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Abstract: We believe it is possible to create the visual subsystem needed for the RoboCup 2050 challenge — a soccer
match between humans and robots — within the next decade. In this position paper, we argue, that the basic
techniques are available, but the main challenge will be to achieve the necessary robustness. We propose to
address this challenge through the use of probabilistically modeled context, so for instance a visually indistinct
circle is accepted as the ball, if it fits well with the ball’s motion model and vice versa.

Our vision is accompanied by a sequence of (partially already conducted) experiments for its verification. In
these experiments, a human soccer player carries a helmet with a camera and an inertial sensor and the vision
system has to extract all information from that data, a humanoid robot would need to take the human'’s place.

1 INTRODUCTION Within the next decade, it will be possible to
develop a vision system that is able to pro-

Soon after establishing the RoboCup competition in ~ Vide all environmental information necessary
1997, the RoboCup Federation proclaimed an ambi- 1 Play soccer on a human level.

tious long term goal. Annual RoboCup competitions are always bound to
strict rule sets (defined for the state of the art of
the competing robots) and demand competitive robot
teams. Thus only incremental progress adapting to
actual rule changes (which continuously rise the level
of complexity) is fostered. By developing the afore-
mentioned vision system independently of these com-

“By mid-21st century, a team of fully au-
tonomous humanoid robot soccer players shall
win the soccer game, comply with the offi-
cial rule of the FIFA, against the winner of the
most recent World Cup.”

Kitano and Asada (1998) petitions, we hope to set a new landmark which could
- guide the incremental development.
Currently, RoboCup competitions take place ev-  Because aeal human level soccer robot will not

ery year. Within a defined set of different sub- be available for a long time, our vision is accompa-
competitions and leagues, incremental steps towardsnied by a (partially already conducted) set of experi-
this big goal are made (RoboCup Federation, 2008). ments that verify our claim without needing a robot.
Although, a rapid and remarkable progress has been  This paper is organized as follows: Section 2
observed during the first decade of these robot com-roughly identifies the challenges for playing robot
petitions, it is not obvious, if and how the final goal soccer and compares them to the state of the art in
will be reached. There exist rough roadmaps, e.g. by robotics. In Sect. 3 we explain, why the basic tech-
Burkhard et al. (2002), but in many research areas, niques for the vision system are available. We argue,
huge gaps must be bridged within the next 40 years. why the remaining challenge is robustness, for which

While this is obvious for several areas, e.g. actu- we present our idea of a solution in Sect. 4. Finally,
ator design and control, we claim that the situation is a sequence of experiments to verify our claim is de-
surprisingly positive for vision: scribed in Sect. 5.
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Figure 1: The Sense-Think-Act cycle roughly depicting magsks for playing soccer with a humanoid robot.

2 CHALLENGESFOR PLAYING 2.2 Challengesfor Thinking
SOCCER

In this area, two different aspects may be distin-
| guished: motion planning and high-level multi-agent

The global task of playing soccer consists of several ., ination. The latter is a research topic in the

different, interdepending challenges. We roughly cat- RoboCup Soccer Simulation League since a while

egorize them according to the Sense-Think-Act ¢y- .4 hasreached a remarkable level. Dealing with

cle (see Fig.1). This should be considered as a possi- . : )
ble architecture for illustration. In the following, the {f offsidglitile as well gs playing one-two passes are

. . . standard behaviors, complex group tasks as playing
challenges are described in reverted order but with de'keepaway soccer serve as a testbed for learning algo-
creasing degree of difficulty.

rithms (Stone et al., 2005). This area could be consid-
ered to be already quite close to human capabilities.
2.1 Challengesfor Actuation On the other hand, when playing with real hu-
manoid robots, sophisticated methods for motion
planning are needed. The current research frontier on
humanoid motion control is balancing and dynamic
foot placement for walking robots. Algorithms for
full-body motion planning exist (Kuffner et al., 2002),
but are subject to restrictions that make them inappli-
cable to tasks as playing soccer.

Here is a big gap to human level soccer. As an
example consider volley-kicking. The player has to
hit the ball exactly at the right time, position, and ve-
locity, with a motion compatible to the step pattern,
allowing balancing and considering opponents. Last
but not least, all this must happen in real-time.

The hugest obvious gap may be observed in the field
of actuation. Nowadays, the probably most advanced
humanoid robot, Honda's ASIMO, is capable of run-
ning at a top speed of six kilometers per hour (Honda
Worldwide Site, 2007). This is an impressive result,
but still more than five times slower than the top speed
of a human soccer player. A similar gap regarding
kicking velocity has been pointed out by Haddadin
et al. (2007). They showed that a state-of-the-art
robot arm (with a configuration comparable to a hu-
man leg) is six times slower than required to acceler-
ate a standard soccer ball to an adequate velocity. Itis
still an open issue, whether today’s motor technology .
could be developed further on enough, or if more effi- 2.3 Challenges for Sensing
cient actuators, e.g. artificial muscles, will be needed.
Since soccer is a contact sport leading to physical According to Kitano and Asada (1998), it is evident
human-robot interaction (Haddadin et al., 2007), not that the robots’ sensorial capabilities should resemble
only direct position control but also approaches for the human ones. Thus, we could assume to deal with
compliant motion, such as impedence control, need data from cameras and inertial sensors emulating the
to be taken into account. human eyes and vestibular system. The required in-
Additionally, the problems of energy efficency formation are estimates of the own position and the
and power supply need to be solved. The ASIMO positions of the ball and of other players. In case of
robot for example is, according to Honda Worldwide tackles or dribbling, the latter will be needed to be
Site (2007), capable of walking (with a speed of less recognized in more detail (e.g. the positions of the
than three kilometers per hour) for 40 minutes. feet and limbs).
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Current solutions for these tasks and ouridea how  Overall, understanding a soccer scene from the
to bridge the remaining gap are presented in the fol- player's perspective seems much easier then for in-
lowing section. stance understanding an arbitrary household, traffic
or outdoor scene. Indeed there are already half-
automatic systems in the related area of TV soccer
scene analysis, for example the ASPOGAMO system
by Beetz et al. (2006, 2007) proofing that soccer scene
understanding in general is on the edge of being func-
Our main thesis is that the “sense” part of the tional.

RoboCup 2050 challenge can be realized within a
decade starting from the current state of the art in
computer vision. This is remarkable, since the “act”
and “think” parts are apparently lightyears away from ] o
reaching human level performance and for computer S0; iS @ vision system for the RoboCup 2050 chal-
vision in general, this is also true. The reason, why we !€nge an easy task? We believe it is not. It is sur-
believe such a vision system can be realized, is, thatPrisingly a realistic task but well beyond the current

unlike a household robot for instance, a soccer robot State of the art. The first problem is, that the camera is
faces a rather structured environment. moving along with the head of the humanoid soccer

robot. To predict a flying ball, the orientation of the
camera must be known very precisely. It seems un-
realistic that the necessary precision can be obtained
from the robot’s forward kinematic, since unlike an
The objects relevant in a soccer match are the ball, industrial robot, a humanoid robot is not fixed to the
the goals, the line markings and of course the players.ground. So our solution is to integrate an inertial
Ball, goal and line markings are geometrical features, sensor with the camera and fuse the complementary
i.e. circles and lines. There is a large number of algo- measurements of both sensors in a probabilistic least-
rithms for detecting them in images, from the classi- square framework.
cal Hough transform (Davies, 2004) up to arange of  The second problem is the player’s perspective. It
more elaborate methods (Guru and Shekar, 2004).  js much more difficult than the overview perspective
Recognizing other players is more challenging. It used in TV soccer scene analysis. In the TV perspec-
is particularly difficult because we will probably need tive the scale of an object in the image varies by a
not only the general position but the detailed state factor of about 3 (Beetz et al., 2006, Fig. 5) whereas
of motion for close range tackling and to infer the in the player’s perspective it can vary by a factor of
player’s action for tactical purposes. Fortunately, peo- 250 assuming the distance to an object ranging from
ple tracking is an important topic in computer vision 0.5m to 125m. Hence, for instance the people de-
with a large body of literature (Price, 2008; Ramanan tection algorithm must handle both extreme cases, a
and Forsyth, 2003). person only the size of a few pixels, where an arm
Furthermore, soccer scenes are lightly colored or a leg maybe thinner than a single pixel and a per-
with green lawn and the players wearing colored son much larger than the camera’s field of view, only
clothes of high contrast. In the RoboCup competition, partially visible. Furthermore, in an image from the
this idea is taken to an extreme, where most teamsplayer’s perspective, other players will extend beyond
rely on color segmentation on a pixel-per-pixel basis the green lawn of the field into the general back-

3 THE VISION SYSTEM

3.2 Open Problems

3.1 Stateof the Art

as their primary vision engine. This will not be pos-
sible for real-world soccer, mainly due to changing
lighting conditions. Still color can provide a valuable
additional cue, at least when looking below the hori-
zon, where objects are in front of green lawn.

The background above the horizon, including the

ground. Hence it is not possible to search for non-
green blobs as an easy first processing step. This can
also happen for a flying ball, which is then particu-
larly difficult to detect.

However, the third and most severe problem is,
that from our experience, most of the academic com-

stadium and the audience is of course also visible andputer vision systems perform on the level of lab
unfortunately rather undefined. However, if it is rele- demonstrators requiring nicely setup scenes and light-
vant for the soccer robot at all, then not for recogni- ing conditions and usually considerable parameter
tion, but only in the sense of a general landmark. For tweaking. So, to summarize, for the vision part of the
this purpose there are nowadays well working tech- RoboCup 2050 challenge, we do not need a new level
nigues, such as the Scale Invariant Feature Transformof functionality as for many other grand challenges,
(SIFT) (Lowe, 2004). but we need a new level of robustness.
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4 ROBUSTNESS THROUGH
CONTEXT

We propose to address the question of robustness by
utilizing probabilistically modeled context informa-
tion, formulating the overall scene understanding and
prediction problem as a global likelihood optimiza-
tion task. This ideain general is not entirely new (UlI-
man, 1995; Binnig, 2004; Leibe et al., 2007), but we
believe it is particularly well suited to this task and
also the task is well suited to study this methodology.

4.1 Data-Driven Bottom-Up Processing

Most current vision systems use a data-driven bottom-
up approach (Frese et al., 2001; Rofer et al., 2005;
Beetz et al., 2007, as examples). Usually, low level

features are extracted from the ir’r_1age a”O_‘ then ag_gre'Figure 2: Our proposed experiment: Mount a camera and

gated through several stages to high level information. an inertial sensor on the head of a human soccer player and

Each stage may incorporate some background know-use them to extract all the information, a humanoid soccer

ledge at its particular level but does not take informa- robot would need to take the human’s place.

tion from higher levels into account. It simply takes

some input from the previous lower level and passes

the result of the Computation to the next hlgher level. 2. a camera model likelihood bmdmg 2D circles to
As an example, a classical Hough transform starts 3D positions;

by classifying pixels as edge or not by thresholding

the result for instance of a Sobel filter. Similar the

system by Beetz et al. starts by classifying pixels as

lawn or not on the basis of their color. This is a hard

decision taken on the lowest level without any higher 4. a circle color likelihood, indicating how well the

level knowledge, such as the fact that we are looking color inside the 2D circle corresponds to the ball.

for a ball or the ball’s motion model. Such a pixel-

wise classification can be very ambiguous. Often we

could, for instance, classify a borderline pixel cor-

3. a circle edge likelihood, indicating how much
contrast there is in the image along the outline of
the hypothesized 2D circle;

The first two factors are Gaussians expressing the
models as formulas with uncertainty (Birbach, 2008).

. X The last two look directly into the image for a specific
rectly as belonging to the ball, although itlooks rather jrce returning a gradual result. In this approach, an
greenish, if we considered the context of the ball or its indistinct ball would get a lower likelihood in 3. and

motion model. However, in conventional vision sys- 4 "+ this could be compensated by 1. and 2. if it fits
tems, on the low level this knowledge does not exist | 4| to the context of a flying ball

and on the higher level, the fact, that this pixel was 1o hroplem is understanding an image sequence,
borderline in the classification, is lost due to commit- ; . estimating over time. Indeed, successive images
ting to a hard decision on the lower level. are linked by a motion model and this provides most
N S of the context we want to build upon. However, we
4.2 Global Likelihood Optimization propose not to use incremental filters, such as EKF
! ) . or a particle filter, but to look back into the raw im-
We believe, that much of the brittleness of current vi- ages of the last few seconds at least. This approach
sion systems originates from this phenomenon. So pag syrprising advantages. Imagine the ball is kicked,
our approach for increased robustness is an overally i qyring the first 100ms there is too little contrast to
likelihood optimization. In the example above, the he hackground so it is not detected. Now when it is
variables to be optimized would be the 2D image cir- getected, there is new information on where the ball
cle (center, radius) and the 3D position and veloCity pa5 peen before from the ball's motion model. The
of the ball over time. The likelihood would be the 4 images are still in memory and tracking the ball

product of the following likelihoods for all images: back in time is much less ambiguous than finding the
1. a motion model likelihood binding the 3D posi- ball without context and will probably succeed. Para-
tions and velocities over time; doxically, once the system has detected the ball it has
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Figure 3: Predicting the trajectory of a flying ball from a nray camera-inertial system. As an initial study, the bal kines
and the goal corners have been manually extracted from thgesa From this data, the trajectory of the ball is predicted
(left). The right plot shows the error of the predicted toddwn point varying over time. It shows, even though the camer
is moving, the prediction is roughly precise enough forricgeption. Seéttp: // www. sport-robotics. conlicinco/.

already observed it for 100ms. The first prediction is We have already conducted a very first experi-
not delayed at all, because prior to that the ball must ment (Kurlbaum, 2007; Birbach, 2008), where the
have been observed for some time anyway. ball and the field lines are manually extracted from
Overall, we believe that the approach of a global the recorded images (available on request). The ball’s
likelihood optimization directly in the images is an trajectory is predicted by least-square estimation us-

elegant way to greatly increase robustness. ing the likelihood functions 1. and 2., as well as cor-
responding equations for how the inertial sensor ob-

serves the free motion of the camera (Fig.3). The re-

5 PROPOSED EXPERIMENTS sults indicate, that if the ball can be detected in the
image with about one pixel precision, the prediction
would be precise enough. We believe that this kind of
studies which deliberately discard essential aspects,

vision system now but then had to wait until a hu- such as integration, real-time computation, or auton-
man level soccer robot is available. So we propose MY aré undervalued by the community who favors
a sequence of experiments, that, without a humanoid!!! System approaches. But even from a full system
robot, ultimately allows to verify that the proposed perspective, itis much more valuable to obtain an ex-
system is appropriate for human level soccer (Fig.2). tensive result on a subsystem which then can guide
the full system design than to do another increment

51 Helmet Camerawith Inertial Sensor ~ ©nafull system.

For a vision to become reality, realistic intermediate
steps are necessary. It would not help, if we build a

The basic idea is to let a human soccer player wear a2-2 Motion Capture Suit
helmet with a camera and an inertial sensor and verify,
that the information extracted by the vision system Departing from the experiment above, one might ask
from the sensor data, would allow a humanoid robot whether more sensors are needed than just camera and
to take the human'’s place. inertial. Both human and humanoid robot can derive
As a first experiment we propose to record data their own motion from the joint angles. This provides
from a soccer match and run the vision system on thatthe horizontal motion (odometry) and the height over
data offline. Since it is hard to obtain ground-truth ground. The horizontal motion facilitates localization
data, we would use our expert's judgment to asses,and the height derived from vision is much less pre-
whether the result would be enough for a humanoid cise. Indeed, we experienced that the uncertain height
robot to play soccer. It is very advantageous to work is a major part of the error in Fig. 3.
on recorded data allowing to reproduce results forde-  An intriguing idea is to equip the human player
bugging and analysis and to run the system even if its with a tracker-lessmotion capture suit (Xsens Tech-
still not real-time. Overall, it allows to first concen- nologies B.V., 2007) measuring joint angles. Apart
trate on functionality and robustness instead of com- from providing the kinematic information discussed
putational efficiency and technical integration. above, it also provides the trajectory of both feet. If
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the player hits the ball, one can compare the predictedBinnig, G. (2004). Cellenger automated high content anal-
ball trajectory with the real foot trajectory and evalu-  ysis of biomedical imagery.
ate the precision. This is important since ground truth Birbach, O. (2008). Accuracy analysis of camera-inertial

is not available. sensor based ball trajectory prediction. Master’s thesis,
Universitat Bremen, Mathematik und Informatik.
5.3 Virtual Reality Display Burkhard, H.-D., Duhaut, D., Fujita, M., Lima, P., Murphy,

R., and Rojas, R. (2002). The Road to RoboCup 2050.
IEEE Robotics and Automation Magaz;jrg€2):31-38.

The experiments above have the drawback that theyDavies, E. R. (2004)Machine Vision. Theory, Algorithms,

are evaluated by an expert looking at the vision sys- =5 - 4 iioc Morgan Kauffmann.

tem's output. The.,' most direct proof that thls is all Frese, U., Bauml, B., Haidacher, S., Schreiber, G., Schae-
you need for playing soccer would be to give a hu- fer, 1., Hahnle, M., and Hirzinger, G. (2001). Off-the-
man just that output via a head mounted display and  shelf vision for a robotic ball catcher. IRroceedings
see whether s/he can play. of the IEEE/RSJ International Conference on Intelligent
The approach is of course fascinating and direct, Robots and Systems, Mapages 1623 — 1629.
but we have some concerns regarding safety. Anyway, Guru, D. and Shekar, B. (2004). A simple and robust line
this experiment becomes relevant only after we are detection algorithm based on small eigenvalue analysis.
convinced in principle, that the system is feasible. So  Pattern Recognition Letter@5(1):1-13.
this is something to worry about later. Haddadin, S., Laue, T, Frese, U., and Hirzinger, G. (2007).
Foul 2050: Thoughts on Physical Interaction in Human-
Robot Soccer. IfProceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
6 CONCLUSIONS Honda Worldwide Site (2007). Honda World Wide —
Asimo. http://world.honda.com/ASIMO/.
In this position paper, we have outlined the road to a Kitano, H. and Asada, M. (1998). RoboCup Humanoid
vision system for a human-robot soccer match. We  Challenge: That's One Small Step for A Robot, One Gi-
claim that, since soccer is a rather structured environ- ~@nt Leap for Mankind. Irinternational Conference on
ment, the basic techniques are available and the goal 'Melligent Robots and Systems, Victopages 419-424.
could be reached within a decade. The main chalIengeKUIfrf]r(‘)‘Z'r’e JHJ-(’Zgg%""mS ﬁam'\i'fé'?l""’ztka'lbl'é-MQS&?P’\"QH :}Rd
will be robustness, which we propose to address by s = S e SR R}(/)bot,sl2(1):105—118. ?
optimizing a global likelihood function working on a .
history of raw images. We have outlined a sequence Kurlbaum, J. (2007). Verfolgung von ballflugbahnen mit
’ - i einem frei beweglichen kamera-inertialsensor. Master’s
of experiments to eva_luatg such a vision system with  thegjs, Universitat Bremen, Mathematik und Informatik.
data from a camera-inertial system mounted on the Leibe, B., Cornelis, N., Corelis, K., and Gool, L. V.
head of a human soccer player. (2007). Dynamic 3D Scene Analysis from a Moving
The reason, we are confident such a system can Vehicle. InlEEE Conference on Computer Vision and
be realized within a decade is the insight that it does  Pattern Recognition
not need general common-sense-reasoning Al. ThisLowe, D. (2004). Distinctive image features from scale-
is good news for the RoboCup 2050 challenge. But  invariant keypoints.International Journal of Computer
it suggests that, even when we meet that challenge, it Vision 60(2):91 —110.
does not imply we have realized the dream of a think- Price, K. (2008). The annotated computer vision bibliogra-

ing machine, the whole challenge had started with. phy. hitp:/iwww.visionbib.com/.
. . Ramanan, D. and Forsyth, D. (2003). Finding and track-
That would not be the first time. ing people from the bottom up. MEEE Conference on
Computer Vision and Pattern Recognition
RoboCup Federation (2008). RoboCup Official Site.
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