
EVALUATION OF A READ-OPTIMIZED DATABASE FOR
DYNAMIC WEB APPLICATIONS

Anderson Supriano, Gustavo M. D. Vieira∗ and Luiz E. Buzato
Instituto de Computação, Unicamp, Caixa Postal 6176, 13083-970, Campinas, São Paulo, Brazil

Keywords: Web application, performance, read-optimized database.

Abstract: In this paper we investigate the use of a specialized data warehousing database management system as a data
back-end for web applications and assess the performance of this solution. We have used the Monet database
as a drop-in replacement for traditional databases, and performed benchmarks comparing its performance to
the performance of two of the most commonly used databases for web applications: MySQL and PostgreSQL.
Our main contribution is to show for the first time how a read-optimized database performs in comparison
to established general purpose database management systems for the domain of web applications. Monet’s
performance in relation to MySQL and PostgresSQL allows us to affirm that the widely accepted assumption
that relational database management systems are fit for all applications can be reconsidered in the case of
dynamic web applications.

1 INTRODUCTION

Relational database management systems (RDBMSs)
are without any doubt one of the most successful
products of computer science applied research. Since
the early 1980s, research prototypes were turned into
commercial products, these products were adopted by
many clients and now run most of the world business
processes. The acronym “RDBMS” is considered by
most application developers and business executives
an unquestionable synonym for storage, processing,
and retrieval of data and, more generally, for the in-
formation technology field as a whole. But, as com-
panies and technologies evolve, the traditional client-
server software architectures are being replaced by
multi-tier software architectures and applications fit
for the web, ranging from enterprise resource plan-
ning, to e-commerce and e-mail. Despite this diver-
sity of applications, a bird’s eye view of the software
run by modern companies is certainly going to show
RDBMSs behind not only standard OLTP applica-
tions but also as engines of on-line analytical trans-
action processing (OLAP) and web applications.

The downside of this technological uniformity
is that web applications are being deployed based
upon OLTP optimized databases, while in fact other

∗Financially supported by CNPq, under grants number
472810/2006-5 and 142638/2005-6.

database models and solutions may be more appro-
priate. A recent paper (Stonebraker and Çetintemel,
2005) argues that there are domains where a 10 fold
increase of performance is expected if the database is
optimized or, more radically, if the RDBMS is com-
pletely replaced by a different approach to data man-
agement. Specifically, the domain of data warehous-
ing and OLAP are listed as examples of the former
and stream processing is listed as an example of the
later. Varying application requirements and evolu-
tion of hardware architectures are the main reasons
for this 10 fold increase, and this order of magnitude
increase in performance is enough to justify the pur-
suit of these alternative solutions.

We believe that the construction of dynamic web
applications is a domain with a potential for order
of magnitude performance increase. Even though
web applications are generally considered to be in
the OLTP domain, these applications deviate from the
usual write-intensive pattern usually associated with
OLTP. Much of the dynamic content generated for
the web is actually read-only, ranging from 85% read-
only transactions in a web shop to nearly 99% read-
only transactions in a bulletin-board application with
a large user base (Amza et al., 2002). Databases op-
timized for OLAP are read-optimized, thus their use
could offer a simple way to increase the performance
of web applications.

73
Supriano A., M. D. Vieira G. and E. Buzato L. (2008).
EVALUATION OF A READ-OPTIMIZED DATABASE FOR DYNAMIC WEB APPLICATIONS.
In Proceedings of the Fourth International Conference on Web Information Systems and Technologies, pages 73-80
DOI: 10.5220/0001515900730080
Copyright c© SciTePress



In this paper we investigate the use of a special-
ized data warehousing database management system
as a data back-end for dynamic web applications and
assess the performance of this solution. We have used
the Monet2 (Boncz, 2002) database as a drop-in re-
placement for a traditional database, and performed
benchmarks comparing its performance to the perfor-
mance of two of the most commonly used databases
for web applications: MySQL3 and PostgreSQL4.
The web application benchmark used was the indus-
try standard TPC-W (TPC, 2002), representing a typ-
ical web store. Our main contribution is to show for
the first time how a read-optimized database performs
in comparison to established general purpose DBMSs
for the domain of web applications. As more systems
are built to take advantage of the 10 fold expected per-
formance increases for some domains, we believe this
type of cross domain comparison will became a use-
ful tool for the definition of utility relations among
different database managers and application domains.

This paper is structured as follows. Section 2
discusses possible matches and mismatches of read-
optimized databases to the data storage requirements
of dynamic web applications. Section 3 describes
TPC-W and argues that it is the correct choice of
workload to fairly compare Monet, MySQL and Post-
greSQL. Section 4 describes the experimental setup
used, and Section 5 is devoted to the analysis and dis-
cussion of the results. A summary of the contributions
and final comments are contained in Section 6.

2 READ-OPTIMIZED
DATABASES FOR DYNAMIC
WEB APPLICATIONS

Initially created to implement simple, static query in-
terfaces to databases, web applications are now capa-
ble of computing their output dynamically as a func-
tion of the clients needs, querying and updating an
underlying database as necessary. Today, these appli-
cations enable all types of activities and provide ser-
vices as diverse as on-line shopping, home banking,
auctions, airline reservation, etc. In most cases, web
applications retain a property of their initial incarna-
tion as database query interfaces: the majority of ac-
cesses to the database is read-only. Current estimates
put the read/update ratio at 85% in a typical web shop
and nearly 99% in a bulletin-board application with
a large user base (Amza et al., 2002). This read-

2http://monetdb.cwi.nl/
3http://www.mysql.com/
4http://www.postgresql.org/

intensive behavior is more related to OLAP work-
loads than OLTP workloads. However, until very re-
cently, no one had questioned the use of convention-
ally optimized DBMSs to deploy dynamic web appli-
cations.

Data warehousing is a booming business, al-
ready representing 1/3 of the database market in
2005 (Stonebraker et al., 2007). The basic idea is to
aggregate information from the many disjoint produc-
tion systems in a single large database, to be used for
business intelligence purposes. During the data ag-
gregation process, data is copied from write-intensive
OLTP systems to computation and read-intensive
OLAP systems, while it is filtered, re-organized and
indexed for analytical processing. A database opti-
mized for this type of workload is different from a
normal database as it is read-optimized. OLTP op-
timized databases store tables clustered by rows, be-
cause this allows a simple mapping of tables to a stor-
age model optimized for the access of complete rows.
Read-optimized databases, by contrast, typically need
to access many rows of which only a few column val-
ues are used. Thus, read-optimized databases can be
organized using vertical fragmentation, keeping data
from one or more columns together (Boncz, 2002, pp.
41-42). Data organized in columns, among others
optimizations, define a read-optimized database and
is the central focus of the two more prominent new
generation OLAP databases: Monet (Boncz, 2002;
Boncz et al., 2005) and C-Store (Stonebraker et al.,
2005).

Monet has interesting features, it was designed to
extract maximum database performance from mod-
ern hardware, especially for complex queries. It opti-
mizes the use of processor registers and cache mem-
ory through data structures optimized for main mem-
ory, vertical fragmentation and vectorized query exe-
cution. Monet is being actively developed as an open
source project, has a SQL query interface and bind-
ings to many languages such as Java, Perl and Ruby.
It is a mature project that closely matches the ex-
pected functionality of a DBMS. C-Store’s main fo-
cus is efficientad-hocread-only queries and the main
optimizations used are vertical fragmentation, care-
ful coding and packaging of objects, implementation
of non-traditional transactions and use of bitmap in-
dexes. Despite all these interesting characteristics,
C-Store is currently only a prototype with restricted
availability.

To assess the applicability of a read-optimized
database to the construction of web applications, we
decided to test one of these systems as a drop-in re-
placement for a traditional DBMS in a web applica-
tion built using the Java language and the Java Enter-

WEBIST 2008 - International Conference on Web Information Systems and Technologies

74



prise Edition (JEE) stack. This is a very common ap-
plication development platform and both MySQL and
PostgresSQL have native bindings to Java through the
industry standard JDBC interface. We selected Monet
due to its maturity and the fact that it also has a native
binding to Java through JDBC. We were not able to
include C-Store in the experiment due to its prototyp-
ical stage of development and availability.

3 BENCHMARK

Read-optimized databases are most commonly com-
pared using the TPC-H benchmark (TPC, 2006) for
decision support and business intelligence (Boncz
et al., 2005; Harizopoulos et al., 2006). However,
we want to explore the behavior of these databases
for web applications. In this case, the TPC-W bench-
mark (TPC, 2002; Menascé, 2002) is the best choice.
It defines web interactions per second (WIPS) as its
main metric and is judiciously precise in the defini-
tion of the workload. TPC-W has been put to test
by different groups in academia and industry, and its
success has granted it the reputation of industry stan-
dard (Amza et al., 2002; Cain et al., 2001; Garcı́a and
Garcı́a, 2003).

3.1 TPC-W: Workload and Metrics

The TPC-W benchmark simulates the workload of a
web book store. This is recognized as a very typical
e-commerce application, with behavior representative
of a large class of dynamic content web applications.
The TPC-W specification (TPC, 2002) stipulates the
exact functionality of this web store, defining the ac-
cess pages, their layout and images (thumbnails), the
database structure and the client load. However, the
TPC does not provide a reference implementation of
the web book store, the benchmark definition is care-
ful to the point of guaranteeing that implementation
differences do not impact on the benchmark results.
The workload is implemented by remote browser em-
ulators (RBEs), that navigate the web book store
pages according to a customer behavior model graph
(CBMG) (Menascé, 2002). A CBMG describes how
users navigate through the interface of a dynamic web
application, which functions they use and how often,
and the frequency of transitions from one application
function to another. Thus, a CBMG is a useful tool
for the definition of workloads for web applications.

A TPC-W run can generate one of three defined
workload profiles. Workload profiles are differenti-
ated by varying the ratio of browsing (read access)
to ordering (write access) web interactions, and each

one has its corresponding metric. An example of a
read-only access in the CBMG is the search for books
by a specified author, while an example of an up-
date access is the placement of an order. The ba-
sic shopping profile, with the general WIPS metric,
generates a mixed workload of browsing and order-
ing web interactions. The browsing profile, with the
WIPSb metric, generates a primarily browsing work-
load. The ordering profile, with the WIPSo metric,
generates a primarily ordering workload. More pre-
cisely, the shopping profile stipulates that 80% of the
accesses are read-only and that 20% generate updates.
The browsing profile stipulates that 95% of the ac-
cesses are read-only and that only 5% generate up-
dates. Finally, the ordering profile stipulates a distri-
bution where 50% of the accesses are read-only and
50% generate updates. The implementation of these
profiles is made in the RBE by specifying the transi-
tion probabilities for the CBMG.

TPC-W also has very strict rules for the database
schema and for the type and amount of data generated
to populate the relations. Specifically, the amount of
data stored is used to test the scalability of the sys-
tem under test. There is a scale factor defined as a
function of the number of RBEs and products stored
in the system. As the number of RBEs increases, so
does the number of user profiles and orders stored. As
the number of items increases, so does the number of
authors. Table 1 summarizes the scale relationships
among the various data relations as defined by TPC-
W.

Table 1: Database size as a function of number of RBEs.

Table Number of Rows
CUSTOMER 2880 * Number of RBEs
COUNTRY 92
ADDRESS 2 * CUSTOMER
ORDERS 0.9 * CUSTOMER

ORDER LINE 3 * ORDERS
CC XACTS 1 * ORDERS

ITEM 1k, 10k, 100k, 1M, 10M
AUTHOR 0.25 * ITEM

The workload generated by the RBEs emulates the
interactions between human clients and the web book
store. As the pattern of interactions generated by real
users tends to alternate actual requests (interactions)
with periods of inactivity, the workload mimics the
real pattern by interspersing interactions with delays
called think times. On average the think time is de-
fined by TPC-W as 7 seconds, and at any given time,
the total number of web requests being generated per
second by the set of emulated RBEs can be calculated
as the (Number of RBEs) / 7.

EVALUATION OF A READ-OPTIMIZED DATABASE FOR DYNAMIC WEB APPLICATIONS

75



3.2 TPC-W: Implementation

As mentioned, the TPC-W benchmark does not of-
fer a reference implementation, as many components
of a complete implementation are indeed part of the
system under test. This generality of the benchmark
is a positive characteristic, as it allows for the evalu-
ation of systems implementing very diverse software
and hardware architectures. However, this puts a con-
siderable implementation burden on the execution of
the benchmark as many business logic and integration
components must be built and integrated. This is spe-
cially true when the performance of just a sub-system
of the whole system is the focus, as it is the case of
this work where the focus is the database (third tier of
the web application).

As we are only interested in the performance of
the database deployed with the web application, in-
stead of implementing the book store from scratch, we
selected an existing implementation of TPC-W and
retrofitted it with different databases. The implemen-
tation used was originally developed by a research
group of the University of Wisconsin-Madison and
is available at the PHARM project web site5 (Cain
et al., 2001). This implementation is an accurate and
almost complete rendition of the TPC-W benchmark
for the JEE platform. The benchmark was written
for the assessment of a DB2 database, so we had to
make its implementation database transparent through
the modification of the JDBC database connection ab-
straction layer. We strove to make sure changes were
kept minimal and restricted to type conversions, and
to the adaptation of date and numeric literal formats.

The implementation obtained after we applied our
minor changes implements accurately the TPC-W
benchmark with respect to the book store application,
data layout and workload specification. Despite this,
it is important to stress that our implementation and
the original are just partial implementations of the
benchmark. Thus, the benchmark results obtained in
our experiments should not be compared to the offi-
cial TPC-W results. In particular, our implementation
has the same limitations of the original implementa-
tion; a non-comprehensive list of the simplifications
include:

• The remote payment emulator has not been imple-
mented.

• Query caching has not been implemented.

• The image server, used to load and store thumb-
nails of book covers, is the same server used for
the application server.

5http://www.ece.wisc.edu/ ˜ pharm/tpcw.shtml

• There is no secure socket layer support for secure
credit card transactions.

• Logging of application messages for audit pur-
poses has not been implemented.

Despite these restrictions, the benchmark imple-
mented is able to emulate with high accuracy the pat-
terns of web interactions specified by TPC-W. As im-
portant as the ability to generate the correct workload,
is the fact that all three databases are indeed subject to
the same workloads, guaranteeing the fairness of the
measurements.

4 EXPERIMENTAL SETUP

The experimental setup included the following ver-
sions of the database managers: Monet 4.10.2,
MySQL 5.0.15-max and PostgreSQL 8.1.3. All
databases were downloaded from their official distri-
bution, configured and compiled using only default
settings. The decision of using the databases as con-
figured out of the box, without the introduction of
any optimizations, is justified by the fact that tuned
configurations can unfairly bias the results towards
the database we know better how to optimize. Thus,
it seems much more reasonable to experiment with
databases using their default configurations as these
parameters reflect the best effort of vendors to opti-
mize their systems for most of the applications.

The application server used was Apache Tomcat
5.5.15 running on Sun Java 1.5 and Fedora Core 5
Linux. The application server and the databases were
setup and run in separate machines, with communi-
cation achieved via JDBC, employing TCP/IP con-
nections. Due to limitations of the JDBC/SQL front
end of Monet, all databases were configured to use
fully serialized transactions and the JDBC connection
polling function was deactivated. The use of fully
serialized transactions affected uniformly the perfor-
mance of the databases compared, without any nega-
tive effect on relative performance figures.

The hardware setup comprised two machines:
Host A runs the RBEs and the application server
and HostB runs exclusively the database under test.
The setup provides isolation between the database
server and the application server, guaranteeing suf-
ficient hardware resources were always available for
the DBMSs. Table 2 lists the hardware configuration
of the two machines used. Both hosts were intercon-
nected by a 100Mbps switched Ethernet link.

The databases were populated according to the
rules specified by TPC-W (Table 1), using a 10000
items scale factor and 30, 150 or 300 RBEs. We

WEBIST 2008 - International Conference on Web Information Systems and Technologies

76



Table 2: Hardware configuration.

Host Configuration
A Pentium 4, 2.8 GHz, 1GB RAM
B Dual Pentium 4, 3 GHz, 2GB RAM

used these three numbers of RBEs to finely adjust the
size of the database, instead of increasing the items
scale factor. In some of the tests performed, a smaller
or larger number of RBEs was effectively used com-
pared to the number used to populate the database.
The load setups used in the tests are listed in Table 3.

Table 3: Load setups tested.

Data For Tested With
Small 30 RBEs 30, 150, 300 and 600 RBEs

Medium 150 RBEs 150 RBEs
Large 300 RBEs 300 and 600 RBEs

The small setup has few clients loaded into the
database and was designed to assess the performance
when all data is resident in the main-memory of the
DBMSs. The other two setups stress the system by
scaling up the number of web interactions generated
by RBEs and database sizes. The largest database
was limited to data for 300 RBEs because Monet was
not able to populate a larger database in a reason-
able time. Also, due to the time required to pop-
ulate all databases, population was made only once
and backups were made using the tools available for
each DBMS. Before each test run, the backups were
restored ensuring that all tests were performed with
a newly populated database. Each test run extended
for 10 minutes, with a 1 minute ramp-up time. We
collected data for all the three metrics defined by
TPC-W, with results presented as the average WIPS,
WIPSb and WIPSo measured during the 9 minute sta-
ble execution interval. An important aspect of the
tests is that the recommendations of the TPC-W for
the reproducibility of tests have been followed (TPC,
2002, pp. 84-108). These recommendations for-
bid, among other restrictions, the redefinition of the
database schema between tests, changes to the physi-
cal placement and/or distribution of the data, changes
or reboot to any version or different type of any of the
software modules installed originally, etc.

5 RESULTS AND ANALYSIS

This section contains the results of the comparison,
grouped by database size (Table 3). For each group
of results data is summarized by displaying the aver-
age number of web interactions per second (WIPS)

(a) 30 RBEs

(b) 150 RBEs

Figure 1: Average WIPS with data for 30 RBEs.

and standard deviation from the average for the stable
sampling interval.

5.1 Small Database

The small setup ensures that the entire database fits in
main-memory. This setup should show us how well
the databases manage their use of RAM and how well
the main-memory optimizations of Monet perform.
Figure 1 shows the data for a small number of RBEs,
30 and 150. In both cases all databases were capa-
ble of handling all web interactions that were gen-
erated by the RBEs, performing at approximately 4
and 21 WIPS. There is a very small difference among
the ordering, shopping and browsing profiles and the
small deviation indicates a sustained throughput. The
results obtained ensure us that all three DBMSs are
working correctly because the average WIPS matches
the load generated by the RBEs (see Section 3).

Increasing the number of RBE clients stresses the
transaction processing engines of the databases and
noticeable differences emerge as shown in Figure 2.
The only database capable of handling the workload

EVALUATION OF A READ-OPTIMIZED DATABASE FOR DYNAMIC WEB APPLICATIONS

77



generated for at least one of the profiles (Figure 2(a),
WIPSb 300 RBEs) is PostgreSQL because the mea-
sured WIPS fall within the expected values of WIPS
(42.85 WIPS). Monet and MySQL fall behind Post-
greSQL in requests served, but Monet is better than
MySQL by a narrow margin in the browsing and or-
dering profiles. However, as expected Monet shows a
considerable performance drop for the ordering pro-
file; this is predictable as it is read-optimized and this
profile has a read/update ratio of 1 (50% read/50%
update). When attention is focused on the devia-
tions, results show very small standard deviations for
Monet and PostgresSQL indicating their capacity to
execute the workload as prescribed by TPC-W. Differ-
ently, MySQL has started to show greater variability
of WIPS. A feature worth of note is the performance
of MySQL when compared to itself for the three dif-
ferent profiles: WIPSb is smaller than WIPS that is
smaller than WIPSo. This implies that MySQL in-
creases its performance as the ratio of reads to updates
increases, a surprising and unexpected behaviour be-
cause updates imply disk writes and disk writes im-
ply higher latencies and higher latencies should im-
ply smaller WIPS values. Monet and PostgresSQL
behave as expected, that is, show smaller values of
WIPS as their results progress from the browsing pro-
file the ordering profile (WIPSo).

5.2 Medium Database

The medium setup is expected to stress the I/O capac-
ity of the DBMSs, as the data does not fit in main-
memory; it should be critical to Monet as it is not
only read-optimized but also a in-memory database.
Figure 3 shows that in this setup only PostgreSQL
and Monet were able to handle all requests generated
by the RBEs. PostgreSQL once again was the best,
displaying a performance very close to the expected
21 WIPS in all profiles. This implies that it was
still able to handle the larger database using main-
memory. The same can be observed for Monet, it is
able to handle the expected 21 WIPS for the shopping
and browsing profiles. However, in comparison to its
performance for smaller database setups, the perfor-
mance drop was much larger for the ordering profile;
it was able to deliver only 9 WIPS. MySQL could not
sustain the expected 21 WIPS for the read dominated
profiles, but was able to display the same unexpected
good performance in the update dominated ordering
profile. The WIPS standard deviations have increased
significantly for MySQL, indicating that it may reach
a limit after which it will not be able to respond to the
workload.

(a) 300 RBEs

(b) 600 RBEs

Figure 2: Average WIPS with data for 30 RBEs.

Figure 3: Average WIPS with data for 150 RBEs.

5.3 Large Database

The large database cannot fit in the main-memory of
the analyzed DBMSs, thus this setup puts the most
strain in the I/O subsystem of the databases and a very
noticeable drop in performance occurs for all three

WEBIST 2008 - International Conference on Web Information Systems and Technologies

78



databases shown in Figure 4. PostgreSQL is still the
best performer but it cannot keep up with all the re-
quests generated by the RBEs. Also, it is possible to
notice a very sharp drop in performance for the or-
dering profile. Monet comes in second in the brows-
ing and shopping profiles. An interesting situation
is observed once again, MySQL in update-intensive
ordering profile is almost as good as Monet in the
read-intensive browsing profile. The Monet behav-
ior is expected, and is a direct consequence of the
read-optimization of this DBMS. MySQL confirms
its surprising feature of displaying better performance
as the proportion of updates increases. Our explana-
tion for this fact is that MySQL is not making the up-
dates durable when the transaction commits, it prob-
ably just caches updates and commits them to disk
opportunistically when it detects a load decrease. In
this scenario, the variability of the performance shows
an interesting feature of the databases. Monet and
PostgresSQL are not able to sustain the workload, but
show a smaller variability, specially in the ordering
profile. The results show that MySQL is not only un-
able to sustain the workload but also that it is subject
to much larger deviations, meaning that it is observed
by its clients as an erratic DBMS that stalls transac-
tions when heavily loaded.

5.4 Discussion

For the small database, all DBMSs behaved in a very
similar way. Only when the load or the database
size were increased is that their relative performance
started to diverge, with PostgreSQL being the clear
overall best performer. MySQL displayed a very solid
performance in the ordering profile, but with an er-
ratic behavior, assessable by the magnitude of the
WIPS standard deviations. Monet displayed a perfor-
mance as good as the other DBMSs, but with an ex-
pected performance drop in the update-intensive or-
dering profile. Considering that MySQL and Post-
greSQL are very popular as back-ends for web ap-
plications, the results show Monet as a good plat-
form for the application domain considered. How-
ever, it was not 10 times faster as expected, not even
in the browsing profile, and exhibited several imple-
mentation problems. The SQL front-end was prone to
crashes and the JDBC interface was incomplete and
had some minor bugs. Even considering the perfor-
mance penalty incurred by frequent updates, the pro-
cess of populating the database prior to running the
tests was very time consuming. It took about 24 hours
to load the data for 300 RBEs, and we gave up after
48 hours of wait for the creation of the database for
600 RBEs; for this reason we were forced to limit the

(a) 300 RBEs

(b) 600 RBEs

Figure 4: Average WIPS with data for 300 RBEs.

largest database used in the experiments to a database
populated for 300 RBEs.

Despite these problems, the performance of
Monet was acceptable but not exceptional. It per-
formed in the same order of magnitude of the other,
more mature, DBMSs. If we assume dynamic web
applications are a domain that has a great similar-
ity with OLTP applications, and considering both
MySQL and PostgreSQL are heavily optimized for
this class of applications, then one would expect the
performance of Monet to be comparatively worse.
If, alternatively, dynamic web applications share
the transaction profile of OLAP applications, Monet
should have displayed an even better performance
than the observed, at least in the read-intensive brows-
ing profile. If order of magnitude performance im-
provements are to be obtained, then new database
management designs have to be pursued.

EVALUATION OF A READ-OPTIMIZED DATABASE FOR DYNAMIC WEB APPLICATIONS

79



6 CONCLUSIONS

In this paper, we investigated the use of a special-
ized DBMS for data warehousing as data back-end
for web applications and assessed the performance
of this combination of database and application. We
performed benchmarks to compare the performance
of Monet with two of the most commonly used
databases for web applications: MySQL and Post-
greSQL. Our results show that, at least for now, it is
not possible to obtain 10 fold gain in performance us-
ing Monet as a simple drop-in replacement for a stan-
dard DBMS in a typical web application configuration
using Java and JDBC.

Monet was as fast as the general purpose
databases, but not faster. The fact that both OLTP
and OLAP optimized databases displayed comparable
performance for the domain of dynamic web applica-
tions, allow us to question a widely accepted notion
that RDBMSs are the best solution for the data back-
end of web applications. Our experimental results
provide for the first time a quantitative indication that
web applications may have their own specific require-
ments for data management and may constitute a rich
niche for the development of specialized databases.

REFERENCES

Amza, C., Chanda, A., Cox, A. L., Elnikety, S., Gil, R.,
Rajamani, K., Zwaenepoel, W., Cecchet, E., and Mar-
guerite, J. (2002). Specification and implementa-
tion of dynamic web site benchmarks. InWWC-5:
Proceedings of the IEEE International Workshop on
Workload Characterization, pages 3–13.

Boncz, P. A. (2002). Monet: A Next-Generation DBMS
Kernel For Query-Intensive Applications. Ph.d. the-
sis, Universiteit van Amsterdam, Amsterdam, The
Netherlands.

Boncz, P. A., Zukowski, M., and Nes, N. (2005). Mon-
etDB/X100: Hyper-pipelining query execution. In
CIDR 2005: Proceedings of the Second Biennial Con-
ference on Innovative Data Systems Research, pages
225–237.

Cain, H. W., Rajwar, R., Marden, M., and Lipasti, M. H.
(2001). An architectural evaluation of Java TPC-W. In
HPCA ’01: Proceedings of the Seventh International
Symposium on High-Performance Computer Architec-
ture, pages 229–240, Monterrey, Mexico.

Garcı́a, D. F. and Garcı́a, J. (2003). TPC-W e-commerce
benchmark evaluation.Computer, 36(2):42–48.

Harizopoulos, S., Liang, V., Abadi, D. J., and Madden,
S. (2006). Performance tradeoffs in read-optimized
databases. InVLDB 2006: Proceedings of the 32nd
international conference on Very large data bases,
pages 487–498. VLDB Endowment.

Menascé, D. A. (2002). TPC-W: A benchmark for e-
commerce.IEEE Internet Computing, 6(3):83–87.

Stonebraker, M., Abadi, D. J., Batkin, A., Chen, X., Cher-
niack, M., Ferreira, M., Lau, E., Lin, A., Madden,
S., O’Neil, E., O’Neil, P., Rasin, A., Tran, N., and
Zdonik, S. (2005). C-Store: a column-oriented dbms.
In VLDB ’05: Proceedings of the 31st international
conference on Very large data bases, pages 553–564.
VLDB Endowment.

Stonebraker, M., Bear, C., Çetintemel, U., Cherniack, M.,
Ge, T., Hachem, N., Harizopoulos, S., Lifter, J.,
Rogers, J., and Zdonik, S. (2007). One size fits all?
Part 2: Benchmarking studies. InCIDR 2007: Pro-
ceedings of the Third Biennial Conference on Innova-
tive Data Systems Research.

Stonebraker, M. and Çetintemel, U. (2005). “One size fits
all”: An idea whose time has come and gone. InICDE
’05: Proceedings of the 21st International Conference
on Data Engineering, pages 2–11, Washington, DC,
USA. IEEE Computer Society.

TPC (2002).TPC Benchmark W Specification.

TPC (2006).TPC Benchmark H Specification.

WEBIST 2008 - International Conference on Web Information Systems and Technologies

80


