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Abstract: A recursive (adaptive) algorithm for the identification of dynamical linear errors-in-variables systems in the
case of coloured output noise is developed. The input measurement noise variance as well as the auto-
covariance elements of the coloured output noise sequence are determined via two separate Newton algo-
rithms. The model parameter estimates are obtained by a recursive bias-compensating instrumental variables
algorithm with past noisy inputs as instruments, thus allowing the compensation for the explicitly computed
bias at each discrete-time instance. The performance of the developed algorithm is demonstrated via simula-
tion.

1 INTRODUCTION the offline Frisch scheme procedure for the white
noise as well as the coloured noise case. Section 4

Linear time-invariant (LTI) errors-in-variables (ElIvV) develops the recursive algorithm and Section 5 pro-
models are characterised by an exact linear relation-vides a numerical example. Conclusions are given in
ship between input and output signals where both Section 6.

guantities are assumed to be corrupted by additive

measurement noise (Soderstrom, 2007b). An EIV

model representation can be advantageous, if the aimy PROBLEM STATEMENT AND

is to gain a better understanding of the underlying

process rather than prediction. One interesting ap- NOTATION
proach for the identification of dynamical systems
within this framework is the so-called Frisch scheme In this paper, a discrete-time, LTI single-input single-
(Beghelli et al., 1990), which yields estimates of the output (SISO) EIV system is considered, which is de-
model parameters as well as the measurement noisescribed by

variances. The dynamic Frisch scheme presented in 1 1

(Beghelli et al., 1990; Soderstrom, 2007a) assumes A ")yo = B(a ), (1)
that the additive disturbances on the system input and
output are white. Such an assumption, however, can
be rather restrictive since the output noise often not A(q—l) 1+a1q‘1+ tan,g ™ (2a)
solely consists of measurement uncertainties, but also 1 1 n
aims to account for process disturbances, which are (@) D1q "+ .. 4 by (2b)
usually correlated in time. In order to overcome this 5.0 polynomials in the backward shift operatpr,
shortcoming, the Frisch scheme has recently been ex<hich is defined such thatq L = x_1. The noise-
tended to the coloured output noise case (Soderstromg e inputus and outputyo are unknown and only
2008). This paper develops a recursive (adaptive) for- 1,4 measuréments '

mulation of the algorithm developed in (Soderstrom,

wherei is an integer valued time index and

lI>

2008), which allows the estimates to be calculated Ui = Ug; + Gi, (3a)
online as new data arrives. Recursive algorithms for Vi = Yo + i (3b)
the white noise case have been considered in (Linden '

et al., 2008; Linden et al., 2007). are available, wherg; andy; denote input and out-

The paper is organised as follows. Section 2 put measurement noise, respectively. Such a setup is
presents the EIV identification problem and intro- depicted in Figure 1. The following assumptions are
duces some notational conventions. Section 3 reviewsintroduced:
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Al. The dynamic system (1) is asymptotically sta- \yhjch gives an alternative description of (1)-(3) by
ble, i.e. A(q~!) has all zeros inside the unit

circle. $,6=0, (9a)

A2. All system modes are observable and control- i = do; + bi, (9b)
lable, i.e. A(q~!) andB(g~?) have no com-

mon factors. where the regression vector is given by

A3. The polynomial degreas, andn, are known oi = [0y, EI]T (10)
a priori with n, < n,. a Y1 CYim U1 Un ]T
= 1. “na Ui—1 .. Uiop]
A4. The true inputlg, is a zero-mean ergodic pro- _ T T
cess and is persistently exciting of sufficiently i = [y, ®4] =[-vi o] (11)
high order. The noise-free regression vectdis, §o, and the vec-
A5a. The sequenag i3 a zero-mean, ergodic, white  tors containing the noise contributiofis, ¢; are de-
noise process with unknown variancge fined in a similar manner. The identification problem

A5b. The sequencg 7 a zero-mean, ergodic noise S NOW given by:

process with unknown auto-covariance se- Problem 1. Given k samples of noisy input-output
quence{rg(0),ry(1),--- }. data {u1,y1,...,Ux, Yk}, determine an estimate of the

A6. The noise sequencasandy; are mutually un- ~ @ugmented parameter vector

correlated and uncorrelated with . g2 [al . fa, B Wby ag
The auto-covariance elements in A5b are defined by rg(0) - ry(na)]T . (12)
ry(t) = E [Jik1] 4 Throughoutthis paper, the convention is made that

estimated quantities are marked by a ~ whilst time de-
pendent quantities have a sub- or supersdgip.g.

fo, for a sample covariance matrix corresponding to
2.

where E[-] denotes the expected value operator.
Within this paper covariance matrices of two column
vectorsvx andwy are denoted

Sow 2 E i |, S, 2E[wv], ()

whilst vectors consisting of covariance elements are
onotod 3 FRISCH SCHEME

Eve = E [Viei] (6) 3.1 WhiteNoiseCase

with ¢ being a scalar. The corresponding estimated
sample covariance elements are denoted in a similar
manner

If the least squares (LS) estimator is directly applied
to estimate the parameters of the EIV system (1)-(3),
) ’ y the estimates will generally be biased (Soderstrom,
ok a1 o oy AW 4 K1 2007a). However, if the statistical nature of the noise
Zow = E;kak’ 2= E;V"Vk’ fve= E;V"Ck' sequences is known, it is possible to compensate for
@) the bias. The Frisch scheme belongs to the class of
such bias-compensating LS techniques. The compen-
In addition, the parameter vectors are formed by sated normal equations are given by

T T A 2\ a 2
62[a” b']'=[a .. @, bi .. by, (zg_zg) B =&, (13)
(8a) .
g2 [a bT]T _ GT]T’ (8b) whereZ¥ and&k, are defined by (7). In the case of

white noise sequences the compensating miﬁibs
diagonal and given by

Yoi i A
Yi r>'5,(0)lna 0 (14)
0 Gfln, )’

Up:
O system

Gi Ui o
¥ wherel, denotes the identity matrix of dimension
Within the Frisch scheme, the variandi§ r§(0) of

Figure 1: Errors-in-variables setup. . . ‘
input and output measurement noise, respectively, are
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determined such that the extended compensated nor-

mal equations equate to zero

Sk <k\n
0= (z¢—z$> Bk (15)
Sk Sk "
_ iiy zﬁﬂé‘bu _{rl)é(o)lnaJrl Ako :| §k7
Z¢u5y Z¢u 0 cﬁlnb

i.e. such thatl — zg is singular. By utilising the

Now consider the Frisch equation (16b) which be-
comes

% = Amin (Bx) , (20)
with

-1
A Sk sk _ sk sk sk
Bk = z¢u - z¢u¢y {zq)y - Z‘by} zl1>y¢u (21)

Schur complement, the input noise variance can beand it remains to specifyi, + 1 equations for the de-
expressed as a nonlinear function of the output noisetermination the auto-covariance elements

variance and vice versa (Beghelli et al., 1990)
-1
sk sk sk . Sk _
(0) = Amin (zqu — 55 0, [z% - oulnb] z¢u¢y> :
(16a)

i . . R -1 .
v (5] )
(16b)

=

<

whereA iy denotes the minimum eigenvalue operator.
Equation (16) together with (15) defines a whole set
of possible solutions depending on the choiceogf

or rg(0), respectively. In order to uniquely solve the

identification problem, another equation is required.
Several choices are discussed in (Hong et al., 2007).

3.2 Coloured Noise Case

Now assume thafis no longer white, i.e. itis corre-
lated or coloured. For this case, the matriE%sand

ig in (15) can be expressed in block form as

X X X
S zk Sk Sk
Z%: 7§Eyy Azk¢y Z}P%d)u ) (17a)
E¢uy Z¢u¢y z¢u
[ X 4 X
Sk zk Sk
Z{E: Eq;yy Zq;y 0 , (17b)
0 0 &l

where the first row consists of arbitrary entriesand

f50) - fi(na—1)
25, = ; . : (18)
FK(n, — e FX
Fg(Na—1) 75(0)

is a dense matrix, whilst the remaining entries in (17)
are in accordance with (7). Consequently,hge- np

By 2 [fs0) KD - )] (@22
In (Soderstrom, 2008) several possibilities to obtain
the remaining equations are discussed. It is shown
that a covariance-matching criterion, as used in (Di-
versi et al., 2003), as well as correlating the residuals
with past outputs, which corresponds to an instrumen-
tal variable (1V) -like approach with outputs as instru-
ments, cannot be successful since it always leads to
more unknowns than equations. However, by corre-
lating the residuals, denoteg, with past inputs, the
remaining equations are obtained for the asymptotic
case via

E [stk] =0, (23)
where the instruments are given by
Z_k = [Uk—np—1 kanr@T (24)
and the residuals are obtained via
ek =AM Hy—B@ Huk=yk— 03 6.  (25)
This yields
&y~ 29=0, (26)

which can be expressed in block form, and using sam-
ple statistics, as

%

Chy (27)

k1A =
qu)u} ek = E%Y’
where the length of the instrument vecto€x must
satisfyl > ny+ 1 in order to obtain at leasty + 1
additional equations for the determinatiorﬁ§f

In (Soderstrom, 2008), two algorithms have been
proposed to solve the resulting (nonlinear) estima-

compensated normal equations in the case of corre-tion problem. Here, the two step algorithm, which

lated output noise are given by

Sk sk $ zk zk
Azk‘by Zﬂ’ﬁ‘bu _ Z‘%y A 0 ék _ E‘I’yX_ E‘ﬁy? )
z‘I’u“’y z¢u 0 O-Elnb EI(I(l‘uy

(19)

makes use of the separable LS technique is consid-
ered. Whilst in the white noise case the estimate of

0 is obtained from the compensated normal equations
after the noise variances have been determined, this
approach is conceptually different as outlined in the

remainder of this Section.

165



ICINCO 2008 - International Conference on Informatics in Control, Automation and Robotics

321 Stepl

Note thatf))'j only appears in the first, equations of
(19) and by combining the lasf equations of the LS
normal equations (19) with the, + 1 IV equations
(27), one can express

s s ol [
[ S(PEJ(PV ¢ui|1 a'np By = Eq)Kuy (28)
Cby [ ¢y

which constituten, 4 ny + 1 equations img 4 ny + 1

unknowns @ and&k). Equation (28) is an overdeter-

mined system of normal equations with its first part

optimisation in one variable only by substituting (34)
in (33). ConsequentlyX can be obtained via

6K = argminVj (35)
ok

with
2 Atz sk |2
V= ‘ ‘GkaEgy - Egy‘ ‘
1

— [ & - [f] Gu[GT6d MGTEE, (36)

Onceﬁ{ﬁ is obtained By is given by (34). Since the
solution of (35) should satisfyi = 0, the value of

obtained from the bias compensated LS and the sec-Vk indicates whether the optimisation algorithm has

ond part given by the IV estimator, which uses de-
layed inputs. Moreover, it is nonlinear due to the mul-
tiplication of 8 with &§.

In order to estimat® and og, (28) can be re-
expressed as

(8 - 089) b=, (29)
whereigq) andégy are defined by (7) with
520l o'
4
= [Ui—l U—n, U-—ny—1 Uifnbfl] 4
(30)
whilst J is given by
14 0 Inb
[2 ] 3

Note that (29) can be interpreted as a bias-
compensated IV approach, where the instrument vec-
tor §; is constructed from past measured inputs. Intro-
ducing for convenience

A ASk  aky

Gk = Z&p — 0y, (32)
the estimates fooE and6y are obtained by minimis-
ing the (nonlinear) LS costfunction

. AF A Ak 2

min ‘erk — Eng

Bx.0%

(33)

which is minimised w.r.to§ andéy. If 6% is assumed
to be fixed, an explicit expression fék is given by
the well-known LS solution
A _ Atgk
Ok = G &5, (34)
whereG/ £ (G Gy) 1G] denotes the Moore-Penrose

pseudo inverse.
(Ljung, 1999, p. 335), the problem is reduced to an
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Using the separable LS approach

converged to a global or local minimum (Soderstrom,
2008).

322 Step?2

In order to determine the estimates for the auto-
correlation sequencé{j the remainingn, normal
equations

Sk Sk Sk 0 zk zk
[any — 24, ZMU} Bk = &,y — &,y

together with the Frisch equation (20) are considered.
Equation (37) can be expressed as

Sk 2 zk  _ |§k sk ) zk
25,3 — &g,5 = [Zcby Z¢y¢u} O — &gy

(37)

(38)

where only the left hand side dependsﬁ?n In addi-

tion, (38) is affine irf)'§, hence it can be re-expressed
as

Hiply = h, (39)

whereHy is ang x ng + 1 matrix built up from ele-
ments ofa, andhy is a vector of lengt, given by

the right hand side of (38). This is a system of equa-
tions with more unknowns than equations, but the set
of all possible solutions can be formalised as

pk = N (Hi) + Hihy, (40)

whereN(-) denotes the nullspace ang is a scalar
factor. Itis necessary to distinguish between the input
measurement noise variance obtained by (35) in step
1, and the quantity which would be obtained by the
Frisch equation (20). Therefore, introduce

Gk £ Amin (B (0))

where the matrixBy is now a function ofok. Using
(41) itis possible to search for thag which is in best
agreement with the previously determirfdg ie.

(41)

6 = arg min |33, (42)
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where the cost function

J £ 65— & (43)

whereo® is the maximal admissible value fog,
which can be computed from the data as discussed
in (Beghelli et al., 1990). Alternatively, a positive

measures the distance between the input noise vari-constant can be chosen for the maximum admissible

ance estimate”sk determined in Step 1 and the input
noise variance estimatg which is obtained using
theng normal equations (37) together with the Frisch
equation (41) depending on the choica@f Oncedk

is determined, it is substituted in (40) to obt#ff the

value, if such a-priori knowledge is available.

4.1.3 Recursive Update of ek

In order to obtain a recursive expression@Qran ap-

searched estimate of the auto- covanance elements oproach is adopted here, similar to that in (Ding et al.,

the coloured output measurement ngige ~

4 RECURSIVE SCHEME

41 Stepl
4.1.1 Recursive Update of Covariance Matrices
In order to satisfy the requirements of a recursive al-

gorithm to store all data in a finite dimensional vector,
the covariance matrices are updated via

ilq% = ili_l + Yk (quqT-I[ - ili_l) ) iQ = Oa (443.)

Sk Sk—1 7 Sk—1 _
S =St w (UdT - 85). 2% =0, (44b)
where the normalising gaiy is given by
VS vo=1  (45)

A Vi-1’

with 0 < A <1 being the forgetting factor giving ex-
ponential forgetting. From (44), the block matrices
required in (28) and (37) are readily obtained.

4.1.2 Recursive Update of 6%

For the determination a3, an iterative optimisation
procedure can be utilised to minimise (36) where it

is iterated once at each step, leading to a recursive

scheme (Ljung and Sdderstrom, 1983; Ljung, 1999).
Here, an iterative Newton method is utilised for this

purpose, however other choices are also possible. TheBY Substitutinge

Newton method given by (Ljung, 1999, p. 326) is
MV (46)
whereV, andV,’ denote the first and second order

derivative of\ with respect twg evaluated abEfl.
The formulas for the derivatives are given in Appen-
dices A and B, respectively.

Remark 1. In order to stabilise the algorithm, it
might be advantageous to restrict the search for the
input measurement noise variance to the interval

0<og<of® (47)

ok =gk 1

2006), where the bias of the recursive LS estimate is
compensated at each time step

Ignoring the influence o6k in (28), the uncom-
pensated overdetermined IV normal equations can be
expressed as

5[] -l w

whereGLV denotes the uncompensated (biased) esti-
mate off. Since one unknown, nameg, has al-
ready been obtained, it is sufficient to considgs ny
equations only, by disregarding the last equation of
(48). Thus the uncompensated IV estimate is given as

s Tk
:[E;a@?] R 49

whered; is obtained by deleting the last entrygyf In
order to obtain an explicit expression for the bias, the
linear regression formulation

Yi :q)iTeJFQ

is substituted in (49) which gives
oy L 5o 71} 5 (¢76+e)
kl; I ki; I I
-1
1& 1&
=N &b =N 56
SUIL

= —6i6+ Y it follows that

1 p| L&

o] 13
-1

18 41 1&_ .+

E;M’i ] E;f"ﬁi 0

The vectom; is uncorrelated witly, which means that

(50)

(51)

6 =0+

(52)

the middle part of the sum in (52) diminishes in the

1This corresponds to a basic IV estimator where the
number of unknowns is equal to the length of the instru-
ment vector.
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asymptotic case, whereas

1& bu | rxT  x7T17 _ |0 Oiln,
E;{Zi}[yi Ui] [o 0 } (53)
Consequently, fok — o (52) becomes

oV =0- Gng¢lJ6,

lim

k—oco

(54)

whereJ is obtained by deleting the last row afin
(31). Equation (54) gives rise to the recursive bias
compensation update equation épr

A oa Ay 11 4

B = BV + 6k [zgdﬂ 2B 1, (55)
where the uncompensated parameter estiﬁi}’atean

be recursively computed via a recursive IV (RIV) al-
gorithm (Ljung, 1999, p. 369) given by

O =61 1 + Lic [yic— kBl 4] (562)
L= o (S6b)
W + ¢k F1(—16k
T
P = 1 Pk—l*% . (56¢)
I-w Tt Oy P13k

with the only difference being th& is scaled such
that
ek 171
[z&p} — P (57)

This avoids the matrix inversion in (55) by substitut-
ing (57) in (55).
42 Step 2

In order to solve (42) recursively, the Newton method

1.5 T T
=]
ST ' VR —— P -
05 i i i -==true —!
2900 4090 60‘00 RES 10000
-0.7 : RIV
(]
—0.8\ ______________________________
0.9 y y y y
2000 4000 6000 8000 10000
3 : : : :
i
Q5 e
l i i i i
2000 4000 6000 8000 10000

Figure 2: Recursive estimates fér and o using the
recursive Frisch scheme (RFS) and the biased recursive
instrumental-variables (RIV) solution of the uncompen-
sated normal equations.

5 SIMULATION

To compare the results of the recursive Frisch scheme
(RFS) with the non-recursive algorithm, the system is
chosen similar to that of Example 2 in (Soderstrom,
2008), i.e. a LTI SISO system witty, = n, = 1, and
characterised, using (12), by

§—[-08 2 1 196 137]". (61)

The values fory(0) andry(1) arise by generating the
output noise by the auto-regressive model

T 1-07q L%

Yk (62)
wherev is a zero-mean white process with unity vari-
ance. The system is simulated for,000 samples us-
ing a zero mean, white and Gaussian distributed input

is applied where it is iterated once as new data arrives. Signal of unity variance. The corresponding signal-to-
Consequently, the first and second order derivative of NOise ratio for input and output is given by.60dB

the cost functiordi in (43) are to be determined w.r.t.
ak, which are denoted, andJ/, respectively. These
are given by

(58a)
(58b)

Je=-2 (65 - ﬁk) (A
¥4

where g, denotes the derivative @j w.r.t. ayx and
for which an approximation is derived in Appendix
C. The recursive update fai is therefore given by

G = a1 — [3] 13, (59)
whilst

Pk = &N (Hi) + H/h (60)
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and 3912dB, respectively.

Choosing\ = 1, the results for Step 1 are shown
in Figure 2. The first subplot shows that the New-
ton method is able to recursively estimate the input
measurement noise variangg. The remaining two
subplots compare the RIV soluti@&)’ of the uncom-
pensated normal equations with the recursively com-
pensated Frisch scheme estim@iteAs expected, the
RIV is biased whilst the the RFS successfully com-
pensates for this.

Figure 3 shows the estimates p§ obtained in
Step 2 for both the RFS as well as the off-line case.
In contrast to the results obtained in Step 1, the qual-
ity of the estimates obtained in Step 2 is in-
ferior. This is in agreement with the results re-
ported in (Soderstrom, 2008), where a Monte-Carlo
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Figure 3: Recursive estimates figi(0) andry(1) using the

recursive Frisch scheme (RFS). Linden, J. G., Vinsonneau, B., and Burnham, K. J.
(2008). Gradient-based approaches for recursive
analys|s ShOWS poor performance |n the non- Frisch scheme identification. To be publIShed at the
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ry(0) coincide with their off-line counterparts after user. PTR Prentice Hall Infromation and System Sci-
k = 10,000 recursions. It is also observed that the ences Series. Prentice Hall, New Jersey, 2nd edition.
values ofr§(0) (the estimated variance of the output Ljung, L. and Soderstrom, T. (1983Theory and Practice
measurement noise) occasionally exhibits a negative ~ of Recursive IdentificationM.|.T. Press, Cambridge,
sign during the first 500 recursion steps. This could

be avoided by projecting the estimates, such that Soderstrom, T. (2007a). Accuracy analysis of the Frisch
scheme for identifying errors-in-variables systems.

—1 q .
Sk Sk Sk Sk Sk Automatica 52(6):985—-997.
0< 3 <55 - 55, [zq,u} S,  (63) A C |
Soderstrom, T. (2007b). Errors-in-variables methodsys:
is satisfied (Soderstrom, 2008). tem identification Automatica 43(6):939-958.

Soderstrom, T. (2008). Extending the Frisch scheme for
errors-in-variables identification to correlated output
noise. Int. J. of Adaptive ContrOl and Signal Proc.

6 CONCLUSIONS 22(1):55-73.

The Frisch scheme for the coloured output noise case

has been reviewed and a recursive algorithm for its

adaptive implementation has been developed. The pa-A PPENDIX

rameter vector is estimated utilising a recursive bias-

compensating instrumental variables approach, whereA  First Order Derivative of Vi

the bias is compensated at each time step. The input

measurement nOISe Vegggice and the output measur_e'Denoting(-)’ the derivative w.r.t65 and introducing

ment noise auto-covariance elements are obtained via

two (distinct) Newton algorithms. A simulation study £ A GTEk 2 ETR 64

illustrates the performance of the proposed algorithm. k= Sk E?3y P = Gk G (64)
Further work could concern computational as- i holds that

pects of the algorithm as well as its extension to the

ili 0
bilinear case. oo {Ek } ’ (65a)
duy
, [ o 19
REFERENCES Fo= o oaat® | (65b)
> 205 “lp, — 22
dudy G b du
Beghelli, S., Guidorzi, R. P., and Soverini, U. (1990). The FY = —FRR? (65c)
Frisch scheme in dynamic system identificatiagku-
tomatica 26(1):171-176. and the first order derivative is given by
Ding, F., Chen, T., and Qiu, L. (2006). Bias compensation , e 1e
based recursive least-squares identification algorithm Vi = — (i R * i)
for MISO systems.|EEE Trans. on Circuits and Sys- T-_1 T ——1/ Te-1
tems 53(5):349-353. =—fo R fe—fe R fu—fig R fe. (66)
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B Second Order Derivative of Vi
Utilising the product rule, the second order derivative
is given by
W=—f F fi— £ R
A S Tk Ml TR Ml o 1
— i Rt R
=2 Rt fe—2 1 ROy

— ¢ R fe— 260 RM (67)
with
Rt =RV RR - RORRC -RORRCY,
(68a)
0O 0
R — [o 2|nJ . (68b)

C Derivativeof ¢

The idea is to linearise the Frisch equation (20) us-

ing perturbation theory, in order to approximate the
derivative of¢, w.r.t. ax. The derivation here is con-
ceptually similar to that given in Appendix 11.B of

(Soderstrom, 2007a), but with the linearisation car-

ried out aroundy_; rather than the ‘true’ parameters.
Assume that at time instan&e- 1, 9_1 satisfies
the extended compensated normal equations

e A S
yA y yPu 1 =0 (69)
k—
Yo, 2o 00 l'nb] {bk—l}
which are rewritten for ease of notation as
A—B ¢ a
{ T Dok 1] [b} =0. (70)

Similarly, introduce the notation at time instaricas

(o oyl o

Let 65 denote the estimate obtained via (35). Alterna-

tively, if igy is known, the input measurement noise

could be obtained using (20) and denote this quantity

k. Using perturbation theory for eigenvalues yields
¢ = Amin {Bk(Atk) } = Amin {Bi_1(0tk_1) + ABy}

4
k1, b [,ATBbkb’ 72)
where the perturbation is given by (cf. (21))
ABy = By(0tk) — Bx—1(0tk—1)
—p—c'[a—s]c-D+eT[2A-28] ¢
=p—c'ys tc-D+e’F e (73)

170

with 7 £ [2 — 3] andF = [ — B]. Substituting (73)

in (72) yields
T
- 1lx —b(@ D+CTF e —cTy )b
b' bTXb
= - 74
775 (2 D)o+ (74)
whereX can be expressed as
X=¢"gle—cTs1c
+¢Ty e eyt
+eT5 et
=(T—cN)ste+eTgHe—-c)
—¢Fr@E-r)r e (75)

and by combining (74) and (75), it holds that
6Tb (c"qufl) ~bT (0 —D)b

+b6T (€T —cT) s 1cb
+67e"g He-c)b
—b'eTF I GF—7) 7 e,
(76)
Now, the first row of (70) gives
a=—F '¢b (77)

and by assuming that ~1cb ~ —a, (76) finally sim-
plifies to

bTb (qk—qk-l) ~b (p—D)b

—bT (€T —cT)a
—a'(€—0c)b
~a'(§-7)a,  (78)
whereg is the only element depending ap. There-
fore,
d_CkNi U.T(,q_@)a 7iaTddﬁ',Bk (79)
day ~ dag bTh T bTb
or equivalently
d ak_ d & =
dG )\mln{Bk(ak)} *b d—z;‘fyakfl
(80)
Slncezk consists of the quantitie§(0),...,§(na), it
remams to determine
d . d d ekn ]
aa =[50 @] 6
which, due to (40), is given by
d
—py = N(Hyg). 2
g % = N(H) (82)



