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Abstract: This paper describes a hierarchical registration process using the iterative closest point algorithm combined 
with a Progressive Mesh. To find the exact pose of objects in a robotic bin picking process we simulate the 
appearance of object poses and compare them with the real range data provided by laser range sensors. The 
coarse pose is estimated in a first step and then refined with the well known iterative Closest Point (ICP) 
algorithm combined with Progressive Meshes for hierarchical object localization. We evaluate our approach 
with different test scenarios and show the comprehensive potential of this idea for other registration 
problems. 

1 INTRODUCTION 

Today robots get more and more involved in 
industrial processes, because they are superior to 
man regarding requirements on strength, speed and 
endurance. Robotic automation processes became 
very successful in the last years, and offers a wide 
range for research. The task of robotic bin picking is 
easy to explain: Pick a known or unknown object out 
of a bin with an unsupervised industrial robot. This 
is called the “bin picking problem”(Hashimoto & 
Sumi,1999), (Katsoulas, 2005). It is also known as 
the de-palletizing problem, which occurs in nearly 
every industrial sector. The approach in this paper 
focuses on the object localization step, which is the 
most challenging step in the whole process. We 
introduce a simulation of a full laser scanning 
process. Industrial laser range sensors are modelled 
to transfer a cad-aided-design (CAD) model to a 
2.5D range data representation. This virtual range 
data is aligned to the real range data of the scene 
with the help of combination of the Iterative Closest 
Point algorithm (Besl & McKay, 1992) and 
Progressive Meshes (Hoppe, 1996). Beside the 
significant improvement in speed our approach leads 
to better accuracy and robustness of the whole 
system. After the overview in section 2 the coarse 
pose estimation for a pose pre-selection is 
introduced in section 3. In the refinement step of our 
system we use the Progressive Mesh based Iterative 

Closest Point (PMICP) algorithm to derive optimal 
solution with high accuracy. We evaluate our 
approach with test range data in section 4 and 
conclude with upcoming extensions of our approach. 

2 SYSTEM OVERVIEW 

An overview of the proposed object localization 
system is shown in the figure 1.  

 
Figure 1: System overview. 

The object localization is separated into pose 
estimation and refinement. To reduce the number of 
possible poses in the computational expensive 
refinement step, we make a pre-selection in the pose 
estimation step. The refinement step uses a modified 
registration algorithm to increase the accuracy. The 
components of our system are introduced in detail in 
the following sections. 
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3 POSE ESTIMATION 

The purpose of the object pose estimation is to find 
adequate coarse positions of an object in the scene.  

The object pose simulation creates a virtual 
range image (VRI) with help of a simulated sensor 
and a virtual scene points. The triangulated CAD-
based object model is used to generate virtual range 
images with the help of the simulated range sensor. 
The sensor model virtually scans the object and 
produces a range image in the same way like the real 
scene. For every possible position and orientation a 
VRI is produced. This VRI is indexed with a known 
position and orientation of the model in a database.  
The range data representation of the VRI and the 
real range image (RRI) are datasets of three 
dimensional points with the position x, y and z. 
Every VRI is compared to the RRI determining the 
difference between the distance values z for acquired 
data from the range sensor and the simulated data 
with the following error function:  
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The error is defined as the mean of the difference 
between every distance value Z1 of the simulated 
object and the distance value Z2 of the scene. We use 
this efficient calculation considering the fact, that 
both coordinate systems of RRI and VRI are equal 
due to knowledge of the real scene setup.  Different 
VRI’s for different kind of objects are compared to 
the RRI in the same way. So the object classification 
is integrated in the step of object localization. One 
advantage of this pre-selection of matching positions 
is the fact, that all VRI can be calculated offline and 
stored in a database. So the process for our coarse 
pose estimation can be summarized in that way: 

 the RRI is delivered by the sensor 
 all VRI in the database (one for each 

possible pose) are compared to the RRI 
 these VRI with the best error value are 

selected for pose refinement  
We take the VRI candidates within the best 10-

20% of all error values in the coarse pose estimation. 
These VRI candidates are delivered to the pose 
refinement process, starting with the best matching 
candidate.  

4 POSE REFINEMENT 

In the previous section the coarse pose estimation 
creates an error value for every pose. The best VRI 

candidates were chosen and used as input for the 
pose refinement to find the best matching candidate. 
The task of the pose refinement is to find a nearly 
exact match between the object in the scene and the 
simulated image. The classical and most commonly 
used algorithm for determining rigid transformations 
is the Iterative Closest Point algorithm (Besl & 
McKay, 1992), (Chen & Medioni, 1992). Because of 
the slow convergence speed, the ICP was improved 
by many researchers (Rusinkiewicz & Levoy, 2001).  

We use the ICP algorithm in combination with 
Progressive Meshes (Hoppe, 1996) to find the exact 
matching pose for every VRI candidate in the real 
scene captured by the laser range sensor. We call 
this combination Progressive Mesh Iterative Closest 
Point Algorithm (PMICP). The major problems of 
the ICP algorithm are the low performance 
calculating a huge amount of points in scene and 
model and its sensitivity to outliers (Rusinkiewicz 
and Levoy, 2001). In every iteration step all points 
of the two datasets must be compared to each other 
with a complexity of O(NRRI*NVRI) where NRRI and 
NVRI are the numbers points in the datasets. Our 
hierarchical approach now reduces this complexity 
by comparing only a reduced number of points Ni of 
each dataset. The representation of Progressive 
Meshes provides a highly efficient implementation 
for adjusting the level of detail in a point dataset and 
includes an inbuilt noise reduction. This 
representation is given by a set of meshes M0 to Mn. 
M0 is the mesh with the lowest accuracy and Mn is 
the mesh with the highest accuracy. The process of 
generating Progressive Meshes from point datasets 
is described in detail in the work of Hoppe et. 
al.(1993). In our experiments we choose the simplest 
way to connect the hierarchy of the Progressive 
Mesh representation to the ICP: The Progressive 
Mesh representation Mi is increased by a fixed 
increment and starts with a defined level of detail in 
each iteration step. The obvious advantage is the 
increased performance. But the profoundly effect is 
the increased robustness against outliers. By 
reducing the mesh up to M0 outliers can no longer 
affect the result of the distance calculation. The 
shape of the model in representation of M0 is similar 
to the M0 representation of the scene representation. 
This leads to a very good initial position in the 
iterative process of the closest point algorithm. We 
have evaluated our PMICP with several experiments 
which are described in the next section.  
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5 EXPERIMENTAL RESULTS 

It is obvious that some results depend on the used 
registration data and the initial pose. In our 
applications the ICP has to find the transformation 
between range images (RRI) and the simulated range 
images (VRI), which are more or less similar in 
shape to the “fractal” scenario of the following test 
scenarios. To evaluate our idea we used the 
reference datasets of Rusinkiewicz and Levoy 
(2001). We us the same test environment with 
synthetic meshs of 2000 points added with Gaussian 
noise and outliers. The datasets are shown in figure 
2a. The “incised” dataset has two lines in shape of 
an “X” in the middle of a planar surface. This 
“wave” dataset is an easy scenario because of low 
frequency features and a smooth surface. In opposite 
to the wave scenario the “fractal” dataset represents 
landscape data of terrain registration and has 
features in all level of details. 

5.1 Results 

To compare our results we implemented the standard 
ICP algorithm according to (Besl & McKay, 1992) 
without approximation and any other possible 
improvements described by Rusinkiewicz and Levoy 
(2001). We changed the distance error calculation 
from Euclidian distance to  
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to avoid computational floating point errors and 
increase calculation performance. We implemented 
the Progressive Mesh based Iterative Closest Point 
Algorithm (PMICP) based on the Progressive Mesh 
implementation of Hoppe in DirectX (Hoppe 1998). 
In our tests we start with an initial meshs consisting 
of five triangles and increase the number of vertices 
in the meshs by five triangles for each iteration step.  

The initial Mi does not suffer from outliers like 
the standard ICP does. With the increasing iteration 
steps and the number of points in the datasets the 
PMICP implementation degenerates more and more 
to the reference algorithm with a better robustness. 
The convergence performance (figure 2b) of the 
“wave” scenario is similar to the “fractal” scenario. 
The algorithm outperforms the standard algorithm in 
the “incised” scenario over most iteration steps. The 
higher error between iteration step 20 and 40 shows 
the rotation ambiguity of the alignment of two plane 
surfaces. Especially in the first few iteration steps 
the PMICP aligns the datasets to a good initial pose. 
The squared distance error is always smaller when 
comparing to the standard ICP.  

All this experiments concentrate on convergence 
robustness and final distance error issues. But the 
experiments show, beside the improvements 
mentioned above, that the overall performance of the 
refinement process can be increased significantly. 
The complexity of the ICP algorithm depends 
mainly on the number of points in the dataset. The 
search of the closest points has a computational 
complexity of O(Nj*Ni). We reduce the number of 

2 a)      “incised”       “wave”      “fractal”   
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Figure 2: Test scenarios (2a) with convergence performance (2b). 
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points in the dataset, starting with only a few points 
and increase the number in every iteration step. The 
computational complexity is reduced in average to 
O((0.5*Nj)*(0.5*Ni)) assuming we do not stop the 
iteration until we reach the end (Mn mesh). 

If the iteration process is stopped, because the 
ICP reached the minimum, the performance of our 
implementation is always better than    
O((0.5*Nj)*(0.5*Ni)). Our Progressive Mesh ICP 
experiments need in average 25% of the time of the 
standard ICP implementation. 

6 FURTHER EXTENSIONS 

Many of known modifications of the ICP can be 
combined with the PMICP without loss of 
generalization. For example the performance in the 
closest points search is often increased using Kd-
Trees implementations (Z. Zhang, 1994) to 
O(Nj*log(Ni)). The Kd-Tree search could be used in 
addition to our PMICP leading to a significant 
improvement in speed especially in the higher level 
of details.  The ICP algorithm is  known to be very 
sensitive to wrong initial poses of the two datasets 
because of the fact, that the ICP will always 
converge to the local minimum (which is of course 
commonly not identical to the global minimum). So 
the determination of the optimal initial start value 
for the number of points in the mesh is very 
important. In the current implementation the level of 
detail in the Progressive Mesh is connected to 
number of iterations in the ICP. Finding the optimal 
number of points for each iteration step in ICP 
iterations is one of possible improvements in the 
next steps of our research.  

7 CONCLUSIONS 

We described a system to align range data surfaces 
in a context of industrial process automation. We 
focused on the improvements in the refinement step 
of our hierarchical object localization system. The 
well known and proven ICP Algorithm is modified 
with the use of Progressive Meshes. To be sure to 
meet the requirements of different applications we 
evaluated our system with test scenarios, which 
cover many types of possible range data scenes.  

The simulation of real scenes offers the 
possibility to use our approach in many scenarios. 
The described two-step object localization is 

integrated in our system robotic bin picking covering 
different application scenarios (Boehnke, 2007).  
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