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Abstract: As a consequence of physical constraints and of dynamical nonlinearities, optimal control problems 
involving mobile robots are generally difficult ones. Many algorithms have been developed to solve such 
problems, the more common being related to trajectory planning, minimum-time control or any specific 
performance index. Nevertheless optimal control problems associated to mobile robots have not been 
reported. Minimum energy problems subject to both equality and inequality constraints are generally  
intricate ones to be solved using classical methods. In this paper we present an algorithm to solve it using a 
Quadratic Programming approach.  In order to illustrate the application of the algorithm, one practical 
problem was solved. 

1 INTRODUCTION  

1.1 Preliminaries 

Mobile robotics is an important research area and for 
its study many researchers have dedicated a lot of 
time to it. There are many problems in mobile robots 
that are not present in industrial robots. Problems 
with posture maintenance, localization, equilibrium 
and energy consumption are common both at design 
and operation times. Limbed robots can be 
considered an important engineering conquest due to 
the fact that they have larger mobility, flexibility and 
freedom of movements than any other automatic 
machine (Dudek, 2000).  Research in this area 
requires strong knowledge of mechanics, electronics, 
computation, and eventually biomechanics. Limbed 
robots are capable of walking and climbing and have 
been developed around the world. (Armada et al., 
2003; Virk, 2005). Some of them have been used to 
inspect bridges (Abderrahim et al., 1999) and 
pipelines (Galves; Santos; Pfeiffer, 2001).  
 
Presently the literature reports just two robots with 
the ability of tree climbing. The first one was 
developed at the Waseda University, Japan, and the 
second one is the RiSE robots (Robots in Scansorial 
Enviroments) (Saundersa et al., 2006) developed at 
the United States. The RiSE robot is a member of a 

new class of climbing robots whose design is based 
on animals. For all of them, the energy consumption 
is a big problem. Generally the battery is their 
heaviest part since a considerable amount of energy 
is necessary to drive the legs’motors.  
 
Typically a leg has the form of a serial mechanism 
with a highly nonlinear dynamics. This is one of the 
reasons that make to find an optimal control law a 
difficult problem. A second reason is the presence of 
both equality and inequality constraints imposed on 
the system – e.g., the actuator of each joint is subject 
to saturation (Spont et al., 1989).   
 
Many authors have worked in the optimization of 
robots operation in the context of trajectory 
planning. (Lin et al., 1983; Garg et al., 2002; Luo et 
al., 2004). The problems considered in general 
aimed to minimize the time or some quadratic 
performance index. Nevertheless in the majority of 
them both the Coriolis and Centrifugal terms were 
omitted. 
 
Optimal trajectory control systems usually can be 
built by solving two associated sub-problems: i) the 
optimal trajectory planning (OTP); ii) the trajectory 
tracking control (TTC). Since there are many 
complex constraints conditions concerning robot 
kinematics and dynamics, the corresponding 
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algorithms for solving the OTP problem have been 
improved in recent years (Luo et al., 2004). Even 
though good results have been obtained with the 
OTP problem for both manipulators and industrial 
robots, this is not the case for mobile robots. 
 

A minimum energy formulation may be an 
interesting approach for mobile robots, particularly 
in applications where the battery weight is a critical 
issue. Minimum energy problems may be difficult to 
solve by classical methods since they involve both 
the nonlinear dynamics of the robot and a set of 
constraints.         

In this paper a Quadratic Programming approach to 
the minimum energy problem of a mobile robot is 
proposed. The method is based on the discretization 
of the problem. Numerical tests were performed for 
Kamanbaré1, a robot currently under development at 
the Automation and Control Laboratory (LAC), 
University of São Paulo.     

1.2 The Robotic Platform 

Kamambaré is a biomimetic robotic platform, i.e., a 
robotic platform inspired in nature, with the purpose 
of climbing trees for environmental research 
applications (see Fig. 1). More specifically the 
platform locomotion is inspired in the form lizards 
climb trees. The main characteristics sought in the 
definition of the Kamanbaré platform were: 
locomotion in irregular environments 
(unpredictability of the branch complexity that 
compose a tree), surmounting obstacles (nodes and 
small twigs), tree climbing and descending without 
risking stability, and keeping low structural weight 
(mechanics + electronics + batteries).  (Bernardi et 
al., 2006) 
 

 
Figure 1: Robot Kamanbaré. 

                                                 
1 Kamanbaré is the word in the Tupi indian language for 
chameleon. 

The prototype of the Kamanbaré platform presented 
in this work was developed considering certain 
capabilities (abilities), such as: locomotion in 
irregular environments (unpredictability of the 
branch complexity that compose a tree), 
surmounting obstacles (nodes and small twigs), tree 
climbing and descent without risking stability, and 
keeping low structural weight (mechanics + 
electronics + batteries).  (Bernardi et al., 2006) 
 
Each leg has three rigid links connected by two 
rotational joints with one degree-of-freedom (d.o.f.) 
each. The first link is connected to the platform by a 
two d.o.f. rotational joint (Fig. 2).  
 

 
Figure 2: Limb of the Kamanbaré Platform. 

All joins are controlled by DC motors. The control 
problem for mobile robot is the problem of 
determining the time history of join required to 
cause the end-effectors (the gripper) executed a 
commanded motion.   
     
There are many control techniques and 
methodologies that can be applied to the control of 
limbed robots. The particular control method chosen 
as well as the manner in which it is implemented can 
have a significant impact on the performance of the 
robot and consequently on the range of its possible 
applications. Optimal control of energy can be an 
interesting policy when the robot must operate 
autonomously for a long time. The control problem 
for the tree climbing robot considered here is to 
determine the time history of each limb joint 
required to cause the leg to move from an initial 
angle to a final one in such a way that the energy 
loss in the motors is minimal.   
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2 FORMULATION AND 
SOLUTION OF THE OPTIMAL 
CONTROL PROBLEM 

2.1 The State Space Model 

This work consider the control strategy named 
independent joint control. In this type of control 
each axis of the limb is controlled as a single input 
/single output system. Any coupling effects due to 
the motion of the others links is either ignored or 
treated as a disturbance. (Spont et al., 1989) 
 
The space state model that describes the dynamics of 
the DC motor located at the i-th joint ( ni ≤≤1 ) of 
the leg can be expressed by the equations: 
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J is the moment of inertia of the rotor, b is the 
viscous damping coefficient of the mechanical 
system, V is the armature voltage (control variable), 

aR  is the armature resistance, aiY = is the 
armature current, mK  is  the torque coefficient of the 
motor, bK  is the counter-electromotive coefficient, 

τ  is the load torque, 1<r  is the gear reduction 
factor, 

mθ is the angular position of the rotor and  mθ�  
is the angular speed of the rotor. Notice that the 
input variable u  depends on both the control 

variable V  and the load torque τ , which also 
depends on V  through mθ  and mθ� . 
 

The load torque τ , which depends on the robot 
dynamics, is given by : (Spong, 1989) 
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where ( )M q  is the leg inertia matrix, ( )B q  is the 

Coriolis torque matrix, ( )C q  is the centrifugal 

torque matrix, ( )G q  is the gravitational torque 
vector, 
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where iq , ni ≤≤1 , is the generalized coordinate 
of joint i and n is the number of joints of the leg. 
 
Some dynamical effects like friction were not 
included in (10) although they may be significant for 
some limbs. In addition, a more detailed model of 
the leg dynamics could include various sources of 
flexibility, defection of the links under load and 
vibrations (Borrow et al., 2004). Nevertheless, this 
model is sufficiently accurate for our purposes since 
these effects are not significant for the leg under 
consideration. 
 
One of the characteristics of the independent joint 
model is that τ  is multiplied by the gear 
reduction r . Thus effect of the gear ratio is to 
reducing the coupling nonlinearities presents in 
dynamics of the limbs.  
 
The solution to equation (1) is given by: 

( ) ( ) ( ) ( )
0

0
t

A tAtx t e x e Bu dς ς ς−= + ∫  (11) 

2.2 The Optimal Control Problem 

In this section it is assumed that τ(t) is known for all 
t in the interval [0 tf]. The performance index 
adopted is the Joule loss in the armature resistance 
of each motor during the motion: 
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∫=
ft

dtP
0

min ε  
 

(12) 

where ft is the time required to move the joint from 

the initial to the final position, and P is the power 
dissipated:  
 

where Y  was defined in (2). 
 
The optimal control problem is subject to the 
following constraints: 
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where mI  and mV  are, respectively, the maximum 
armature current and maximum armature voltage of 
the motor and 0 ft t⎡ ⎤∈ ⎣ ⎦ . With no loss of 

generality we take 1(0) 0x = . Considering the motor 
initially at rest, 2 (0) 0x = . 
 
This type of problem is hard to solve and generally 
involve a great computational effort (Kirk, 1998). 
Mobile robots require a quick solution and to solve it 
in real-time is practically impossible. These are 
among the reasons for which we decided to look for 
another kind of solution.  

2.3 Discretization 

Let us to define the time-step as: 
 

1
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where N can be chosen sufficiently large to 
discretize ft . Then it is assumed that ( )u t  is a 

stepwise constant function and ku is used to denote 
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Taking into account equations (11), (12), (13) and 
(19), the functional ε  can be rewritten as:  
 

2

1 1

min
N N

k a a
k k

P t R i tε
= =

= Δ = Δ∑ ∑  (20) 

 
and the solution of  system (1) as: 

( ) kAt
k kx t e I U= Γ  (21) 

where, 
1 2

10 0

N

N

tt t
A A A

t

e Bd e Bd e Bdς ς ςς ς ς
−

− − −Γ = + + +∫ ∫ ∫… , (22) 

[ ]1 2
T

NU u u u= …  (23) 

and  
1

2

0 0 0
0 0 0
0 0 0
0 0 0

k

n

e
e

I

e

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

%
 

(24) 

Where ie = 1 for 1 i k≤ ≤ and ie = 0 for 

k i N< ≤  . 
 
Matrix Γ can be calculated offline since it depends 
only on the motor parameters. 
 
From equations (20) and (21) it is possible rewrite 
(20) as: 
  

 
where matrices Q and K  depend only on the motor 
parameters and σ  is a constant. The constraints for 
the problem are: 
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where constraints (26) and (27) apply for all k , 

.1 Nk ≤≤  
Since σ is a constant, it is not relevant for the 
optimization.  
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The problem given by equations (25)-(29) has thus 
the form of a Quadratic Programming problem 
which is certainly the kind of nonlinear 
programming problem closest to linear programming 
from analytical and computational point of view. 
Solution for this kind of problem can be efficiently 
found by numerical methods. (Avriel, 1976) 
(Winston, 1995).  

2.4 The Algorithm 

An iterative algorithm to solve the minimum energy 
problem based in equations (13) and (20) is 
proposed in this section. 
 
To start the algorithm it is assumed that 

0: 0 ≡= kk ττ  for all k , .1 Nk ≤≤  Then 
Quadratic Programming problem of minimizing the 
function (20) subject to constraints (26) to (29) is 
solved.  Denote by 0*

kU  the optimal solution for this 
problem. Using equation (17) and recalling equation 
(1), both the motor angular position )(0 kmθ  and 

angular speed )(0 kmθ�  can be evaluated for all k , 

.1 Nk ≤≤  
 

The second step of the algorithm begins by using the 
leg dynamical equations (10) to evaluate a new 
torque time history 1

kτ  for all k , .1 Nk ≤≤  The 
new Quadratic Programming problem is then solved 
and 1*

kU is obtained. )(1 kmθ  and )(1 kmθ�  are 

evaluated for all k , .1 Nk ≤≤  
 

The process is repeated until 1j j
k k ττ τ ε+ − <  for a 

given accuracy τε  and two consecutive steps j and 
j+1. When convergence is attained the optimal 
vector of armature voltages *1+jV can be evaluated 
using equation (9). 
 
The algorithm is expected to converge since the gear 
reduction ratio r is generally small and the effect of 
the torque on the motor dynamics is correspondingly 
small too. 
 
The algorithm may thus be summarized as: 
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until ( )( )1max j j
k k ττ τ ε+ − ≤               

3 SIMULATION RESULTS  

This section presents the results obtained from the 
application of the algorithm above to a leg similar to 
that of the Kamanbaré platform.  
 
The algorithm code was written in MatLab. The 
following data were used: 2=ft s , 10=N ,  

1110−=τε and 

0 1 2
0

4N N N

TT

m m m
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Algorithm convergence occurred in 15 iterations. 
Table 1 shows the algorithm steps until the optimal 
solution is reached. The overall processing time was 
quite small. 

Figure 3 show the optimal solution 
*15

kU  for each 
motor. 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.5

0

0.5
Optimal Control

V
ol

ta
ge

 1
 [v

ol
ts

]

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.1

0

0.1
Optimal Control

V
ol

ta
ge

 2
 [v

ol
ts

]

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.1

0

0.1
Optimal Control

V
ol

ta
ge

 3
 [v

ol
ts

]

Time [s]  
Figure 3: Optimal Solution. 
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Table 1: Minimum Energy Consumption. 

Energy Consumption 
1

N

k
k

P tε
=

= Δ∑  [watts] 
Iteration (j) 

Joint 1 (Motor 1) Joint 2 (Motor 2) Joint 3 (Motor 3) 
1 0.22583525809518 0 0.01411470363095 
2 0.54691612008194 0.00249201214070 0.02563789026998 
3 0.60424685648279 0.00151916407557 0.02084265484899 
4 0.60913169232854 0.00162074115964 0.02201351589222 
5 0.60878562782495 0.00159940182719 0.02201765824694 
6 0.60878328339302 0.00160200730314 0.02202687314770 
7 0.60877614492969 0.00160176202487 0.02202629388348 
8 0.60877639908587 0.00160179288124 0.02202637161877 
9 0.60877635993567 0.00160178879636 0.02202635576755 
10 0.60877636906069 0.00160178928402 0.02202635725193 
11 0.60877636847905 0.00160178921712 0.02202635705179 
12 0.60877636859543 0.00160178922523 0.02202635707836 
13 0.60877636858174 0.00160178922422 0.02202635707548 
14 0.60877636858322 0.00160178922435 0.02202635707588 
15 0.60877636858300 0.00160178922433 0.02202635707583 

  
Figures 4 and 5 show kinematics of each joint; the 
angular position and the speed and acceleration 
achieved for the optimal control

*15
kU .   
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Figure 4: Joints Positions. 
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0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-10

0

10
τ 

[n
]

Torque 1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-4

-2

0

τ 
[n

]

Torque 2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-4

-2

0

Time[s]

τ 
[n

]

Torque 3

 
Figure 6: Torques for each motor. 

In this particularly case the motor’s 2 and 3 have the 
same torque.   

4 CONCLUSIONS 

This paper discussed the formulation and solution of 
an important problem related to mobile robotics: the 
minimum energy loss problem.  
 

An optimal control problem was formulated to 
represent this case. After discretization in time the 
optimal control problem was rewritten in the form of 
a Quadratic Programming problem whose solution 
could be obtained efficiently. The algorithm was 
tested for a leg similar to that of the Kamanbaré 
platform. 
Although the whole problem is nonlinear and quite 
complex the algorithm converged quickly in all the 
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tests performed by now. It is thus expected that the it 
can be used to operate in real-time. 
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