As can be seen in Table 1, the sizes of the docu-
ments reach from a few hundred kilobytes to more 
than 300 Megabytes. 

Table 1: Sizes of documents of our dataset. 

document XM H C1 C2 DB D1 D2 
Uncom-
pressed 

size in MB
5.3 0.3 10.6 105.3 308.2 10.8 106.4
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We compared BSBC with four other approaches: 
- XGrind (Tolani and Hartisa, 2002) – a queryable 
XML compressor  
- gzip – a widely used text compressor 
- XMill (Liefke and Suciu, 2000) – an XML com-
pressor using BZip2 for the compression of con-
stant values 

- DTD subtraction (Böttcher, Steinmetz, and Klein, 
2007) – a DTD-conscious XML compressor  using 
gzip for the compression of constant values that al-
lows query evaluation and partial decompression 

During our experiments, we have chosen d=100, i.e., 
each 100th bit contains direct pointers into the con-
stant containers. 
 

0%

20%

40%

60%

gzip 33% 28% 21% 21% 18% 30% 30%

XMill 22% 21% 10% 10% 11% 18% 18%

XGrind 46% 32% 32% 54% 54%

DTDSub. 32% 34% 17% 17% 22% 29% 29%

BSBC 24% 22% 9% 9% 12% 18% 18%

XM H C1 C2 DB D1 D2

 
Figure 3: Compression ratio of the whole XML document. 

The results of our experiments are shown in Figure 
3. Using these datasets, XMill performs better for 
XM, H, DB, D1 and D2 achieving compression ra-
tios that are up to 2% lower than those of BSBC, 
whereas BSBC performs better for C1 and C2 
achieving compression ratios that are up to 1% 
lower than those of XMill. However, in contrast to 
XMill, BSBC allows to evaluate queries on the com-
pressed data and to decompress data only partially. 

Our approach, BSBC, performs significantly bet-
ter than gzip, and has the additional advantage over 
gzip that query processing can be performed effi-
ciently directly on the compressed data. The im-
provements in compression ratios over gzip range 
from 6% to 12%. 

Compared to XGrind – an approach that allows 
efficient query evaluation and partially decompres-
sion – our approach, BSBC, achieves a higher com-
pression ratio3. The difference of the compression 

                                                           
3 Note that on our test computer, we got access violations when 

running XGrind on XM and DB and therefore the compression 
ratios for these two documents are missing. 

ratios (XGrind minus BSBC) range from 24% to 
36%. 

Compared to DTDsubtraction, BSBC achieves a 
higher compression ratio. The differences of the 
compression ratios (DTDsubtraction minus BSBC) 
range from 8% to 11%. 

In a second series of measurements, we have 
measured the size of the structure compression, i.e., 
the constant containers were removed from the com-
pressed data. The results of these experiments are 
shown in Figure 4. 

0%

5%
10%

15%

20%
25%

30%

Total 24% 22% 9% 9% 12% 18% 18%

Structure 6.5% 3.5% 0.3% 0.2% 2.6% 3.3% 3.3%

XM H C1 C2 DB D1 D2

 
Figure 4: Structure compression compared to total com-
pression. 

Our experiments have shown that especially the 
structure compression of BSBC is extremely high. 
While the total compression reaches a ratio of 9% to 
24%, the structure compression ranges from 0.2% to 
6.5%. The structure compression is up to 40 times 
stronger than the total compression for C1, in gen-
eral it is at about 5 times stronger than total com-
pression. 

5 RELATED WORK 

There exist several XML compression approaches, 
which can be mainly divided into three categories. 
First, approaches that avoid redundancies within the 
string values (of element and attribute names as well 
as of constants) by using dictionaries and tokeniza-
tion. Second, approaches that avoid redundancies 
within the structure, i.e., that avoid multiple occur-
rences of complete sub-trees within the XML docu-
ment tree. Finally, approaches that avoid redundan-
cies that occur when schema information is known. 
All these approaches differ in their features, particu-
larly in whether the compressed data structures can 
be decompressed partially, whether the compressed 
data structures are queriable, and whether they sup-
port unbounded XML data streams. 
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The last category (avoiding external redundan-
cies given by schema information) includes such ap-
proaches as XCQ (Ng et al., 2006) and DTD sub-
traction (Böttcher, Steinmetz, and Klein, 2007). 
They both separate the structural information from 
the textual information and then subtract the given 
schema information from the structural information. 
Instead of a complete XML structure stream or tree, 
they only generate and output information not al-
ready contained in the schema information (e.g., the 
chosen alternative for a choice-operator or the num-
ber of repetitions for a *-operator within the DTD). 
Both approaches, XCQ and DTD subtraction, are 
queriable and applicable to XML streams, but they 
can only be used if schema information is available. 

XQzip (Cheng and Ng, 2004) and the approach 
presented in (Buneman, Grohe, and Koch, 2003) be-
long to the second category (avoiding structural re-
dundancies). They compress the data structure of an 
XML document bottom-up by combining identical 
sub-trees. Afterwards, the data nodes are attached to 
the leaf nodes, i.e., one leaf node may point to sev-
eral data nodes. The data is compressed by an arbi-
trary compression approach. These approaches allow 
querying compressed data, but they are not directly 
applicable to infinite data streams.  

An extension of (Buneman, Grohe, and Koch, 
2003) and (Cheng and Ng, 2004)  is the BPLEX al-
gorithm (Busatti, Lohrey, and Maneth, 2005). This 
approach does not only combine identical sub-trees, 
but recognizes patterns within the XML tree that 
may span several levels, and therefore allows a 
higher degree of compression. In comparison to 
BSBC, this approach does not explicitly define how 
to compress text constants and attribute values con-
tained in XML data and how to distinguish both in 
the compressed XML format. 

The first category (avoiding textual redundancies 
by tokenization) allows for a much faster compres-
sion approach than the second one, as only local data 
has to be considered in the compression as opposed 
to considering different sub-trees as in the second 
category. 

The XMill algorithm (Liefke and Suciu, 2000) is 
an example of the first category. It compresses the 
structural information separately from the data. Data 
is grouped according to its enclosing element and 
collected into several containers, and each container 
is compressed afterwards. The structure is com-
pressed, by assigning each tag name a unique and 
short ID. Each end-tag is encoded by the symbol ‘/’. 
This approach does not allow querying the com-
pressed data.  

XGrind (Tolani and Hartisa, 2002), XPRESS 
(Min, Park, and Chung, 2003) and XQueC (Arion et 
al., n.d.) are extensions of the XMill-approach. Each 
of these approaches compresses the tag information 
using dictionaries and Huffman-encoding (Hufman, 
1952) and replaces the end-tags by either a ‘/’-sym-
bol or by parentheses. All three approaches allow 
querying the compressed data, and, although not ex-
plicitly mentioned, they all seem to be applicable to 
data streams.  

Approaches (Bayardo et al., 2004), (Cheney, 
2001), and (Girardot and Sunderesan, 2000) are 
based on tokenization. (Cheney, 2001) replaces each 
attribute and element name by a token, where each 
token is defined the first time it is used. (Bayardo et 
al., 2004) and (Girardot and Sunderesan, 2000) use 
tokenization as well, but they enrich the data by ad-
ditional information that allows for a fast navigation 
(e.g., number of children, pointer to next-sibling, ex-
istence of content and attributes). All three of them 
use a reserved byte to encode the end-tag of an ele-
ment. They are all applicable to data streams and al-
low querying the compressed data. 

The approach in (Ferragina et al., 2006) does not 
belong to any of the three categories. It is based on 
Burrows-Wheeler Block-Sorting (Burrows and 
Wheeler, 1994), i.e., the XML data is rearranged in 
such a way that compression techniques such as gzip 
achieve higher compression ratios. This approach is 
not applicable to data streams, but allows querying 
the compressed data if it is enriched with additional 
index information. 

The approach in (Zhang, Kacholia, and Özsu, 
2004) is another succinct representation of XML. It 
does not separate the raw data structure that de-
scribes the document tree from the tokens represent-
ing the elements. Therefore, one byte is required to 
represent an end-tag, whereas our approach, BSBC, 
only needs one bit. Furthermore, our separation of 
structural data from element names does not only al-
low for a better compression as shown in the evalua-
tion; it also enables a more efficient evaluation of 
path queries because raw bit data can be compared 
more efficiently than tokens. A second difference is 
our use of inverted element lists instead of token-
dictionaries, which additionally increases the speed 
of path query evaluation significantly because the 
number of possible path hits can be reduced quite 
fast with a simple lookup within the inverted list.  

To the best of our knowledge, the separation of 
an XML stream into different compressed streams 
linked by a bit stream that is also used to evaluate 
path queries is unique to our compression technique, 
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and there is no other XML compression system that 
combines the advantages of our approach. 

6 SUMMARY AND 
CONCLUSIONS 

We have presented Bit-Stream-Based-Compression 
(BSBC), a two-step XML compression approach 
that is based on DAG compression and supports the 
compression of XML streams and path queries on 
compressed data by combining the following advan-
tages. First, both transformation steps can be exe-
cuted in a pipelined fashion, which avoids storing in-
termediate data or streams. Second, an XML data 
stream is separated into its constituent parts: the 
DAG structure, represented as a bit stream and a 
sub-tree pointer stream; the sequence of elements 
and attributes, stored in inverted lists together with 
their corresponding bit stream positions; and finally, 
the constants, stored in different containers depend-
ing on the element or the attribute embedding the 
value. This separation allows adapting the compres-
sion technique to the node type, i.e., to compress ele-
ments and attributes different from constants. Third, 
the bit stream and the sub-tree pointer stream sup-
port fast navigation along all the forward axes. 
Forth, inverted lists not only provide a better com-
pression of elements and attributes, but, in combi-
nation with the bit stream, they also support efficient 
path queries. Fifth, constants are grouped together 
according to their embedding element or attribute to 
achieve better compression.  

Our comparative evaluation with other available 
XML compression approaches shows that BSBC 
achieves a better compression ratio within our ex-
periments than the other approaches that support 
path queries, i.e. XGrind and DTD substraction, that 
BSBC beats gzip, and that BSBC even sometimes 
beats XMill.. BSBC is thus a very useful technique 
for applications that require the exchange and query-
ing of large XML data sets or XML streams on plat-
forms with limited bandwidth or energy, as e.g. mo-
bile networks. 
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