OBDD COMPRESSION OF NUMERICAL CONTROLLERS

Giuseppe Della Penna, Nadia Lauri, Daniele Magazzeni
Computer Science Department,University of L’Aquila, L’Aquila, Italy

Benedetto Intrigila
Department of Mathematics, University of Roma "Tor Vergata”, Roma, Italy

Keywords: Numerical Controllers, Compression Techniques, Ordered Binary Decision Diagrams.

Abstract: In the last years, the use of control systems has become very common, especiallgimbtdded systems
contained in a growing number of everyday products. Therefore, the problem afithatic synthesisf
control systems is extremely important. However, most of the current techniques for the automatic generation
of controllers, such asell-to-cell mappingdynamic programmingset oriented approachr model checking
typically generatenumerical controllersthat cannot be embedded in limited hardware devices due to their
size.
A possible solution to this problem is wompresshe controller. However, most of the common lossless
compression algorithms, such as LZ77, would decrease the controller performances due to their decompression
overhead.
In this paper we propose a new, completely automatic OBDD-based compression technique that is capable of
reducing the size of any numerical controller up &pace savings of 90%ithout any noticeable decrease in
the controller performances.

1 INTRODUCTION niques have also been applied (Della Penna et al.,
2006; Della Penna et al., 2007b) in the field of au-

Control systems (or, shorthcontrollery are small ~ tomatic controller generation.

hardware/software components that control the be- ~ The controllers generated using all these tech-
havior of larger systems, th@tants A controller con- niques are typicallyyumerical controllersi.e. tables
tinuously looks at the plarstate variablesnd possi- indexed by the plant states, whose entries are com-
bly adjusts some of itsontrol variablesto keep the ~ mands for the plant. These commands are used to
system in thesetpoint which usually represents its Set the control variables in order to reach the setpoint
correctbehavior. from the corresponding states. Namely, when the con-

In the last years, the use of controllers has becometroller reads a state from the plant, it looks up the ac-
very common in robotics, critical systems and, in gen- tion described in the associated table entry and sends
eral, in theembedded systernentained in a growing it to the plant.
number of everyday products. Therefore, the prob- However, a main problem of this kind of con-
lem of theautomatic synthesief control systems is trollers is thesizeof the table, which for complex sys-
extremely important. tems may contain millions of entries, since it should

To this aim, several techniques have been devel- be embedded in the control system hardware that is

oped, based on a more or less systematic explorationusually very limited.

of the plant state space. One can mention, among oth- A possible solution to these problems is to derive,
ers, cell-to-cell mappingtechniques (Leu and Kim, from the huge numerical information contained in the
1998), dynamic programming(Kreisselmeier and table, a smalfuzzy control systemThis solution is
Birkholzer, 1994) andet oriented approacfGrine natural since fuzzy rules are very flexible and can
and Junge, 2005). Recentljmodel checkingech- be adapted to cope with any kind of system. More-

43

Della Penna G., Lauri N., Magazzeni D. and Intrigila B. (2008).

OBDD COMPRESSION OF NUMERICAL CONTROLLERS.

In Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics - ICSO, pages 43-50
DOI: 10.5220/0001497900430050

Copyright © SciTePress

ICINCO 2008 - International Conference on Informatics in Control, Automation and Robotics

over, there are a number of well-established tech- ing (Hand et al., 2001). Indeed, our choice of OB-
nigues to guide the choice of fuzzy rules by statisti- DDs was motivated by their capability of compress-
cal considerations, such as in Kosko space clusteringing large state spaces, that is at the hearsyaofbolic
method (Kosko, 1992), by abstracting them from a model checkingnd of its great achievements (Burch
neural network (Sekine et al., 1995), by clustering the et al., 1992; Clarke et al., 1999). Our hypothesis has
trajectories obtained from the cell mapping dynam- been that this capability is transferrable to the com-
ics (Leu and Kim, 1998) and finally by using genetic pression of the controller table which is, in a sense,
algorithms (Della Penna et al., 2007a). an augmented state space representation.

However, two considerations are to be made with Our experimental results show that this is indeed
respect to this approach. First, the detection of the the case. For very large tables we obtain a quite good
fuzzy rules requires (at least)taning phasewhich compression ratio (around 10:1). Moreover, not only
is not completely automatic but involves some human the access time is good, but it is ofteven bettethan
intervention. Second, the fuzzy rules appear not to the one obtained by a direct representation of the ta-
be suitable when a very high degree of precision is ble in memory. This phenomenon is due to the fact
needed. This is the case, e.g., of theck and trailer that, unless we accept a very sparse table, with huge
parking problemwhenobstaclesre to be avoided in waste of space, we need to represent the controller
the parking lot (Della Penna et al., 2006). In this case, using some kind obpen addressingable accessed
when the truck is near to an obstacle, only a very pre- through ahash functionwith a consequent worsen-
cise manoeuvre can park it, without hitting the obsta- ing of the access time (Cormen et al., 2001).
cle. So, to achieve the required precision, an exceed- A final but very important point to be stressed is
ing number of fuzzy rules would be necessary. that the implemented compression algorithm, which

Therefore, it seems reasonable to pursue anothertransforms the controller table in an OBDD, operates
possible approach, that t® directly compress the in a completely automatic way. The only parameter
control table By this we meardata compression the user should set is the BDD variable reordering
in the usual sense aéduction of the number of bits method (see Section 4), which can effect the com-
needed to represent the controller table in the com- pression ratio. After that, the compression operates in
puter RAM memory (Cover and Thomas, 2006; Nel- a “zip”-like fashion. However, the best setting of the

son and Gailly, 1995). above parameter can also be discovered by the algo-
Observe, however, that in this case the compres-rithm by trying all the possible reorderings, thus mak-
sion algorithm should be constrained as follows: ing the compression process completely automatic.

1. the logical content of the table, that is the rela- Finally, a further automatic step can also be applied
tion between the states and the corresponding con-t0 transform the OBDD into C-code that can be in-
trol actions, must be preserved without any loss of corporated in any C-program.

information (i.e., we need some kind lufssless The paper is organized as follows: in Section 2
compression algorithm); we give a description of OBDDs and in Section 3

2. the access time to the table must be comparable}(’ve show how we use them to encode numerical con-

with the one obtained with a direct representation
of the table in the computer memory (i.e., e
compression overheadust be minimal).

Consider as an example the straightforward idea 2 ORDERED BINARY DECISION

of directly compressing the table by mean of (some

variant of) the well known Lempel-Ziv algorithm (Ziv DIAGRAMS

and Lempel, 1977). Since this is a lossless compres-

sion, the first requirement above is fulfilled, but not A Binary Decision DiagramBDD) is a data structure

the second one, since the access time to the tableused to represent a boolean function (Bryant, 1986).

would be linear in theincompressesize of the table Indeed, any boolean functioh can be represented

itself (Nelson and Gailly, 1995). as a binary tree having two kind of leaf valueB:
Since all the common compression algorithms (boolean false) o (boolean true). Each node of

have similar problems when applied to controllers, we the tree (ecision nodgis labeled by a variable of the

decided to develop a nead-hoccompression algo- formula f. The two edges outgoing a decision node

rithm based on the well know@rdered Binary Deci- represent an assignment of the corresponding variable

sion Diagrams (OBDDs[jBryant, 1986). to false or true, respectively. Therefore, a path from
Decision diagramss well aglecision treesre of the BDD root to one of its leaves represents a (pos-

wide use in data manipulation as well as in data min- sibly partial) variable assignment fdér, and the cor-

rollers. In Section 4 we present our experimental re-
sults and Section 5 concludes the paper.

44

OBDD COMPRESSION OF NUMERICAL CONTROLLERS

responding leaf value is the value bffor the given
assignment.

An advantage of BDDs is that many logical op-
erations, like conjunction, disjunction, negation or
abstraction can be implemented by polynomial-time
graph manipulation algorithms. Indeed, BDDs are ex-

in Figure 1. Note that all the paths leadingiidhave
been actually removed from the graph, since they are
simply the complement of those leadingfo

A useful way to see BDDs, that will be used in
this paper, is that thegncode the compressed repre-
sentation of a relation However, unlike other com-

tensively used in the software tools, e.g., to synthesize pression techniques, the actual operations on BDDs

circuits or to perform formal verifications.

are performedlirectly on that compressed represen-

If variables appear in the same order on all paths tation, i.e. without decompression. Details on this

(or, in other words, if all the nodes on the same tree
level refer to the same variable) the BDD is called
ordered(OBDD).

Figure 1: Representation of the boolean function
f(X1,%2,X3) = X1 X2 - Xg + X1 X2 - X3+ X1 - X2 X3.

As an example, Figure 1 shows the OBDD for the
tloolean_fur_]ctionf (X1,X2,X3) = X1 - X2+ X3+ X1 - X2 -
X3+ X1+ X2+ X3.

Usually, OBDDs are alseeduced(ROBBD) by

merging isomorphic subgraphs and eliminating nodes

having two isomorphic children. In this way, any
boolean formulaf can be represented by amique
and very compact rooted, acyclic and directed graph.

The size of a reduced BDD is determined both by
the function being represented and by the chasen
dering of the variablesThus, a correct variable order-
ing is of crucial importance to gain the best “reduction
factor”. The problem of finding the best variable or-
dering is NP-hard, but there exist efficient heuristics
to tackle the problem.

Figure 2: The OBDD in Figure 1 after removal of duplicate
nodes and redundant tests.

Figure 2 shows the reduced version of the OBDD

issue are given in Section 3.

3 BOOLEAN ENCODING OF
NUMERICAL CONTROLLERS

OBDDs can be used to create some kind of com-
pressed representation of any data that can be en-
coded as dogical expression In this Section, we
describe how a numerical controller can be seen as
a boolean formula, and give details on the actual
OBDD-based compression algorithm that has been
implemented. Moreover, we give some informa-
tion on how the OBDD-compressed controller can
be efficiently queried and transformed in a hardware-
embeddable form.

3.1 Boolean Encoding of the Controller
Table

As already said, an OBDD can be actually seen
as a compact representation of a relation. On the
other hand, a controller table containing a set of
(state,action) pairs represents a relaos {(s,a)|a

is the action associated $an the controller tablé be-
tween states and actions. Since BDDs encode formu-
las, it may be useful to represdRthrough its charac-
teristic functionCr defined as follows:

T if(saeR
Cr(s.a)= { F oth(erw>ise

Now, to write a definition ofCr as a boolean for-
mula, we first have to represent its arguments, i.e.,
states and actions, in terms of logic variables. To this
aim, we expand them to their binary memory repre-
sentation.

Let suppose that states ardit values and actions
arem-bit values. We writes|i] anda]i] to denote the
ith bit of states and actiora,respectively.

Letx, i=1...nandy;, j=1..mben+m
boolean variables. A stateis then be represented
by the formula

45

ICINCO 2008 - International Conference on Informatics in Control, Automation and Robotics

if il
if Sfi]

Xi

=1
fs(x1,....%) = /\ li wherel; = % ~o

i=1..n

{

Eachfs is a boolean formula in variables that is
true if and only if its variables are assigned with the
bits of s (denoting, as usual, the boolean true with 1
and the boolean false with 0). In the same way, an
actiona corresponds to the formula

{

Therefore, the controller characteristic function
Cr can be encoded by the boolean formula

if ali]
if ali]

Yi

=1
fa(ys,...,ym)=/\ li wherel; = i o

i=1..m

fR(le"'aXnayla"'vym): \/ (fs/\fa>
(sa)eR

fr is a boolean formula im -+ m variables that is

The encoding algorithm, whose pseudocode is
shown in Figure 3, implements the technique de-
scribed in the previous Section.

After reading the number of bits in the controller
states and actions, tf®D_encodi ng procedure cre-
ates the corresponding set of boolean variaklesd
Yi, respectively.

Then, for each entry of the controller table, a new
BDD E is created as the appropriate conjunction of
the state and action variables. In particular, the code
checks every bit in the state and adds to the BRaD
a conjunction with the corresponding variable, in its
positive or negated form, based on the value of the bit.
The process is then repeated for the action bits in the
BDD f,, and finallyE is obtained ags A f5.

The BDD E is then added to the final BDDr
using a disjunction. When all the controller entries
have been processe®DD_encodi ng returnsfg.

As we can see, the algorithm is actually very sim-
ple, since all the BDD manipulation is done by the
external BDD package. In particular, our implemen-
tation uses the CUDD (CUDD Web Page, 2007) BDD

true if and only if the variable assignment corresponds manipulation package. Such package provides a large

to the encoding of &s, a) pair for whichR(s,a) holds.

For example, assume that the controller table con-

tains the following 2-bit states= 00,5 = 01,5 = 10,
with the following associated 1-bit actions=0,u’ =
0,u” = 1. Then the formula for the characteristic rela-
tion would befr = X1 - X2 - Y1+ X1 X2 - Y1 +X1- X2 - V1.

3.2 Algorithm for the Logic Encoding of
Numerical Controllers

BDD BDD_encoding(controller_table CTRL) {

read number N of entries in CTRL;

read number n of bits in each state of CTRL;
read number m of bits in each action of CTRL;

foreach j=1...n create bool ean variable x;
foreach j=1...m create boolean variable vyj;
BDD fg;

foreach i=1...N {

BDD E, fs, fa;

foreach j=1...n //encode state bits

if (bit(CTRL[i].state,j)
else fs = fs A X,

== 1) fs = fs A X,

foreach j=1...m //encode action bits

if (bit(CTRL[i].action,j) ==1) fa = fa Ay,
else fa = fa AV}

E = fs A f3

fr = fr V E; //disjunction of entries

}

return fg;}

Figure 3: Algorithm for the logic encoding of numerical
controllers.

46

set of operations on BDDs and many variable dy-
namic reordering methods, which are crucial to gain
the highest possible compression factor (Section 2).

Note that, to ensure the correctness of our ap-
proach, we also developed a parallel-query algorithm
that tests for correctness and completeness the BDD-
encoded controllerfr with respect to the original
numerical controlleCTRL This procedure simply
compares the results obtained by querying the un-
compressed and the compressed controller with all the
states in the controller table.

3.3 Querying the Encoded Controller

Once we have compressed the controller table in a
BDD fr, we must show how this information can be
accessed by the controller itself to perform its task.
There are several ways to do this.

A first method relies on the fact that the generated
BDD actually encodes a function from states to ac-
tions. In other words, given a state, there is only one
action associated to such state in the controller table.
At the BDD level, this means that if weestrict the
BDD by assigning to the variables. . . x, the bits of
a particular state, then the resulting BDD has only
one satisfying assignment.e., the one assigning to
Y1...Ym the bits of the corresponding actian

Thus the action associated to a state can be found
by applying two operations (restriction and then de-
duction of satisfying assignments) on the BDDfgf
However, since controllers must work in the quickest

OBDD COMPRESSION OF NUMERICAL CONTROLLERS

and simplest possible way, we may consider an alter- embedded in a (small) hardware device resulting in
native query method that requires less runtime over- good time performances.
head.

From the BDD offg, we extracmdifferent BDDs

f5... £, one for each bit of the action, in the follow- 4 EXPERIMENTAL RESULTS
ing way.
To setup our experiments, we first have to fix some
BDD encoding parameters, namely the variable or-
dering in the boolean formulas and the dynamic re-
ordering method used by the BDD package.

Indeed, the BDD structure and therefore the com-
pression ratio can be influenced by the original or-
dering of the variables in the boolean formulas pre-
sented to the BDD package. In particular, we recall
that the variables in our BDDs are the state bit vari-
ables, namely;,i = 1...n, and the action bit vari-
ables)y;,i = 1...m. Thus, we may consider the vari-
the action associated ® if it exists, is unique,f}{ able orderings arising from all the possible combina-

actually returns théth bit of the action associated to 10ns of the following conditions:
s (assuming, as usual, that the logical true and false e the state bit variables and the action bit variables

i _ 3a-Yie1Yigds - Ym)
fR(Xl’.“’Xn)i fR(X17"'7Xﬂ7y1"'yi—1717yi+1a'"ym)

In particular, in eachf;, we existentially abstract
all the action bit variabley;j, j = 1...m except for
yi, which is assigned to the constant 1. The resulting
formula fs hasn free variable ... x,, which corre-
spond to the state bits.

If we assignx; ...x, to the binary representation
of a states, then f} is true if and only if there ex-
ists an action associated $avhoseith bit is 1. Since

correspond to the values 1 and 0, respectively). can be ordered with different endianness, that is
Having these functions at hand, we can rebuildthe from the most significant bit to the least or vice-

binary representation of the actiarassociated to the versa;

states by simply applying eaclfg, to the encoding 4 the state bit variables can be placed before the ac-

of s, without any further runtime BDD manipulation. tion bit variables, after them or interleaved.

The execution overhead is minimal in this case, since
the “computation” of the BDD value for a particular
variable assignment requires only a visit of the asso-
ciated graph.

Namely, we can write the functiofg of Section
3 with any of the ten variable ordering3l...010
shown in Table 1. Note that @9 andO10 we assume

n>m.

3.4 BDDintoC Code Translation Table 1: Possible initial variable orderings.

Embedding and querying the BDD-compressed nu- o1 X1 XnY1 - Ym

merical controller within a small hardware or soft- 02 XL XnYm: Y1

ware device is also an issue that can be addressed in 03 Xn- X1Y1- - Ym

various ways. [oZ] Xn -+ X1Ym Y1
Obviously, we cannot require CUDD or another 05 Y1+ YmX1- - Xn

BDD-manipulation package to be present in the con- 06 Y1 Ym¥n- - Xg

troller. However, a BDD (or the set of BDDs obtained 82 Ym:: :y1§1: i”

using the technique described in Section 3.3) can be 09 lelxi/r;_.iin;mxm:lmxn

simply translated in a C code fragment composed by 010 | X,y 1Y 1 XmnY1Xm m1 X1

nested if-then-else statements.

The translation process is very straightforward
and requires only a visit of the OBDD graph. Let Moreover, variables can be dynamically reordered
be a node of the OBDD associated with the logic vari- by the BDD package during the construction of the
ableV(n), and letT (n) andE(n) be the two children final BDD. In our experiments, we used the fourteen
of nfor V(n) =trueandV(n) = false respectively. dynamic reordering methodri ... R14 offered by the

Then, we can define the C-translatiomadds follows: CUDD package and shown in Table 2.
In the following experiments we tried all the pos-
IF (V(n) sible combinations between initial variable orderings
CT(n)= THEN CT(T(n)) and dynamic reordering methods, choosing each time
ELSE CT(E(n)) the one that produces the better compression ratio.

This translation is linear in terms of the required All the experiments were performed on a 2.66GHz
space, and the resulting representation can be easilyPentium 4 with 1GB RAM.

47

ICINCO 2008 - International Conference on Informatics in Control, Automation and Robotics

Table 2: CUDD variable reordering methods. graph nodes) is shown in Table 4 for each combina-
_ tion of variable initial ordering@®1...010) and dy-

R1 | Random reordering namic reorderingRLl...R14).

Eé giz?tndom pivot reordering Here, the smallest BDD (indicated by the bold

number in Table 4) has 61584 nodes. The actual

R4 | C ing sifti e .
onverging Sng size in Kilobytes and the average access time for the

R5 | Symmetric sifting

R6 | Converging symmetric sifting BDD-compressed controller are shown in Table 5. As
R7 | Group sifting we can see, BDD compression reduces the controller
R8 | Converging group sifting 26.5% more than LZ, and has also better access times
R9 | Window permutation (size 2) than the LZ-compressed version, since it does not re-
R10 | Window permutation (size 3) quire any decompression to read the table entries.

R11 | Window permutation (size 4)
R12 | Converging window permutation (size 2
R13 | Converging window permutation (size 3
R14 | Converging window permutation (size 4

Table 5: BDD-compressed numerical controller for the in-
verted pendulum.

~—— —

BDD
Entries 311618
4.1 Inverted Pendulum Controller Size | 489 (16.1%)
Time 1ms

The first case study is the numerical controller for
the inverted pendulum problem (Kreisselmeier and
Birkholzer, 1994), where the controller has to bring 42 Truck and Trailer Obstacles

:Eg Eﬁgf?.ulum to equilibrium by applying a torque in Avoiding Controller

The optimal numerical controller was generated .
using the dynamic programming method described In the second case study, we conS|d.er_ the controller
in (Kreisselmeier and Birkholzer, 1994). Table 3 for thetruck and trailer obstacles avoidingroblem.

shows the details of such controller. In the table, row Na_mely, the contro_ll_er has t_o back a trucl_< with a
Entriesindicates the number of controller entries (i.e., [raller up to a specified parking place starting from
controlled states) and ro®izecolumnNormalindi- any initial position in the parking lot. Moreover, the
cates the controller table size in Kilobytes. Moreover, Parking lot contains some obstacles, which have to
to compare the effectiveness of the BDD compression P€ @voided by the truck while maneuvering to reach
with respect to the common compression techniques,the parkmg.place. Corrective maneuvers are not al-
we also show the size of the controller table com- 'oWed, thatis the truck cannot move forwarcback-
pressed by the LZ77-based (Ziv and Lempel, 1977) rackfrom an erroneous move.

algorithm of gzip (GZip Web Page, 2007) (rdsize

columnLZ, where the relative size of the compressed Table 6: Results for the truck and trailer obstacles avgidin

s controller.

file is also shown as a percentage) and the average

controller access time in milliseconds for both the un- Normal | LZ [BDD
compressed and the compressed representations (row| Entries 3256855

Timecolumn normal and row Timecolumn LZ, re- Size | 71650 | 22644 (31.6%)| 7038 (9.8%)
spectively). Note that, as we expect, access times for L_Tme_| 89ms 3173 ms 108 ms

the LZ-compressed controller are very high since, in
the worst case, t.he controlle_r must be completely de- The numerical controller was generated with the
compressed to find the required table entry. CGMurd tool (CGMurphi Web Page 2006; Della
]) Penna et al., 2007b). Results are in Table 6. As we
Table 3: Numerical controller for the inverted pendulum. can see, the controller has a very big size. However
the best BDD compression schen@s(R5) is able to

Normal | LZ _
Entries 311618 reduce the size of the controller up to a 90.2% space
Size | 3043 [1295 (42.6%) savings, that is 21.8% more than using LZ77 com-
Time 8 ms 657 ms pression. Moreover, the BDD compression continues

to win also with respect to the access times.

When BDD compression is applied to the con-
troller, we obtain BDDs whose size (in number of

48

OBDD COMPRESSION OF NUMERICAL CONTROLLERS

Table 4: Number of nodes in the BDD for the inverted pendulemtioller with respect to different variable orderings.

o1 02 03 o4 05 06 o7 08 09 010
R1 | 92490 | 108474 | 65382 | 64012 | 156872 | 83808 | 149943 | 86957 | 92013 | 145877
R2 | 142012| 145654 | 66711 | 78029 | 130315| 79575 | 144583 | 89528 | 148037 | 142432
R3 | 65842 | 61588 | 65842 | 61584 | 138377 | 75360 | 145181 | 143181 | 65854 | 127241
R4 | 65842 | 71314 | 70691 | 61584 | 130355| 71313 | 75427 | 135580 | 65842 | 65843
R5 | 65842 | 65848 | 70774 | 70770 | 144310 | 70773 | 144422 | 70776 | 65865 | 142677
R6 | 65842 | 65860 | 70777 | 70770 | 135575| 70773 | 135573 | 70773 | 65860 | 130348
R7 | 66759 | 66555 | 92830 | 61798 | 144268 | 61586 | 136870 | 61594 | 69198 | 65865
R8 | 65842 | 61594 | 75420 | 61584 | 145172 | 61586 | 135575| 61586 | 65868 | 65863
RO | 92295 | 92279 | 65441 | 61873 | 163149 | 121083 | 255309 | 121307 | 101164 | 178482

R10 | 76724 | 77231 | 61584 | 61588 | 134758 | 122539 | 143860 | 78044 | 79227 | 142072

R11 | 72724 | 72781 | 61584 | 61584 | 134023 | 122157 | 134254 | 106597 | 77295 | 134723

R12 | 81329 | 98992 | 61630 | 61641 | 134162 | 128731 | 138481 | 79723 | 86284 | 136761

R13 | 77034 | 65868 | 61584 | 61584 | 134023 | 123547 | 134275| 111460| 66122 | 134257

R14 | 65842 | 65868 | 61584 | 61584 | 134275| 77960 | 134275| 116568 | 68455 | 134079

4.3 Inverted Pendulum on a Cart be applied to the (state,action) tables generated by any
Controller numerical controller generation technique.
Our experiments show that this new algorithm has
The last case study is the numerical controller for @ Very high compression ratio (up to 10:1), that is of-
the inverted pendulum on a cart problem (Junge and ten more than the ratio obtained on thg same data by
Osinga, 2004). The system consists of a planar in- the most common lossless compression te_chnlques,
verted pendulum on a cart that moves under an ap-Such as LZ77. Indeed, OBDD compression is not ac-
plied horizontal force, constituting the control. The tually lossless, butrather “relation-invariant”. Thatis
position of the pendulum is measured relative to the th® OBDD compression leaves intact the behavior of
position of the cart as the offset angle from the verti- the state-action relation stored in the table. However,
cal upright position. The controller goal is to set such by working on the logic encoding of the relation, the
angle to zero. OBDD is capable obptimizing the representation of
the relation so reducing its size.
Moreover, accessing the entries of an OBDD-

Table 7: Results for the inverted pendulum on a cart con- . .
compressed numerical controller does not require any

troller.
data decompression (as it would happen, e.g., with
_ [Normal[L[Z [BDD LZ77), so the controller performances are very good.
Entries 151394 Also in this case, the optimized representation gener-

Size 1478 | 90 (6.1%) | 215 (14.6%)
Time 3ms 206 ms 1ms

ated by the OBDD sometimes allows to achieve ac-
cess times that are even better that those of an hash
function used on the uncompressed table.

The numerical controller was generated with the Therefore, the BDD compression is a technique
CGMurd tool. Results are in Table 7. The number that can be actually exploited to reduce the size of
of controller entries is very small with respect to the numerical controllers, generating a compact structure
previous two case studies. We see that on a small conthat is easy to store and query. This would allow, e.g.,
troller the BDD compression has a lower compression to usehigh precision controllersven inlimited de-
ratio than LZ, but always better access times (1ms vs. vices
206ms), since it does not require any decompression Indeed, we are currently studying and implement-
to read the table entries. ing algorithms that creambeddable and executable

forms of the OBDD-compressed controllers. The
OBDD-to-C methodology sketched in section 3.4 is
only the first step, as we intend to design a transla-
5 CONCLUSIONS tion process to directly create an optimized VHDL
(Pedroni, 2004) circuit description from the OBDD.
In this paper, we presented an OBDD based compres-In this way, we would have a completely automatic
sion algorithm for numerical controllers. The com- methodology to generate, from any numerical con-
pression algorithm is completely automatic and can troller, a small executable definition ready to be em-

49

ICINCO 2008 - International Conference on Informatics in Control, Automation and Robotics

bedded in the hardware. Kosko, B. (1992). Neural Networks and Fuzzy Systems

Finally, a last point we want to investigate is the Prentice Hall.
relationship between the compression obtained with Kreisselmeier, G. and Birkholzer, T. (1994). Numerical
the use of the OBDDs and the reduction of fuzzy con- nonlinear regulator desighEEE Transactions on Au-
trol systems by means oftéerarchicalapproach (see tomatic Controj 39(1):33-46.
e.g. (Stufflebeam and Prasad, 1999)). Indeed, there is.eu, M. C. and Kim, T.-Q. (1998). Cell mapping based
an evident correspondence between, on one hand, the ~ fuzzy control of car parking. INCRA pages 2494—
search of the best ordering of variables needed for the 2499.
OBDD compression and, on the other, the hierarchi- Nelson, M. and Gailly, J. (1995)The Data Compression
cal decomposition into subsystems of a fuzzy system. Book MT Books.

Pedroni, V. (2004)Circuit Design with VHDL MIT Press.

Sekine, S., Imasaki, N., and Tsunekazu, E. (1995). Appli-
REFERENCES cation of fuzzy neural network control to automatic
train operation and tuning of its control rules.Rroc.
IEEE Int. Conf. on Fuzzy Systems 19p3ages 1741—

Bryant, R. (1986). Graph-based algorithms for boolean 1746. Yokohama.
function manipulation. IEEE Trans. on Computers ' 4 4
C-35(8):677-691. Stufflebeam, J. and Pra§ad, N. (1999). H|er{_;1rch|cal fuzzy
i i control. InProceedings of IEEE International Fuzzy
Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L., Systems Conferengeages 498-503.

and Hwang, L. J. (1992). Symbolic model checking:

0 A9 Ziv, J. and Lempel, A. (1977). A universal algorithm for
10° states and beyondnf. Comput, 98(2):142-170. sequential data compressiohEEE Transactions on

CGMurphi - Web Page ~(2006). Information Theory23(3):337-343.
http://www.di.univag.it/magazzeni/cgmurphi.php.

Clarke, E. M., Grumberg, O., and Peled, D. A. (1999).
Model CheckingThe MIT Press.

Cormen, T., Leiserson, C., Rivest, R., and Stein, C. (2001).
Introduction to AlgorithmsMIT Press.

Cover, T. M. and Thomas, J. A. (2006xlements of Infor-
mation Theory Wiley.

CUDD Web Page (2007). http://visi.colorado.edu/ fabio/.

Della Penna, G., Fallucchi, F., Intrigila, B., and Magadzen
D. (2007a). A genetic approach to the automatic gen-
eration of fuzzy control systems from numerical con-
trollers. InAlI*IA, volume 4733 oLNAI, pages 230—
241. Springer-Verlag.

Della Penna, G., Intrigila, B., Magazzeni, D., Melatti,
I., Tofani, A., and Tronci, E. (2006). Au-
tomatic generation of optimal controllers through
model checking techniques. Proceedings of 3rd
International Conference on Informatics in Con-
trol, Automation and Robotics (ICINCO2006), to
be published in Informatics in Control, Automa-
tion and Robotics Ill, draft available at the url
http://www.di.univag.it/magazzeni/cgmurphi.php

Della Penna, G., Magazzeni, D., Tofani, A., Intrigila, B.,
Melatti, I., and Tronci, E. (2007b). Automatic syn-
thesis of robust numerical controllers. IGAS '07,
page 4. IEEE Computer Society.

Grine, L. and Junge, O. (2005). A set oriented approach to
optimal feedback stabilizatiorBystems Control Lett.
54(2):169-180.

GZip Web Page (2007). http://www.gzip.org/.

Hand, D. J., Mannila, H., and Smyth, P. (200Pyinciples
of Data Mining MIT Press.

Junge, O. and Osinga, H. (2004). A set oriented approach to
global optimal control. ESAIM Control Optim. Calc.
Var., 10(2):259-270 (electronic), 2004.

50

