
A CONCURRENCY CONTROL MODEL FOR MULTIPARTY
BUSINESS PROCESSES

Juha Puustjärvi
Lappeenranta University of Technology, Skinnarilankatu 34, Lappeenranta, Finland

Keywords: Web services, WS-Coordination, concurrency control, workflows, business processes, advanced transaction
models.

Abstract: Although the issue of atomicity of multiparty business processes is well understood and widely studied, the
concurrency control issues of multiparty business processes is not studied nor well understood. In this
paper, we restrict ourselves on this issue. First we motivate the need of concurrency control in this context.
Then, we present a liberal correctness criterion, called set-serializability and a scheduler based on timestamp
ordering rule that produces set-serializable executions. Technically the scheduler is very simple and it can
be easily integrated with the protocol that ensures the atomicity of the multiparty business processes. In
implementing the atomicity protocol and the scheduler we utilize the WS-Coordination, which is a general
and extensible framework for defining protocols for coordinating activities that are part of business
processes.

1 INTRODUCTION

Web services are self-describing modular
applications that can be published, located and
invoked across the Web (Newcomer, 2002). Once a
service is deployed, other applications can invoke
the deployed service. The service can be anything
from a simple request to complicated business
process.

Another nice feature of web services is that new
and more complex web services can be composed of
other web services (Daconta et al, 2003; Marinescu,
2002). However, in many cases composed web
services are useful only if they can be processed
atomically.

WS-Coordination (Singh & Huns, 2005) is a
general and extensible framework for defining
protocols for coordinating activities that are part of
business processes. In particular, WS-
BusinessActivity (Singh & Huns, 2005) is a protocol
that exploits WS-Coordination to define
coordination type for long-duration business
transactions.

The long duration of business activities prohibits
locking data resources to make actions hidden from
other concurrent activities, and so the transactions
supported by WS-BusinessActivity do not have
isolation characteristics. The atomicity of the

transactions supported by WS-BusinessActivity is
based on compensating transactions (Garcia-Molina,
1983).

Although the issue of atomicity of composed
Web services and multiparty business processes are
widely studied, (e.g., (XLANG, 2001; XAML, 2003;
BTP, 2002; WSFL, 2003; BPEL, 2004)) the issue of
isolation in this context is not addressed. We
therefore focus on analysing concurrency control
issues of multiparty business processes.

In our analysis, similar to (Puustjärvi, 2001), we
view multiparty business processes from workflows
point of view, i.e., we view workflows as collections
of tasks that are organized to accomplish some
business process. As a result we can easily map
workflows into structured transactions: the
transaction represents the workflow and its
subtransactions represent the tasks of the workflow.
In particular the goal of this paper is to:

1. to demonstrate the need of concurrency
control in the context of multiparty
workflows,

2. to develop an appropriate correctness
criterion for the execution of concurrent
multiparty workflows,

3. to develop an appropriate concurrency
control method for managing multiparty
workflows, and

209
Puustjärvi J. (2008).
A CONCURRENCY CONTROL MODEL FOR MULTIPARTY BUSINESS PROCESSES.
In Proceedings of the Fourth International Conference on Web Information Systems and Technologies, pages 209-215
DOI: 10.5220/0001513102090215
Copyright c© SciTePress

4. to demonstrate how WS-Coordination can
be utilized in implementing a scheduler for
multiparty workflows.

On the other hand, our analysis will show that the
concurrency control of multiparty workflows is a
trade off between

• workflow execution correctness,
• workflow system performance, and
• the simplicity of workflow specification

and management.

Our viewpoints are presented in the following
sections as follows: First, in Section 2, we introduce
a multiparty workflow and illustrate its isolation
requirements. Then, in Section 3, we give a short
introduction to concurrency control methods and
schedulers. In Section 4, we focus on concurrency
control correctness criteria. In Section 5, we first
introduce our developed concurrency control
criterion, called set-serializability, and then we
describe the concurrency control method that
supports set-serializability. In addition we
demonstrate how this method can be integrated with
an atomicity protocol and how WS-Coordination can
be utilized in developing the runtime environment
for multiparty workflows. Finally, Section 6
concludes the paper by discussing the advantages
and disadvantages of our developed solutions.

2 MOTIVATION

We now represent a multiparty business process
which correct execution requires coordination to
ensure its atomicity and as well as its isolation.

Consider an oil broker on the Web. In order for
the broker to deliver oil, the broker requires
additional value-added services provided by third
parties, such as chemical provider, shipping,
payment financing, and casualty insurance. The
broker will not agree to the delivery of oil until all of
these services are available, i.e., the correctness
requires the execution to be atomic.

From technology point of view the software
providing the multiparty business process needs to
coordinate with each of the participating Web
services. These include (1) the chemical provider's
inventory system; (2) credit institution to check
customer creditability; (3) an insurance policy
service to insure the product being shipped; (4) a
financing service to ensure payment; and (5) a

transportation service to guarantee timely shipment
and delivery.

We now describe this multiparty business
process by a workflow in Figure 1. (By a workflow
instance we refer to an execution of a workflow) Its
task Enter order provides an interface for customers.
It records orders, which include (among other
things) information of the ordered chemicals and the
deadline for the delivery. Then two parallel tasks are
processed: Purchase chemical task updates the
inventory of the chemical provider and Check
creditability task checks the customer’s credit
information from a credit institution. After their
successful processing, Order transportation task
orders the delivery from a transportation company,
and finally transportation is insured and the
customer is charged.

Enter order

Check
creditability

Purchase
chemical

Order
transportation

Charge
customer

Figure 1. Oil broker’s business process.

Insure
transportation

Figure 1: Oil Broker’s business process.

To illustrate workflow isolation requirements, we
now give three isolation requirements for this oil
broker’s workflow and consider the effects of their
violations.

Case 1: Businesses often enumerate events with
unique sequence numbers, and so there may be a
reguirement that those numbers (given in the task
Enter order) must constitute a monotone series with
no gaps. So, a new order number cannot be issued
until it is sure that the previous workflow will not
fail. However, as the workflow may fail at any time
during its execution, the only way to ensure that
there are no gaps is to execute the workflows
serially.

WEBIST 2008 - International Conference on Web Information Systems and Technologies

210

Case 2: Assume that the balance of unpaid bills of a
customer has a predefined upper limit. The balance
is checked in the task Check creditability, and if the
new order would cause an overdraft then the work-
flow is aborted (a semantic failure). Otherwise, the
new balance is updated in the task Charge customer.
Now, to ensure that the limit will not be executed as
a result of two or more concurrent workflows of the
same customer, the workflows pertaining to the
same customer should be processed in a serializable
way, or at least the tasks Check creditability, Insure
transportation and Charge customer pertaining to the
same client should be processed in a serializable
way.

Case 3: Assume that the existence of an ordered
product is checked in the task Purchase chemical,
and that the ordered product is not removed from
chemical provider’s inventory database until in the
task Order transportation task. Now, to ensure that
the ordered product is still in the inventory, the task
Purchase chemical and Order transportation should
be executed as one transaction, or at least they
should constitute a unit of isolation.

3 TRADITIONAL
CONCURRENCY CONTROL
METHODS

We now give a short introduction to the notions that
are related to concurrency control. In particular, we
consider the notions that we use in later analysis.

Concurrency control is the activity of
coordinating the actions of processes that operate in
parallel, access shared resources, and therefore
potentially interfere with each other (Bernstein et al,
87). A scheduler is a program that controls the
execution of concurrent activities (Gray & Reuter,
93). When it receives an operation it may
immediately schedule it, delay it, or reject it. Each
scheduler usually favours one or two of these
choices.

Almost all types of schedulers have an
aggressive and a conservative version. An aggressive
scheduler tends to avoid delaying operations, and so
it loses the opportunity to reorder operations it
receives later on. A conservative scheduler tends to
delay operations, and so it can reorder operations it
receives later on.
 Locking is the most common type of schedulers
(Bernstein & Newcomer, 1997). The idea behind
locking schedules is intuitive: each resource to be

accessed (e.g., data item or a web service) has a lock
associated with it, and before an activity (e.g.,
transaction or workflow) may access a resource, the
scheduler first examines the associated lock. If no
activity holds the lock then the scheduler obtains the
lock on behalf of the re-questing activity.
 With timestamp methods a unique time stamp is
assigned to each transaction. Transactions are then
processed so that their execution is equivalent to a
serial execution in timestamp order. This
concurrency control mechanism allows a transaction
to access a data item only if it had been last accessed
by an older transaction; otherwise it rejects the
operation and restarts the transaction.
 Each type of scheduler works well for certain
types of applications. We will show that an
aggressive scheduler based on timestamp ordering
method will work well with multiparty business
processes. However, the traditional correctness
criterion would be overly restrictive and therefore
we will introduce a more liberal correctness
criterion.

4 CONCURRENCY CONTROL
CRITERIA

A natural and sufficient criterion for isolation
correctness is that the execution is serializable, i.e.,
equivalent to a serial execution. Moreover this
traditional criterion is intuitive and clear. However,
though it is suitable for traditional transactions it
would overly restrict the concurrency of long lasting
activities such as multiparty workflows. However,
by using semantic information it is possible to
weaken the serializability criterion, and yet ensure
execution correctness. On the other hand, analogous
with traditional semantic concurrency control
models (Lynch, 1983; Garcia-Molina 1983) the use
of semantic information makes the specification as
well as the management of the system more
complex.

With multiparty workflows the requirements for
concurrency control significantly deviates from
those used with databases. In particularly there are
no consistency constraints between the data stored in
communicating applications but rather (as illustrated
in Section 2) the workflows may interfere with each
others through accessing dirty data (i.e., data that is
written by uncommitted activities). Therefore
neither the correctness criterion nor the concurrency
control methods (e.g., two-phase locking) developed

A CONCURRENCY CONTROL MODEL FOR MULTIPARTY BUSINESS PROCESSES

211

for databases are suitable for managing multiparty
workflows.

We next illustrate how we can capture semantic
information from multiparty workflows and use it in
developing an appropriate correctness criterion and
concurrency control method for multiparty business
processes.

5 THE MODEL

In this section we introduce our model which
describes our developed correctness criterion and
concurrency control method. In addition we describe
how it can be implemented by extending the 2PC-
protocol (Bernstein and Hadzilacos, 1987) that is
used for ensuring the semantic atomicity of
multiparty business processes.

5.1 Serializability-sets

As the analysis of the oil broker’s workflow in
Section 2 showed, there is no need for requiring
global serializability of workflows. By globally
serializable execution we refer to the execution,
which is equivalent to a serial execution of
workflows. Instead, it seems that a sufficient
isolation requirement is that certain sets (comprised
of tasks or workflow instances) should be executed
in a serializable way. Each such a set we call a
serializability set.
 In order to illustrate the forms of serializability
sets we now assume that we have two workflows,
denoted by Wi and Wj. For example, the workflow
Wi could be the oil broker’s workflow presented in
Section 2.

The tasks of the workflow Wi are denoted by Ti,1, …
Ti,m, and anagolously the tasks of workflow Wj are
denoted by Tj,1, … Tj,n. So workflow Wi is
comprised of m tasks and the workflow Wj is
comprised of n tasks.
 We next characterize the nature of serializability
sets by making the difference between four kinds of
serializability sets:

1. One or more tasks of the same workflow, say
Ti,s and T i,k, have to be executed serially
(e.g., cases 2 and 3 of Section 2). So the
serializability set is of the form {Ti,s, Ti,k,}.

2. The instances of one workflow, say the in-
stances of workflow Wi have to be executed
serially (e.g., case 1 of Section 2). So the
serializability set is of the form {Wij}.

3. Two or more task instances, say T i,s and Ti,k,
from different workflows have to be executed
serially. So the serializability set is of the form
{Ti,s and Ti,k}.

4. The instances of two or more workflows, say
the instances of workflows Wi and Wk, have to
be executed serially. So the form of the
serializability set is of the form {Wi, Wj}.

We denote by S the set of consisting of all
serializability sets, i.e., if there are n serializability
sets denoted by S1, …,Sn, then S={S1, …,Sn}. It
clear that each tasks belongs into zero, one or more
serializability sets.

5.2 Set-serializability Criterion

Now we can specify our used isolation correctness
criterion:

Set-serializability Criterion. The execution of a set
of workflows is set-serializable, if the execution of
the workflow and tasks instances in each
serializability set is serializable.

Note that this criterion is much more liberal (i.e.,
allows much more concurrency), than the traditional
serializability criterion. The reason is that only those
workflow instances or task instances, which really
need serializable execution are enforced to be se-
rializable. In contrast with traditional serializability
criterion it is assumed that all activities require
serializable execution. Hence, the traditional
serializability criterion is called syntactic
concurrency control model, which means that no
semantic information of transactions are given.
Instead, our model is based on a semantic
concurrency control model, in which it is assumed
that the workflow designer gives semantic in-
formation through serializability sets. In practice this
means that a workflow designer has to know the
workflow well enough to be able to specify
appropriate serializability sets.

5.3 Enforcing Set-serializable
Executions

In order to identify different instances of the same
workflow, an instance identifier is attached to each
workflow instance. In our solution the identifier is
determined according to the workflow identifier and
the time the workflow instance starts. Similarly,
tasks instances are identified by workflow identifier,
task identifier and timestamp.

WEBIST 2008 - International Conference on Web Information Systems and Technologies

212

We next consider how we can use timestamp
method in scheduling the workflow instances. The
sufficient requirement is that the task instances of
each serializability-set are executed in the order
determined by their timestamps.

As each task corresponds to the request of a web
service, the service provider has to serve the request
in the order determined their time-stamps. This
means that there must be a standard module (i.e., a
scheduler) that can be combined to the web service.
In other words, assume that a task Ti belongs to one
or more isolation cluster. Then there must be a
scheduler, say scheduler S(ti), which follows the
following rule in handling requests:

Request Scheduling Rule: accept the execution
request of the task Ti belonging to serializability sets
Si, …,Sn, if the timestamps of the last accepted
request of the serializability sets S1, …, Sn are older
than the timestamp of Ti, and otherwise reject the
request.

If a request (a task) is rejected then the

corresponding workflow instance has to be aborted
and restarted. The abortion requires that the tasks of
the workflow instance which are already processed
have to be compensated. This, however, requires no
extra modules because the mechanisms which
support the atomicity of the workflows support
abortions through compensating actions.

In Figure 2 we illustrate the scheduler of task Ti.
It is assumed that task Ti is processed by Web
service Wi, and therefore scheduler Si locates on the
Web service Wi. The figure illustrate the case where
task Ti belongs to serializability set S1, S2 and S3,
and therefore the data structure maintained by the
scheduler Si includes the timestamps (denoted
lastS1, lastS2 and lastS3) of the last accepted
requests of the serializability sets S1, S2 and S3.

Scheduler Si

Web service Wi

Request to execute Task Ti

lastS1
lastS2
lastS3

Figure 2. A scheduler attached to Web service.
Figure 2: A scheduler attached to Web service.

5.4 Exploiting WS-Coordination in
Enforcing Set-serializability

A way to coordinate the activities of Web services is
to provide a Web service which function is to do the
coordination. In order to alleviate the development
of such coordinators WS-Coordination provides a
specification that can be utilized in developing the
coordinator. According to the WS-Coordination a
coordinator is an aggregation of the following
services:
• An activation service: defines the operation

that allows the required context to be created.
In particular, a context identifier is created and
passed to the services that participate to the
same coordination.

• A registration service: defines the operation
that allows a web service to register its
participation in a coordination protocol.

• A coordination protocol service for each
supported coordination type.

In Figure 3, the architecture (following the
specification of WS-Coordination) of the
coordinator that supports multiparty workflows is
presented.

Coordinator

TwoPhasedBusinessActivity-protocol

Activation service Registration service

Create Coordination
Context

Protocol messages

Registration
service

Figure 3. The components of the coordinator.
Figure 3: The components of the coordinator.

After an application has created a coordination
context, it can send it to another application. The
context contains the information required for the
receiving application to register into the
coordination. In principle an application can choose
either the registration service of the original
application or use some other (own) coordinator. In
the latter case the application forwards the context to
the chosen coordinator.

In our solution each participating application
uses its own coordinator. We illustrate this by the
example presented in Section 2. For simplicity, in

A CONCURRENCY CONTROL MODEL FOR MULTIPARTY BUSINESS PROCESSES

213

the Figure 4, we only present oil broker’s
communication with two participants (chemical
manufacturer and credit institution).

Figure 4: The coordination structure between schedulers,
Web services and their coordinators.

In the figure WS-OB stands for oil broker’s Web
service, WS-CM stands for chemical manufacturer’s
Web service, WS-CI stands for credit institution’s
Web service, Coord-OB stands for oil broker’s
coordinator, Coord-CM stands for chemical
manufacturer’s coordinator and Coord-CI stands for
credit institution’s coordinator.
The communication proceeds as follows:
1. Oil broker’s Web service asks its coordinator to

create a coordination context for Atomic
Transaction -type coordination (2PC-type
coordination), and then the coordinator returns
the context which includes information where its
registration service can be found. In addition,
the context includes a timestamp on which the
scheduling will be based on.

2. Oil broker’s Web service sends oil purchase
message to manufacturer’s Web service and
creditability request to credit institution’s Web
service. Both messages include context
information. As the task Purchase chemical and
Check creditability belongs to the same
serializability set, the Web services have to
schedule them., i.e., ensure that they are executed
in the order determined by their timestamps. If
there is a violation in the timestamp order then
the compensation protocol is started which
undoes the effects of the tasks that are already
executed (note that in this example there are no
such tasks).

3. Oil broker’s Web service, chemical
manufacturer’s and credit institution’s Web

services send the context information to their
own coordinators.

4. Manufacturer’s coordinator and credit
institution’s coordinator register to oil broker’s
coordinator.

5. Oil broker’s coordinator sends the request
message to chemical manufacturer’s and credit
institution’s coordinator.

6. Chemical manufacturer’s coordinator and credit
institution’s coordinator request their Web
services to execute the activity.

7. Chemical manufacturer’s Web service and credit
institution’s Web service inform their
coordinators whether the execution failed or not.

8. Chemical manufacturer’s coordinator and credit
institution’s coordinator informs oil broker’s
coordinator whether the execution failed or
whether it was successfully executed.

9. If there were no failure then oil broker’s
coordinator sends the Commit-message to
chemical manufacturer’s Web service and credit
institution’s Web service; otherwise it sends the
Abort-message.

10. Chemical manufacturer’s coordinator informs its
Web service and credit institution’s coordinator
informs its Web service whether the multiparty
workflow is committed or aborted. In the case of
abortion the web services execute the
compensating transactions which undo the
effects of the executed transactions.

6 CONCLUSIONS

With traditional database transactions the need for
concurrency control is usually motivated by the
phenomena such as lost update and inconsistent
retrieval, and the commonly used correctness
criterion for schedules (histories) is serializability.
With multiparty business processes the requirements
for concurrency control significantly deviates from
those used with databases. Therefore neither the
correctness criteria nor the concurrency control
methods developed for databases are suitable for
multiparty business processes.

A nice feature of our developed concurrency
control model is that it enforces scheduling only on
those workflow instances that really need it. In
contrast with traditional database systems all the
transactions are enforced under scheduling which
significantly decreases the throughput of the system.

WEBIST 2008 - International Conference on Web Information Systems and Technologies

214

 Another nice feature of our concurrency control
method is that it can be easily integrated with the
atomicity protocol. In addition, technically the
timestamp ordering scheduler is very simple (e.g.,
compared with the locking schedulers in database
systems) as it only checks whether request are
served in the order determined by the timestamps.
 A disadvantage of our semantic concurrency
control model is that the business process designer is
burden with defining the serializability-sets.
However, obviously there is no way around of
burden the designer if some semantic concurrency
control model is used.

REFERENCES

Bernstein, P. V. Hadzilacos, V. & N. Goodman, N.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

Bernstein, P. & Newcomer, E. Principles of Transaction
Processing. Morgan Kaufmann Publisher. 1997

BPEL, 2004. BPEL4WS – Business Process Language for
Web Sevices. http://www.w.ibm.com/developersworks/
webservices/library/ws-bpel/BPEL, 2004.

BPEL, 2004. BPEL4WS – Business Process Execution
Language for Web Sevices. http://www.w.ibm.com/
developersworks/webservices/library/ws-bpel/

BTP, 2002. BTP- Business Transaction Protocol, http://
www.oasis-open.org/committees/business-transactions/
documents/primer/.

Daconta, M., Obrst, L. & K. Smith, K. The semanticweb.
Indianapolis: John Wiley & Sons. 2003

Garcia-Molina, H. Using semantic knowledge for
transaction processing in a distributed database. ACM
Transactions on Database Systems, 8(2):186-313, 1983.

Gray, J. & Reuter A. 1993. Trasaction Processing:
Concepts and Techniques. Morgan Kaufman.

Lynch N.. Multilevel atomicity – a new correctness
criterion for database concurrency control. ACM
Transactions on Database Systems, 8(4):65-76.

Marinescu, D. Internet-based workflow anagement. John
Wiley & Sons, 2002.

Newcomer E., 2002. Understanding Web Services
Addison-Wesley.

Puustjärvi, J. Workflow concurrency control. The
Computer Journal, 44(1), 2001.

Singh, M & Huhns, M. Service Oriented Computing:
Semantics, Processes, Agents. John Wiley &Sons, Ltd.
2005.

WSFL, 2003. WSFL- Web Services Flow Language.
http://www.ebpml.org/wsfl.htm

XAML, 2003. Transaction Author Markup Language
(XAML). http://xml.coverpages.org/xaml.html

XLANG, 2001. XLANG–Web Services for Business
Process Design. http://www.gotdotnet.com/team/
xml_wsspecs/xlang-c/default.htm

A CONCURRENCY CONTROL MODEL FOR MULTIPARTY BUSINESS PROCESSES

215

